

International Journal of Physical Sciences Vol. 3 (11), pp. 264-274, November, 2008
Available online at http://www.academicjournals.org/IJPS
ISSN 1992 - 1950 © 2008 Academic Journals

Full Length Research Paper

A text based approach to content based information
retrieval for Indian medicinal plants

Basawaraj S. Anami1, Suvarna Nandyal2* and Govardhan A.3

1Department of Computer Science and Engineering, Basaveshwar Engg College, Bagalkot.

2Department of Computer Science and Engineering, P.D.A College of Engineering, Gulbarga.
3Department of Computer Science and Engineering, JNT University, Hyderabad.

Accepted 4 November, 2008

The usage of plants as foodstuff and also medicine is universal. It is important and yet a difficult task to identify
the medicinal plants’ species present in the universe through computers. Development of a machine vision
system for medicinal plants is a dire necessity as this tacit knowledge dies with the experts in the field. Hence it
is helpful to understand and manage these medicinal plants in the interest of pharmaceutical industry and
preparation of home medicines. This paper deals with design and development of medicinal plants’ database
comprising of 500 species and an efficient text based query interface for retrieval of the desired information.
The database consists of scientific and regional names, medicinal values of parts, details of each part such as
leaves, flowers and the like, which act as properties or characteristics of plants. The proposed design takes
care of access to these medicinal plants through the combination of multiple plants’ attributes. The accuracies
of recognition are reported for major and minor properties of the plants. The results have revealed that leaves
and their shapes invariably help in recognition of plants. Hence, Furthermore, retrieval of relevant information
through content based approaches is the ultimate target.

Key words: Database, Indian medicinal plants, query processing, image retrieval.

INTRODUCTION

Our knowledge about Indian medicinal plants in the
environment is far from complete. The medicinal plants
have not been cataloged over the years. This is a serious
deficiency in terms of conservation, establishment of
natural preserves, location and protection of unknown
species. Without the knowledge of the present botanical
and colloquial names of plants, it would be very difficult, if
not impossible, to identify, classify and use the Indian
medicinal plants. The Indians are probably one of the
world’s largest users of medicinal plants. Millions of rural
households use medicinal plants invariably in a self-help
mode with a strong belief in their ability to cure diseases.
In India medicinal plants have been prescribed and used
for centuries in Ayurvedic medicine. This Indian tradi-
tional knowledge of Ayurvedic medicine is gaining more
popularity all over the world. The World Health Organi-
zation (WHO) reports that nearly 80% of people in the de-
veloping countries have relied on the herbal treatment.

*Corresponding author. E-mail: suvarna.mangalgi@gmail.com.

This tacit knowledge dies with the experts and difficult to
carry forward it from generation to generation. This being
the motivation for present work, a goal is set to design
and develop a database for Indian medicinal plants.

When species and habitats disappear, in response, we
lose opportunities to understand associated biological
complexities of the Indian medicinal plants. New techno-
logies and methods are required to enable rapid identify-
cation of medicinal species, access to bio-diverse infor-
mation and construction of eco-informative knowledge.
Hence, the present paper provides an information retrie-
val system for Indian medicinal plants, which would be
highly useful to common people, farmers, ayurvedic prac-
titioners, researchers and other agencies involved in the
area of medicinal plants.

The identification and classification of medicinal plants
is done based on their external features. The knowledge
of plants’ properties is essential to those who work in this
area. Some commonly used terminology for descriptive
plant taxonomy is provided in this work and is useful in
understanding Ayurvedic medicine and their preparation.
Designing and maintaining a systematic database to

(a) (b)

 (c) (d)

Figure 1. Samples of Indian medicinal plants; (a)
Curcuma longa (b) Calotropis gigantea (c) Aloe
Vera (d) Catharanthus roseus

Figure 2. Medicinal plant properties

store the information about the medicinal plant is an
important task. Generally, the design of databases differs
from one another because of their contents. Genetic
database is different from medicine database and medi-
cine database is different from criminal record database.
Hence, the design of a database for the Indian medicinal
plants is quite different from the existing ones. The
strength and utility of the devised database is its speed of
data retrieval based on the features, namely. (i) Extract-
ing the unique feature of a medicinal plant, (ii) Extracting
the medicinal plants which posses certain properties like
fruits or flowers and (iii) Extracting all or selected proper-
ties of a specific medicinal plant.

