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A non-linear mathematical model for HIV epidemic that spreads in a variable size population through 
both horizontal and vertical transmission in the presence of HIV infected immigrants is studied. The 
equilibrium points of the model are found and the stability is investigated. The model exhibits two 
equilibria, namely, the disease-free and the endemic equilibrium. It is shown that if the basic 

reproduction number 0
1R < , the disease-free equilibrium is always locally asymptotically stable and in 

such a case the endemic equilibrium does not exist. If 0
1R > , a unique endemic equilibrium exists, 

which is locally asymptotically stable and becomes globally asymptotically stable under certain 
conditions. This shows that the disease becomes endemic due to constant immigration of both HIV 
infected and non infected individuals into the community. Using stability theory and computer 
simulation, it is shown that by controlling the rate of vertical transmission, the spread of the disease 
can be reduced significantly and consequently the equilibrium values of infected population can be 
maintained at desired levels. A numerical study of the model is also used to investigate the influence of 
certain other key parameters on the spread of the disease and how to control their influence. 
 
Key words: AIDS epidemic, vertical transmission, immigration, stability, simulation. 

 
 
INTRODUCTION 
 
The human immuno-deficiency virus (HIV) infection which 
can lead to acquired immuno-deficiency syndrome 
(AIDS). It is pointed out that CD4+ T cells are important 
constituent of human immune system and are primarily 
attacked by HIV (Srivastava et al., 2009). AIDS has 
become an important infectious disease in both the 
developed and developing nations. It is a fatal disease, 
which destroys the body’s immune system, leaving the 
victim vulnerable to a host of life threatening opportunistic 
infections,      neurological       disorders      or      unusual  
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malignancies. It causes mortality of millions of people and 
expenditure of enormous amount of money in health care 
and disease control.  

The AIDS epidemic has spread rapidly in Africa than 
any other continent in the world, Sub-Saharan countries 
being the worst hit. In 2007, it was estimated that two 
thirds of the global total of 32.9 million people with HIV 
live in this region, and three quarters of all AIDS deaths in 
2007 occurred in the sub-Saharan region. It is estimated 
that by 2020 the nine most severely hit Sub-Saharan 
countries may lose 13 to 26% of their agricultural labour 
force to AIDS. Those dying are more than agricultural 
workers. They are household heads, mothers and fathers 
of young children and adolescents, caregivers for the  old  
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and sick, transmitters of agricultural and livelihood 
knowledge and skills and custodians of social safety nets.                                             
The gross domestic product in countries with HIV 
prevalence rates of 10% or higher could drop by 18% by 
2020 (Amoako at al., 2008). 

Mathematical models have been used extensively in 
research into the epidemiology of HIV/AIDS, to help 
improve our understanding of the major contributing 
factors in a given epidemic. From the initial models of 
Anderson et al. (1986) and May and Anderson (1987), 
various refinements have been added into modelling 
frameworks, and specific issues have been addressed by 
researchers (Corbett et al., 2003; Diekmann et al., 1990; 
Perelson and Nelson, 1999; Lewis and Greenhalgh, 
2001). HIV infection spreads rapidly in populations 
through unsafe sexual interaction with an accompanying 
risk of vertical transmission.  

Vertical transmission can occur through transplacental 
transfer of disease agents. In recent years, a few studies 
of vertical transmission have been conducted to describe 
the effects of various epidemiological and demographical 
factors (Li et al., 2001). In particular, Busenberg and 
Cooke (1993) discussed a variety of diseases that 
transmit both horizontally and vertically, and gave a 
comprehensive survey of the formulation and the 
mathematical analysis of compartmental models that also 
incorporate vertical transmission. Brauer (1995) 
considered models for disease with vertical transmission 
with non-linear population dynamics and finite carrying 
capacity, and analyzed the stability of equilibriums in the 
special case in which the overall birth rate does not 
depend on infective population size. Li et al. (2001) 
proposed a model for an infectious disease that spreads 
in the host population through both horizontal and vertical 
transmission. A little attention has been paid to study the 
role of vertical transmission in HIV/AIDS models. 
Agarwala (2002) developed a density dependent HIV 
transmission model for Canadian population by taking 
into account the vertical transmission and by using simple 
mass action type interaction. Also Naresh et al. (2006) 
examined a similar model to Agarwala with vertical 
transmission but did not consider infected immigrants 
coming into the community. 

