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We study the generalized (2+1)-Zakharov-Kuznetsov (ZK) equation of time dependent variable 
coefficients from the Lie group-theoretic point of view. The Lie point symmetry generators of a special 
form of the class of equations are derived. We classify the Lie point symmetry generators to obtain the 
optimal system of one-dimensional subalgebras of the Lie symmetry algebras. These subalgebras are 
then used to construct a number of symmetry reductions and exact group-invariant solutions to the 
underlying equation. 
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INTRODUCTION 
 
The study of the exact solutions of a nonlinear evolution 
equation plays an important role to understand the 
nonlinear physical phenomena which are described by 
these equations. The importance of deriving such exact 
solutions to these nonlinear equations facilitate the 
verification of numerical methods and helps in the 
stability analysis of solutions. 

This paper studies, the exact solutions of one nonlinear 
evolution equation, the generalized (2+1)-Zakharov-
Kuznetsov equation of the form  
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of time dependent variable coefficients. Here f(t), g(t) and 
h(t) are arbitrary smooth functions of the variable t and 

0≠fgh . Equation 1, models the nonlinear development 

of ion-acoustic waves in a magnetized plasma under the 
restrictions of small wave amplitude, weak dispersion, 
and strong magnetic fields (Zakharov and Kuznetsov, 
1974). Equation 1 also appears in different forms in many 
areas of Physics, Applied Mathematics  and  Engineering 
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(Biswas and Zerrad, 2010; Biswas, 2009). 
 
 
The transformation   
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maps Equation 1 to 
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tfthth = Therefore, without loss of generality, 

we can consider the equations of the general form  
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in our analysis as all the results of the class 4 can be 
extended to the class 1 by the transformation 2. 

In Peng et al. (2008), travelling wave-like solutions for 
the Equation 1 were obtained. In Moussa (2001) and 
Changzheng (1995), similarity reductions and some exact  
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solutions were obtained for the special cases of the class 
of Equation 4, (where a(t) and b(t) are constants) using 
symmetry group method. For the theory and application 
of the Lie symmetry methods see Bluman and Kumei, 
(1989), Olver (1993), Ovsiannikov (1982), Ibragimov 
(1994; 1996). Recently, Kraenkel and Senthilvelan 
(2011), utilized the method of Lie groups to derive 
solutions to an integrable equation governing short waves 
in a long-wave model. 

In this study, we present the Lie point symmetries of a 
special case of Equation 4 and we also construct the 
optimal system of one-dimensional subalgebras of the Lie 
symmetry algebra of the special form of the equation. 
Moreover, using the optimal system of subalgebras 
symmetry reductions and exact group-invariant solutions 
of the underlying equation are obtained.  
 
 
LIE POINT SYMMETRIES 
 
We consider a special case of the class of Equation 4. 

That is, for the time dependent coefficients tata /)(
0

=  

and ,/)(
0

tbtb =  where 
0

a  and 
0

b  are arbitrary 

constants, we utilize the Lie symmetry group method to 
obtain symmetry reductions and group-invariant solutions 
of the underlying equation. Therefore, the equation that is 
going to be studied in this paper takes the following form: 
 

.000 =+++
xyyxxxxt

u
t

b
u

t

a
uuu                        (5)    

 
 A vector field 
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 is a generator of point symmetry of the equation (5) if   
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Where the operator 
]3[

X  is the third prolongation of the 
operator X defined by  
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the coefficients 
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ζζζ ,,  and 
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ζ  are given by 
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 Here 
i

D  denotes the total derivative operator and is 

defined by  
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The coefficient functions ψξτ ,,  and η  are calculated by 

solving the determining Equation 7. Since ψξτ ,,  and η  

are independent of the derivatives of u , the coefficients 

of like derivatives of u  in Equation 7 can be equated to 

yield an over determined system of linear partial 
differential equations (PDEs). Therefore, the determining 
equation for symmetries after lengthy calculations 
yielded:  
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Solving the determining Equations 8, 9 ,10, 11, 12 and 13 

for ψξτ ,,  and η , we obtained the following symmetry 

group generators given by  
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SYMMETRY REDUCTIONS AND EXACT GROUP-
INVARIANT SOLUTIONS OF EQUATION 5 
 
Here,   we   first   construct  the  optimal  system  of  one- 



 
 
 
 

Table 1. Commutator table of the Lie algebra of Equation 5.  
 

Ad X1 X2
 

X3 X4 

 X1 0 0 0 0 

X2
 

0 0 0 0 

X3 0 0 0 - X3 

X4 0 0 X3 0 

 
 
 

Table 2. Adjoint table of the Lie algebra of Equation 5. 

 

Ad X1 X2
 

X3   X4 

X1 X1 X2
 

X3 X4 

X2 X1 X2
 

X3 X4 

X3 X1 X2
 

X3 X4 + ƐX3  

X4 X1 X2
 

e
-Ɛ 

X3
 

X4 

 
 
 
dimensional subalgebras of the Lie algebra admitted by 
the Equation 5. The classification of the one-dimensional 
subalgebras are then used to reduce the Equation 5 into 
a partial differential equation (PDE) having two 
independent variables. Then, we also studied the 
symmetry properties of the reduced PDE to derive further 
symmetry reductions and exact group-invariant solutions 
for the underlying equation. 