The authentic data for the developed data base is from
(Warrier, 2003) and comprises of scientific name, region-
nal Name, distribution, properties of the plants and the
like. The property means the information about their

Anami et al 265

color, height, stem fruit etc. Furthermore, as information
is commonly based on human knowledge and interpret-
tation, it is some times inaccurate and uncertain. There-
fore, we need to have an automated flexible system for
information storage and retrieval for medicinal plants.
Figure 1 shows some samples of medicinal plants. The
major properties associated with medicinal plants are
given in Figure 2.

 The remaining part of the paper is organized into five
sections. The review of literature is given in section 2.
Section 3 deals with the proposed method. Section 4
gives experimental results and discussion. Web imple-
mentation of medicinal plant database is given in section
5.The work is concluded in section 6.

REVIEW OF LITERATURE

Over the last decade, the database research community
is actively involved in varieties of data management
namely, genetic data, criminal data, demographic data
and the like. Some work related to plants is also cited but
in the context of other countries. There is no database
management work cited on Indian medicinal plants.

A database system, called BODHI (Bio-diversity Object
Database arcHItecture), that is specifically designed to
cater to the special needs of biodiversity applications.
BODHI currently hosts purely plant-related data. The
main focus of their work is to build an object-oriented
database intended to process queries in multi-domain
such as taxonomy characteristics, spatial distribution and
genomic sequences (Srikanta et al., 2003).

A multi-faceted information on medicinal plants of India
has been put together by Foundation for Revitalization of
Local Health Traditions (FRLHT), Bangalore in the form
of computerized databases, specialized reports, informa-
tion products, websites and trade bulletins
(http://www.frlht.org.in/,Encyclopedia of medicinal plants).
Medicinal Plant databases, relational database system,
have been described in MEDPHYT® (Kettner et al.,
2005) which has data about any European plant of medi-
cinal and pharmaceutical interest. English and German
versions are available on internet. A help for protection
on intellectual property Rights to the researchers and
clinicians is available in (Kameshwararao, 2001). A plant
conservation software called “PlantCon” is proposed
(http://www.cimap.res.in, Central Institute of Medicinal
and Aromatic Plants). A Flexible approach to Retrieve
Plant Images using fuzzy concepts such as fuzzy subset
theory and fuzzy thesauri is employed (Andres, 2000).
The electronic databases available are MAPA, CAB
abstracts, AGRIS, AGRICOLA, PASCAL, MEDILINE,
EMBASE, APINMAP etc (Bhat, 1995).The industry and
research communities developed methods for query opti-
mization. We briefly present a few of them. The join ope-
ration and the execution of selection and projections in
query optimization are given. The use of rank parameters
to each operation based on selectivity and cost per tuple

266 Int. J. Phys. Sci.

M ed ic in al P lan t
In form ation R etrieva l

 D ata b ase
 d es ign

 W eb S erver

 M ed ic ina l P lan t
 da ta collec tion

 D ataB ase

Q uery P rocessor
an d O p tim iza tion

Figure 3. Block diagram of proposed work.