In this paper therefore, a deterministic model of 
HIV/AIDS with vertical transmission in the presence of 
infected immigrants is to be developed. In addition, the 
demographic and other epidemiological factors are to be 
taken into consideration. On the other hand the purpose 
is to formulate a model for AIDS epidemic that may be 
transmitted either directly or vertically in populations and 
to study its behaviour qualitatively and numerically. 
 
 
THE MODEL 

 

A  population  of  size ( )N
  

at   time   t   with   constant   inflow   of 

 
 
 
 
susceptible at a rate Q is studied. The population size is divided 

into four subclasses of susceptible ( )S , infectives ( )I  also 

assumed to be infectious, both pre-AIDS patients ( )P  and AIDS 

patients ( )A  are assumed to be sexually inactive, and therefore 

non-infectious. The natural mortality rate is υ  in all classes and 

the disease induced death rate is α  in the AIDS patients class. In 

addition, β  is a sexual contact rate, c is the number of partners 

per individual and µ  is the rate of movement of pre-AIDS class 

individuals into AIDS class. It is also assumed that the susceptibles 
become HIV infected via sexual contacts with infectives which may 
also lead to the birth of infected children. It is assumed that a 
fraction of new born children are infected at birth, and hence are 

directly recruited into the infective class with a rate (1 )ε θ−  

and others die effectively at birth (0 1)ε≤ ≤ . Not only vertical 

transmission is considered for direct recruitment of infected persons 
within the population, but also infected immigrants are recruited 
directly into both infectives and pre-AIDS patients classes. 

Consequently, (1 )m Iπ−  is the recruitment rate of infective 

immigrants into the population and m Iπ  is the recruitment rate 

of pre-AIDS immigrants into the population. It is also assumed that 
some of the infectives move to join pre-AIDS class, depending on 

the viral counts, with a rate σ δ  and others with serious infection 

directly join the AIDS class with a rate (1 )σ δ− , where 

(0 1)σ≤ ≤ . The interaction between susceptibles and infectives 

is assumed to be of standard mass action type. Therefore, a system 
(Equation 1) is the model and Figure 1 is a flow chart of the model. 
 

(1 ) ( ) (1 )

( ) ( )

(1 ) ( )

dS I
Q cS S

dt N

dI I
m I cS I I

dt N

dP
m I P

dt

dA
I P A

dt

β υ

π β δ υ ε θ

π σδ µ υ

σ δ µ α υ


= − − 


= − + − + + −


= + − +


= − + − +
     (1) 

 
with 
 

0 0 0 0(0) , (0) , (0) , (0)S S I I P P A A= = = =
 

 
 
The model is rearranged 

 
When all equations in the model (Equation 1) are added and 

APISN +++=  is used, then   

 

[ (1 ) ]
dN

Q N A m I
dt

υ α ε θ= − − + + −  . 

 
Generally the model can be rearranged as: 
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Figure 1. Flow chart. 

 
 
 

[ (1 ) ]

(1 ) ( ) ( ) (1 )

( ) ( )

(1 ) ( )

dN
Q N A m I

dt

dI I
m I c N I P A I I

dt N

dP
m I P

dt

dA
I P A

dt

υ α ε θ

π β δ υ ε θ

π σδ µ υ

σ δ µ α υ


= − − + + − 


= − + − − − − + + −


= + − +


= − + − +
                (2) 

 
Continuity of the right-hand side of the system (Equation 2) and its 
derivative implies that the model is well posed. It is pointed out here 
that not all infected individuals take part in spreading the disease, 
as in the case of infected children. It is also assumed that HIV 
infected classes do not die of the disease except the AIDS-patients 
class. However, other HIV infected class may die of the disease. 
This is left for future research.  
 
 

Value of the basic reproduction number, 0R  

 
In order to achieve disease free equilibrium (DFE), it is expected 
that the whole population is to be occupied by susceptibles and 
other classes go to extinction after some time. It is assumed that 

S N=  and I P A= =  is estimated to zero when there are 

relatively few individuals infected in the population. This is 
substituted into the differential equation of the infective class and 
the following is obtained.  
 