The results on the classification of the Lie point 
symmetries of the Equation 5 are summarized (Tables 1, 
2 and 3). The commutator table of the Lie point 
symmetries of the Equation 5 and the adjoint 
representations of the symmetry group of Equation 5 on 
its Lie algebra are given in Tables 1 and 2, respectively. 
Tables 1 and 2 are used to construct the optimal system 
of one-dimensional subalgebras for Equation 5 which is 
given in Table 3 (Olver, 1993). 
 
Case 1: In this case, the group-invariant solution 
corresponding to the symmetry generator 

214
XXX µλ ++  reduces the Equation 5 to the PDE:  
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Now the Equation 14 admits the following symmetry 
generators given by  
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(a)   
1

X  

The group-invariant solution corresponding to 
1

X  is 

)(γHh =  , where βγ =  is the  group  invariant   of  
1

X ,  

Moleleki et al.          7923 
 
 
 
the substitution of this solution into Equation 14 and 

solving we obtain a solution 
µ/

),,(
yCeyxtu −=   for 

Equation 5, where C is a constant.  
 

(b)  
21

XX ρ+ , where ρ  is a constant. 

 

21
XX ρ+  leads to the group-invariant solution 

)(γHh = , where ραβγ −=  is the group invariant.  

 
Substitution of this solution into Equation 14 gives rise to 
the ordinary differential equation (ODE). 
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where `prime' denotes differentiation with respect to γ . 

  
Case 2: The group-invariant solution arising from 

12
XX υ+  reduces the Equation 5 to the PDE:  
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The Equation 16 admits the following three Lie point 
symmetry generators: 
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The optimal system of one-dimensional subalgebras are 
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The group-invariant solution corresponding to 
13

cXX +  

is )(
1

γ
α

Hh = , where αβγ lnc+=  is the group 

invariant of 
13

cXX + , the substitution of this solution 

into the Equation 16 results in the following ODE 
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where `prime' denotes differentiation with respect to .γ  
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12

dXX + . 

 

12
dXX +

      leads    to    the    group -  invariant    solution 
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Table 3. Subalgebra, group invariants, group-invariant solutions of Equation 5. 
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Here  1,1,0 ±=±= δε  and  µλ ,  and υ  are arbitrary constants.  
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Substitution of this solution into the Equation 16 gives the 
solution  
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Where C  is a constant.  

 

(c)   
1

X  

 

The symmetry generator 
1

X  gives the trivial solution 

Cyxtu =),,( , where C  is a constant.  

 
Case 3: The group-invariant solution that corresponds to 

13
XX ε+  reduces Equation 5 to the PDE: 
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Hence, the solution of Equation 5 is given by   
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where )( yH  is an arbitrary function of its argument. 

 

Case 4: The 
123

XXX εδ ++ -invariant solution reduces 

the Equation 1 to the PDE:   

 

 
.0

)(

)()(

2

0

3

0 =






 +
++

+
++

+
+ βββββα α

εαδ

α

δ

εα
δ

εα

β
h

bah
hhhh

    (19) 
 

(a)   0=ε  

 
In this case, the PDE (Equation 19) becomes   
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The Equation 20 admits the Lie algebra spanned by the 
following symmetry generators 
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The group-invariant solution corresponding to 
1

X  is 

)(γHh =  , where αγ =  is the group invariant of 
1

X , 

the substitution of this solution into Equation 20 and 

solving, we obtain the solution tCxyxtu /)(),,( += , 

where C  is a constant. 
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The group-invariant solution corresponding to 
21

XX ω+  

is ),()(/ γδωααβ Hh ++−=  where αγ =  is the 

group  invariant  of 21
XX ω+

,  the  substitution  of  this  



 
 
 
 
solution into Equation 20 and solving, we obtain the 
solution 
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(b)  0≠ε . 

 
In this instance, the PDE (Equation 19) admits the 
following symmetry generators   
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The group-invariant solution corresponding to 
1

X  is  

)()(/ γεαδβ Hh ++−= , where αγ =  is the group 

invariant of 
1

X , the substitution of this solution into the 

equation (19) and solving we obtain the solution 
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(ii) 
12

XX ω+ , where ω  is a constant. 

 

The 
12

XX ω+ -invariant solution is given by 
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αγ =  is the group invariant of 
12

XX ω+ , the 

substitution of this solution into Equation 19 and solving 
we obtain the solution 
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Case 5: The 
1

X -invariant solution reduces Equation 5 to 

0=αh . Hence, the solution of the Equation 5 is given by 

)(),,( yHyxtu = , where )( yH  is an arbitrary function 

of its argument. 
 
 
Conclusion 
 
In this paper, we have studied the generalized (2+1)-ZK 
Equation 4 with time dependent variable coefficients 
using the Lie symmetry group method. The special case  
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of this equation, when a(t) and b(t) are constants, was 
studied in Moussa (2001) and Changzheng (1995), in 
which, the similarity reductions and some exact solutions  
were obtained using symmetry group method. we derived 
the Lie point symmetry generators of a special form of the 
underlying class of equations. The Lie symmetry 
classification with respect to the special form of the time 
dependent variable coefficients equation was presented. 
We used this classification of optimal system of one-
dimensional subalgebras of the Lie symmetry algebras to 
construct symmetry reductions and exact group-invariant 
solutions for the special form of the equation. 
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