is also introduced. The heuristics in this algorithm is that
lower the rank, earlier an operation is executed
(Hellerstein, 1994). The performance of a database
system is often determined by execution of selection,
projection and order of join operations (Lee et al., 2001).
A mathematical basis to (Lee et al., 2001) for repre-
senting a query and searching an execution plan is given
in (Lee et al., 2001) and uses the notion of graphmodel in
which node represents an operation and an edge
associated with weight. The query transformation algo-
rithms to rewrite nested SQL queries into equivalent flat
queries which can be processed more efficiently is given
in (Cao and Badia, 2007). Algebraic optimization rules
are used by considering push down nest past join method
and found that it takes shorter time with increasing sizes
of relation. On the other hand, an algebra based
approach has been studied (Ceri and Gottlob, 1985) and
developed a translator that transforms SQL queries into
relational algebra with aggregate functions. To optimize
SQL queries having aggregate functions it is necessary
to transform SQL queries into relational calculus and
algebra (Bultingsloewen, 1987). The interference rules to
support intelligent data processing in semantic query
optimization is found in (Siegel et al., 1992).

To the best of knowledge of the authors, a standard
Indian medicinal plants database is not available to the
researchers and Practitioners. Further, it is also observed
that amount of technology application effort gone into this
area is very less and hence it is the motivation for the
present work. We have designed database for medicinal
plants keeping in mind the need for content based image
retrieval of these plants. We have also proposed a
technique for efficient information retrieval.

PROPOSED METHOD

The block diagram shown in Figure 3 gives important phases of the
proposed method. The functions of each of the phases are detailed
as follows.

The Medicinal Plant Data Collection Phase(MPDCP) involves
assimilation of medicinal plant systematic description, geographic

distribution, details about each part, parts used for medicinal pur-
pose, medicinal value, botanical, vernacular names etc. There is
no benchmark database available for researchers/practitioners in
medicinal plant and hence, we have developed a database from
(Indian Medicinal plants), which benefits researchers in this area.
The proposed system is not only restricted to special scientific
user groups but open to experts as well as home users interested in
medicinal plants and their applications.

The Database Design Phase (DDP) contains defining tables with
data about different design schema for plant properties. We have
used MS Access to create databases. The Query Processor and
Optimization (QPO) are devised to obtain information on plants with
specific details. The QPO phase produces an efficient execution
plan for processing the query which is represented by a stan-
dardized and canonical query tree. An optimizer finds an efficient
execution plan for a query tree. It is observed combinatoria
increase in the possible number of table join combinations as
queries become more complex. An efficient query is executed by
QPO to retrieve information on the medicinal plant with unique
features. These individual phases are further elaborated in the
following sections.

DESIGN OF DATABASE SCHEMA

Classification of medicinal plants is the process of grouping the
plants together on the basis of the features, also called properties
or characteristics in common. In this paper the terms features, pro-
perties and characteristics are interchangeably used. The study of
plant classification is known as taxonomy. To classify plants, it is
necessary to identify the features to group the plants in a logical
way. Large varieties of plants give rise to diverse range of fea-
tures, which need to be used for grouping. One of the oldest and
commonly used methods of grouping plants is based on physical
characteristics or morphological characteristics. These charac-
teristics are shown in Table 1, which gives information about size,
shape, arrangements of parts within a flower, arrangements of
groups of flowers, open leaf shape, pattern of veins, stem type and
shape of fruit sap color and smell of flowers etc. These charac-
teristics are used in medicinal plant identification.

The Tables 1 - 6 show database schema devised for Indian
medicinal plants. The database named PLANTS schema is given in
Table 1. The different subschema FLOWERS, FRUIT_SEEDS,
LEAVES, PLANT_BODY etc representing partial views of indivi-
dual users of the database are given in Tables 2 - 6 respectively.
PLANTS is the master database and contains the properties such
as SlNo (Serial number), CollNo(Collection number) number), plant
named in Hindi, Kannada, English language as Hindi name, Kan-

Anami et al 267

Table 1. Database schema plants for medicinal plants.

S/ No Coll No Hindi
name

Kannada
name

English
name

Scientific
name

Distribution About_pant Parts_
used

Property_
used

1 AVS 2358 Tikhor Kuvehittu
Tavaksiri

Arrowroot Maranta
arundina
cea Linn.