(1 ) ( ) (1 )

[ (1 ) ( ) (1 ) ]

1
(1 ) ( ) (1 ) .

dI
I cI I I

dt

m c I

dI
m c

I dt

π β δ υ ε θ

π β δ υ ε θ

π β δ υ ε θ

= − + − + + −

= − + − + + −

⇒ = − + − + + −

 

 
Solving for I: 
 

1
[ (1 ) ( ) (1 ) ] ,dI m c dt

I
π β δ υ ε θ= − + − + + −∫ ∫  

 

Then ( )0 exp [ (1 ) ( ) (1 ) ] .I I m c tπ β δ υ ε θ= − + − + + −  

 If (1 ) ( ) (1 ) 0m cπ β δ υ ε θ− + − + + − < , then the number 

of infectives die exponentially with time. Therefore, there is no 

infection at infinity (that is, ∞→t ), if  

0

(1 ) (1 )
(1 ) ( ) (1 ) 0 1

(1 ) (1 )
.

m c
m c

m c
R

π β ε θ
π β δ υ ε θ

δ υ

π β ε θ

δ υ

− + + −
− + − + + − < ⇔ <

+

− + + −
⇒ =

+

 

We can rewrite  I  in terms of 0R : 
0

0

1
exp .

R
I I

T

− 
=  

 
 

Since 

1

1

0

0

(1 ) (1 )
(1 ) ( ) (1 ) 1 ( )

(1 ) (1 ) 1
1

( 1)

1
.

m c
m c

m c

R T

R

T

π β ε θ
π β δ υ ε θ δ υ

δ υ

π β ε θ

δ υ δ υ

−

−

− + + − 
− + − + + − = − + 

+ 

− + + −  
= −  

+ +  

= −

−
=

 
 

 where 

1
T

δ υ
=

+
 is the time during which people remain 

infective and  

0

(1 ) (1 )m c
R

π β ε θ

δ υ

− + + −
=

+
.  

 
 

Doubling time, d
t  of the epidemic 

 

Consider when 0
, 2

d
t t I I= =  these values can be substituted in 

the expression 

0 1
( )

R
t

TI e

−

=  so as to solve for doubling time 

as follows: 
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Figure 2. Variation of basic reproductive rate 
0R against doubling time, dt  

for different values of delta, δ. 

 
 
 

 

0 01 1
( ) ( )

0 0 0

0

2

ln 2
.

1

d

R R
t t

T T

d

I I e I I e

T
t

R

− −

= ⇒ =

⇔ =
−

 
 

Therefore, doubling time, 

0

ln 2
.

1
d

T
t

R
=

−
 

Thus, if 10 >R , the infection triggers an epidemic otherwise its 

prevalence is zero, that is, for 10 <R . From the solution I(t), it is 

noted that with an increase in 0R , which can be viewed as a 

function of c, increase in the number of sexual partners, results to 
an increase in the number of infectives which in turn increases the 
AIDS patients population. Thus, in order to keep the spread of the 
disease at minimum, the number of sexual partners should be 
restricted. 

In Figure 2, the variation of basic reproduction rate 0R with 

doubling time dt  
is shown. It is noted that if 10 <R  then, the 

epidemic is said to be growing and otherwise for 10 <R  the 

epidemic is diminishing. If 0R  is just above 1, then there is a slow 

spread of the disease.  In addition, for this case the doubling time 
gets longer. A small increase in the basic reproduction rate results 
in the reduction of the doubling time which indicates the slow 
growth of the infection. 

 
 
STABILITY ANALYSIS 
 
Here, we present the results of stability analysis of the 
equilibrium points. 
 
 

Equilibria of the model 
 
The model (Equation 2) has two non-negative equilibrium 
points namely: 
 

1. 0 ( , 0, 0, 0)
Q

E
υ

, the disease-free equilibrium, 

2. ),,,( *****
APINE , the endemic equilibrium. 

 

Where 
* *.N c Iβ λ=

 
 

*
.

[ (1 )]
[ (1 )]

( )( )

Q
I

m
c m

δ µ υ σ µ π
β υλ α θ ε

α υ µ υ

=
+ − +

+ − + −
+ +  

 
*

* ( )
.

m I
P

π σδ

µ υ

+
=

+
 



 
 
 
 
 

*
* ( [ (1 )] )

.
( )( )

m I
A

δ µ υ σ µ π

α υ µ υ

+ − +
=

+ +  
 

 where 

( [ (1 )] )
1

( )( )
.