Cultivated
throughout
India

Herb,90-180
cmhigh leaves
ovate-oblong to
ovate,
lanceolate base
rounded or
cuneate, tip
acute;
flowers white in
clusters
branches, fertile
stamen with
appendage,
ovary one-
celled, one-
ovuled.

Under
ground
rhizome

Starch of rhizome
refrigerant, tonic,
cough aphrodisiac,
diarrhea dyspepsia,
bronchitis, a
nourishing food for
infants,
invalids conval
escents. As ingredient
in biscuits, cakes,
puddings, jellies, face
powder

�� � � � � � � � � �

500 � � � � � � � � �

Table 2. Result of PLANTS database schema satisfying 1 NF with atomic values

S/No Coll No Hindi
name

Kannada
name

English
name

Scientific
name

Distribution About_pant Parts_
Used

Property_
used

1 AVS 2358 Tikhor Kuvehittu
Tavaksiri

Arrowroot Marantaarundin
acea .

throughout
India

Herb,90-180
cm high

Under
ground
rhizome

Starch of
rhizome …

1 AVS 2358 Tikhor Kuvehitt Arrowroot Marant
arundinacea ...

Cultivated
India

 leaves ovate-
oblong to
ovate,
lanceolat

Under
ground
rhizome

Starch of
rhizome …..

1 AVS 2358 Tikhor Kuvehitt Arrowroot Marant
arundinacea ...

Cultivated
India

flowers white
in clusters
branches

Under
ground
rhizome

Starch of
rhizome …..

nada name, English name, distribution,About_plant, Parts_used
and Property used. The property About_plant includes the descript-
tion of fruit, flower, leave and other properties required for the
description of a particular plant. The SlNo is used as primary key.
The Collection numbers are drawn from the book (Indian Medicinal
plants) and are used for future upgrade and easy referral. In
addition to this scientific names associated with plants are also kept
as part of the database.

The Sl No. and Coll No. are used for referencing the master
database PLANTS. The fields containing sub properties namely
FLOWERS, LEAVES etc are allowed to have null fields against
property field. The databases are subjected to normalization so as
to isolate the dependencies. We have prepared a database of over
500 medicinal plants. The efficient database design determines the
efficiency of information retrieval.

NORMALIZATION OF DATABASES

The PLANT database is not in 1NF because multi-valued attributes
(Hwand et al., 2001), composite attributes and their combinations.
Hence, the attribute such as about _plant is now decomposed to

satisfy atomicity and uniqueness as shown in Table 2. But this
approach produces more number of duplication, which increases
redundancies. Further it introduces more number of null values if a
plant does not contain flower or fruit etc. Hence to reduce the
redundancies, we have formed separate sub schemas’ such as
FLOWERS, FRUIT_SEEDS, LEAVES, PLANT_BODY. These are
self descriptive and contain atomic values as shown in Tables 3 -
6.These tables contain no grouping elements and each row has
unique identifier serial number and collection number which forms
concatenated key. Even though the databases can also be in 1NF
format, normalizing it to 2NF removes further anomalies (Hussain et
al., 2003). The subschema FLOWERS violates 2 NF, because non-
prime characteristics such as color, petals, shape violates 2 NF
because of FD1 and FD2. These characteristics are fully dependent
on the primary key. Hence, the FLOWERS database is normalized
into two subschema’s FLOWERS1 and FLOWERS2 as shown in
Figure 4.

 In this, non-prime characteristics color and petals are associated
with primary key on which they are fully dependent. Similarly other
tables FRUIT_SEED, LEAVES, PLANT_BODY are also subjected
to 2NF normalization.

268 Int. J. Phys. Sci.

Table 3 Decomposing plants into 1NF relations flowers

S/No Coll No Color Petals Shape Others
 1 AVS 2358 white - Clusters on diverging

inflorescence branches
fertile stamen with appendage, ovary one-celled,
one-ovuled.