(1 ) ( ) (1 )

m m

c m

π σδ δ µ υ σ µ π

µ υ α υ µ υ
λ

β ε θ δ υ π

+ + − +
+ +

+ + +
=

+ − − + + −
 

                               

λ  is positive only when 

 

 (1 ) (1 )c mβ ε θ π δ υ+ − + − > + .  

 

It is noted that 
*E  is positive if 

 

  
[ (1 )]

(1 ).
( )( )

m
c m

δ µ υ σ µ π
β υλ α θ ε

α υ µ υ

+ − +
+ > + −

+ +
 

                    

It is shown that equilibrium level of infectives 
*I  

increases as Q or m increases; c or π  decreases leading 

to increase in 
*P  and 

*A . Also if θ increases then, the 

equilibrium values of  
*I , 

*P  and 
*A  increase. Thus, an 

increase in the rate of vertical transmission increases the 
equilibrium level of infectives which in turn increases the 
equilibrium level of pre-AIDS and that of AIDS population.  
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The equilibrium level of AIDS patients 
*A  decreases as 

the disease induced death rate α  increases. It is also 

noted that when the disease remain endemic, the 
disease induced deaths reduce the equilibrium population 

size from  Q

υ
  to  

*N . 

 
 
Local stability of the equilibria 
 

Now to determine the local stability of 0E  and 
*E , the 

following variation matrices 0M and 
*M are computed 

corresponding to equilibrium points 0E  and 
*E  

respectively. 
 
 

0

(1 ) 0

0 (1 ) ( ) (1 ) 0 0

0 ( ) 0

0 (1 ) ( )

d m

c m
M

m

ε θ α

β ε θ δ υ π

π σδ µ υ

σ δ µ α υ

− − + − 
 + − − + + − =
 + − +
 

− − + 
 

 

( )
* * * *

* * * * *

(1 ) 0

(1 ) ( ) (1 )

0 ( ) 0

0 (1 ) ( )

m

I cI I I
c m c c

M N N N N

m

υ ε θ α

β
β ε θ δ υ π β β

π σδ µ υ

σ δ µ α υ

− − + − 
 
 + − − + + − − − −

=  
 + − +
 
 − − +    

 

From 0M  it is clear that 0E  is locally asymptotically 

stable provided (1 ) (1 )c mβ ε θ π δ υ+ − + − < + , that 

is, for 10 <R , the disease dies out and under this 

condition the endemic equilibrium does not exist. 

If 10 >R , then 
*E  exists and the infection is maintained 

in the population. The characteristic equation 

corresponding to 
*M  is given by: 

 

( ) 4 3 2

1 2 3 4 0.f a a a aλ λ λ λ λ= + + + + =                    (3) 

 
where 

 

( )

*

1 *

2

*

*

3 ,

( )( ) ( 2 )

( 3 ) [(1 ) ][ (1 ) ( ) (1 )] ,

cI
a

N

a

I
c m m c m

N

β
α µ υ

α υ µ υ υ α µ υ

β α µ δ υ π δ ε θ β ε θ δ υ π

= + + +

= + + + + +

+ + + + + + − − + + − − + + −
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[ ][ ]

3

*

*

*

*

( )( )

[(1 ) ( 2 ) ( )( 2 ) (2 2 3 )]

(1 ) [(1 ) ]( 2 ) (1 ) ( ) (1 ) ,

a

cI
m

N

I
m c m

N

υ α υ µ υ

β
σ δ µ υ π σδ α υ µ αµ υ α µ υ

σ αδ ε θ α µ υ β ε θ δ υ π

= + +

+ − + + + + + + + + +

+ − − − + + + + − − + + −
 

 
 

( )

[ ]

[ ]

*

4 *

*

*

( )( ) (1 )

(1 ) ( ) (1 )

( [ (1 ) ] ) [(1 ) ]( )( ) .

cI
a m m

N

c m

I
x m m

N

β
υ α υ µ υ π σδ µ π δ µ δ σ

β ε θ δ υ π

α δ µ σ υ µ π ε θ µ υ α υ

 = + + + + + + + − 

+ + − − + + −

+ − + − − + + +

 

 

Thus, by Routh-Hurwitz criteria, 
*E  is locally 

asymptotically stable as it can be seen for  
 

1 2 3 4 1 2 3
0, 0, 0, 0, 0a a a a a a a> > > > − >  , and  

2 2

1 2 3 3 1 4 0.a a a a a a− − >  

 
 
Global stability of the endemic equilibrium 
 

Now to show the globally stability behaviour of 
*E , we 

need the bounds of the dependent variables that is 
involved. For this, we find the region of attraction stated 
in the form of the following lemma. 
 
 
Lemma  

 
The region 

{ }( , , , ): 0 , 0 , 0 , 0N I P A N N I I P P A AΩ= < ≤ < ≤ < ≤ < ≤  

is a region of attraction for 

(1 ) (1 )c mβ θ ε π δ υ+ − + − > +  .  

 

where 
[(1 ) ]

,
Q m I

N
ε θ

υ

+ − +
=  

(1 ) (1 ) ( )
1 ,

Q m
I

c

θ ε π δ υ

υ β

 − + − − +
= + 

 
 

( )m I
P

π σδ

µ υ

+
=

+
 and  ( [ (1 )] )

( )( )

m I
A

δ µ υ σ µ π

α υ µ υ

+ − +
=

+ +
. 

 
Theorem  

 

If the endemic equilibrium 
*E exists, then it is globally 

asymptotically stable provided the following conditions 

are satisfied inΩ :  
 

 2 2( )( )
,

(1 ) 3( )m

µ α υ µ υ

σ δ π σδ

+ +
<

− +  11 12
max{ , },k q q>

 
 

where  

2 * * 2

11 12

3 (1 ) 3
,

2 ( ) 2

N N l
q q

c c

α σ δ

υβ α υ υβ

−
= =

+
 and 

*

( )
(1 )

ck I P A
l m

N N

β
ε θ

+ +
= + − + . 

 
 
Proof:  Consider the following positive definite function 

about 
*E : 

 

* 2 * * * 2 * 2

1 2 3*

1 1 1
( ) ln ( ) ( )

2 2 2

I
V N N k I I I k P P k A A

I

 
= − + − − + − + − 

   
 

where the constants 21, kk
 

and 3k  can be chosen 

suitably. The derivative of V along the solution of the 
system (Equation 2) can be written as: 

  
*

* * *

1 2 3( ) ( ) ( )
dV dN I I dI dP dA

N N k k P P k A A
dt dt I dt dt dt

 −
= − + + − + − 

   
 
After some algebraic calculations, the following is 
obtained: 

 

* 2 * * * *

*

( )
( ) (1 ) ( )( ) ( )( )

dV ck I P A
N N m N N I I N N A A

dt N N

β
υ ε θ α

 + +
= − − + + − + − − − − − 

   



 

 

 

 

* 2 * *

2* *
( ) ( ) ( )( )

ck ck
I I k m I I P P

N N

β β
π σδ

 
− − + + − − − 

   
 

* 2 * *

2 3( )( ) ( )( )k P P k P P A Aµ υ µ− + − + − −
 

 

* 2 * *

3 3 *
( )( ) (1 ) ( )( ).

ck
k A A k I I A A

N

β
α υ δ σ

 
− + − − − − − − 

   
 
It can now be written as the sum of the quadratics as: 
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* 2 * * * 2

11 12 21

* 2 * * * 2

11 13 33

* 2 * * * 2

21 22 31

* 2 * * * 2

21 23 33

* 2 *

31 32

1 1
( ) ( )( ) ( )

2 2

1 1
( ) ( )( ) ( )

2 2

1 1
( ) ( )( ) ( )

2 2

1 1
( ) ( )( ) ( )

2 2

1
( ) ( )(

2

dV
a N N a N N I I a I I

dt

a N N a N N A A a A A

a I I a I I P P a P P

a I I a I I A A a A A

a P P a P P A A

= − − + − − − −

− − + − − − −

− − + − − − −

− − + − − − −

− − + − − * * 2

33

1
) ( )

2
a A A− −

 
 
where 

11 12 13*

21 22 2 23 3* * *

31 2 32 3 33 3

( )
, (1 ) , ,

2
, ( ) , (1 ) ,

3

2
( ), , ( ).

3

ck I P A
a a m a

N N

ck ck ck
a a k m a k

N N N

a k a k a k

β
υ ε θ α

β β β
π σδ σ δ

µ υ µ α υ

+ +
= = + − + = −

= = + − = − −

= + = = +

 

 

Thus, a sufficient condition for 
dV

dt
 to become negative 

definite is that: 

 

 2 2 2

12 11 21 13 11 33 22 21 31

2 2

23 21 33 32 31 33

0, 0, 0,

0, 0.

a a a a a a a a a

a a a a a a

− < − < − < 


− < − <    
                                                                                       (4) 
 

Now choosing 
2 *( )

ck
k

m N

β

π σδ
=

+
 and 

3 *(1 )

ck
k

N

β

σ δ
=

−
  the condition (Equation 4) give; 

 
2 2( )( )

(1 ) 3( )m

µ α υ µ υ

σ δ π σδ

+ +
<

− +
  and 11 12max{ , }.k q q>

 

 

where 

2 * * 2

11 12

3 (1 ) 3
,

2 ( ) 2

N N l
q q

c c

α σ δ

υβ α υ υβ

−
= =

+
 and 

*

( )
(1 ) .

ck I P A
l m

N N

β
ε θ

+ +
= + − +  

 

Hence, is a Lyapunov function with respect to 
*E  whose 

domain contains Ω  proving the theorem. 

 
 
NUMERICAL ANALYSIS 
 
We give numerical simulation of the equilibrium and 
stability conditions of the model (Equation 2). Using the 
set of parameter values:  
 

1
2000, ,

70
Q υ= = 25, 1,c α= = 0.05,β =

0.4, 0.01, 0.5, 0.01, 0.3mε θ µ π= = = = =   

 
and the initials: 
 

0
12700,N =  0

10000,S =  

0 0 0
2000, 500, 200I P and A= = =

 
 

 the endemic equilibrium values using MatLab are 

computed as 
* *2045, 9791,S I= = * 819P =  and 

* 1949A = .  

The results of numerical simulation are displayed 
graphically in Figures 3 to 10. In Figure 3, the distribution 
of population with time is shown in different classes 
without immigration into the population, that is, 

0.0,0.0 == θQ  and 0.0=m  into the population. It is 

seen that in the absence of immigration into the 
community, the susceptible population decreases 
continuously as the population is  closed  which  result  in  
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Figure 3. Variation of population in different classes for 0.0Q =  and 

0.0=m . 
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Figure 4. Variation of population in different classes for 2000Q = , 

0.01θ =  and 01.0=m      

 
 
 

the increase of infective population first and then, it 
decreases as all infectives subsequently develop AIDS 
and then, die out by disease-induced deaths. Thus, the 
total population is eradicated after some time.  

Figure 4 shows the variation of population in all classes 
with both immigration of susceptible (I) and infected 
individuals both infectives and pre-AIDS patients. It 
follows  that  susceptibles  decrease  continuously due  to  
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Figure 5. Variation of infective population (I) for different values of theta, θ. 

 
 
 
potential infections from infectives; therefore, infection 
becomes more endemic and always persists in the 
population. On comparing Figures 3 and 4, it is noted that 
the increase in the rate of immigration into community 
increases the AIDS population. Thus, if the rate of 
immigration is restricted into susceptible community, the 
spread of the disease can be kept under control. 

The role of vertical transmission in the model is 
revealed by the rate of recruitment of infected children 
directly into infective class, explicitly shown in Figures 5 
and 6. It is seen that as the rate of infected children born 
increases, the infective population also increase and as 
much the AIDS population increases. It may be noted 
here that the birth of infected children make the infective 
population increase. Such children will take their own 
time to develop full blown AIDS, but they do not take part 
in the horizontal transmission as they are sexually 
inactive. Thus, if the births of infected children are 
controlled by way of promoting condom use or other 
control mechanisms, the overall  infective  population  will  
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Figure 6. Variation of AIDS patient population for different 

values of theta, θ. 
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Figure 7. Variation of infected population for different values of delta,δ. 
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Figure 8. Variation of Pre-AIDS population for different values of delta,δ. 

 
 
 
remain under control. This will help in reducing the AIDS 
population. 

Figures 7 to 9 depict the variation of infectives, pre-
AIDS and AIDS population, respectively with time for 

different values of movement rate delta, δ. It is  seen  that 

with increase in the value of movement rate, δ, the 
infective population decreases which in turn increases 
the pre-AIDS and AIDS population. This is expected, 
because of shorter incubation period. 

In Figure 10, the effect of disease induced death rate  α  
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Figure 9. Variation of AIDS patients population for different values of delta, δ. 
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Figure 10. Variation of AIDS patients’ population for different values of 

alpha,α . 

 
 
 

is shown and it is found that as  α increases, the 
population of AIDS patients’ decreases. The number of 
susceptibles (S), is lowered as recruitment of infected 
immigrants is intensified in the population, this is because 
more susceptible individuals are infected  by  HIV  due  to 

increase in contact rate. This is observed in Figure 11, by 

varying the values of m and keeping 0π >  constant, 

therefore, susceptibles can be maintained at desired level 
by restricting the number of infected immigrants. 

Also, an increase of  infectives  through  immigration  of  



5394          Int. J. Phys. Sci. 
 
 
 

Time (years)  
 
Figure 11. Variation of susceptible (S) population for different values of m. 
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Figure 12. Variation of infected population for different values. 

 
 
 
infected individuals accelerates the infectives class as 
simulated in Figure 12: similar character is observed to 
pre-AIDS and AIDS patients simply because the 
infectives eventually develop into pre-AIDS or AIDS class 

depending on viral counts, as seen in both Figures 13 
and 14 population for different values of m. 

A further increase in infected immigrants into the 
population, t hat  is   ∞→m    leads    to   uncontrollable  
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Figure 13. Variation of pre-AIDS population for different values of m. 
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Figure 14. Variation of AIDS population for different values of m. 

 
 
 
disease situation. As a consequence, despite direct 
increase of infectives through  immigration,  this  leads  to 

high rate of increase in infected individuals through 
vertical  and  horizontal  transmission.  As  a   result,   this  
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Figure 15. Variation of population in different classes for 2000Q = , 

0.01θ =  and 1.0=m . 
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Figure 16. Variation of population in different classes for 2000Q = , 

0.01θ =  and 25.0=m  .  

 
 
 
decreases the susceptible population; when the value of 
m is high enough, the susceptible population size 
becomes negligible, as it is seen in Figures 15 to 17. On 
the          other          hand,          the           value            of 

0

(1 ) (1 )m c
R

π β ε θ

δ υ

− + + −
=

+
 for 0π ≠  increases 

indefinitely as m increases leading to 10 >R
 
in which the  
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Figure 17. Variation of population in different classes for 2000Q = , 

0.01θ =  and 35.0=m . 

 
 
 
disease becomes endemically uncontrollable, because it 
spreads without bound. Therefore, with no restriction on 
infected immigrants will lead to negligible size of 
susceptibles in the population relative to other classes of 
population, hence the whole population become 
HIV/AIDS victims. 

From the figures, it can also be seen, that the 
respective populations are tending to the equilibrium 
level. This has also been observed for different initial 

values of the variables. Hence, the equilibrium 
*E  is 

globally asymptotically stable for this set of parameters. 
 
 
Conclusions 
 
In this paper, a non-linear mathematical model is 
proposed and analyzed to study the transmission of 
HIV/AIDS in a population of varying size with constant 
recruitment into susceptibles (S), infectives (I) and pre-
AIDS patients (P) of the population; with vertical 
transmission under the assumption of sexual interaction 
of susceptibles with infectives, the infected babies are 
born to increase the growth of infective population 
directly. It is assumed that people in pre-AIDS and AIDS 
classes are exposed and incapable of producing children. 
By analyzing the model, we have found a threshold 

parameter, 0R . It is noted that when 10 <R  then, 

disease dies out. However, as long as there are  infective 

immigrant joining the population, the disease free 
equilibrium will always be unattainable, since the 

parameter 0m >  will always make R0 >1. When 10 >R , 

the disease becomes endemic. It is found that an 
increase in the rate of vertical transmission or infectives 
through immigration lead to increase in the population of 
infectives which in turn increases the pre-AIDS and AIDS 
population. As a result, infective immigrants contribute to 
the spread of HIV both horizontal and vertical.   

Thus, we need to control the vertical transmission of 
HIV by suppressing horizontal transmission; including 
condom use and other safer sexual contact, the infective 
immigrants should be restricted in such a way that only 
susceptibles are allowed to immigrate into the 
community. By simulation also, it is shown that by 
controlling the rate of vertical transmission, the spread of 
the disease can be reduced significantly. It is also found 
that the increase in the number of sexual partners further 
reduces the total population by way of spreading the 
disease. Thus, in order to reduce the spread of the 
disease, the number of sexual partners should be 
restricted as well, and consequently the equilibrium 
values of infective and AIDS population can be 
maintained at desired levels.  
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