� : : : : �
I … … … … …

Table 4. Decomposing plants into 1NF relations fruit_seeds

S/No Coll No Fruit_shape Fruit_color Seed_property Overy Seed_no
18 AVS2203 subglobose or ellipsoid

berries
purplish

black
- - 2

� : : : : : �

J … … … … … …

Table 5. Decomposing plants into 1NF relations leaves

S/No Coll No Tip Base Hairy Special Shape
1 AVS 2358 Acute base rounded or cuneate - - ovate-oblong; ovate-lanceolate
� : : : : : �
K … … … … … …

Table 6. Decomposing plants into 1NF relations plant_body

S/ No Coll No Type Height_from Height-To Stem Branching Roots
8 AVS

2516
Evergreen

Tree
1000 cm 3000 cm Smooth

grey of
brown
band

- -

� : : : : : : �
L … … … … … … …

FLOWERS

The design takes into account the fact that not all the charac-
teristics are well defined for every plant. The text fields are nullable
other than the plant name or the collection number. Hence these
two fields become unique and therefore considered as the primary
key. There is no necessity for 3NF because the database does not
have transitive dependencies among the characteristics of data-
base sub schemas’ namely, Leaves, Flowers etc. We have allowed
the text fields to be nullable so as to make the data base automa-
tically accommodate further characteristics.

The normalization is tested based on join dependency. It is
important to test for retrieval of any spurious data or null rows once
the databases are joined and a query is selected. All the sub-
databases possess the secondary characteristics and contain the
collection number and the serial number and hence multiple values
cannot be retrieved. Thus, the proposed design of database
satisfies 2NF. Whenever queries are submitted to this normalized
database, efficient retrieval of information with least access time
and least space utilization are possible.

EFFICIENT QUERRY PROCESSING

A typical query processing on a Medicinal Plant Database for
retrieving the required information is shown in Figure 5. The typical
stages through which a query proceeds have the following func-
tionality.

The Query Parser checks for the validity of the query syntax and
syntactically correct query is translated into an internal form. We
have used a query tree, which is an useful representation for
relational calculus expressions. The Query standardizer examines
all the algebraic expressions that are equivalent to the given query
and chooses the one that has the least cost. By cost we mean the
number of tuples executed. The Code Generator transforms the
access plan generated by the standardizer into calls to the query
processor. The Query Processor is responsible for actual execution
of the query.

Queries may have alternate execution plans, which are equivalent
in terms of their final results, but vary in their costs and expressed
as the amount of time needed to execute a query. There are two

Anami et al 269

Slno Coll No Color Petals shape

FD1 FD2

 2 NF

 FLOWERS 1 FLOWERS 2

 Slno Collno shape Slno Collno Color Petals

Figure 4. Normalizing flowers sub schema into 2NF relations.

 Query Parser

 Query
 Standardization process

 Code
Generator/Interpreter

 Query Processor

Record –at-a-time calls

Relational & Physical Algebra

Relational Calculus

Query Language(SQL)

Figure 5. Query flow through a medicinal plant
database.

Table 7. Plants database parameters

Relation Cardinality
 PLANTS 100
 FLOWERS 84
 LEAVES 100
 FRUIT_SEED 80
 PLANTBODY 100

 ways for making a query efficient namely, Heuristic approach and
Cost Based approach.

In cost-based approach, specific information about the stored data
is used. This information is extremely system-dependent and
includes information such as file size, file structure types, available
primary and secondary indices, and the attribute selectivity. Since a
cost-based approach uses the knowledge of the underlying data
and storage structures, it is not considered in this work. The goal of
any approach is to retrieve the required information as efficiently as
possible, we have used heuristic approach.

HEURISTIC APPROACH

Heuristic approach is a rule-based method for producing an efficient
query execution plan. A structured query (SQL) is first converted
into standard relational algebraic expression using the operators
namely, Selections (denoted by σ), projections (denoted by �) and
joins (denoted by �). Typically, such an algebraic query is repre-
sented by a Query Tree, whose leaves are database relations and
non_leaf nodes are algebraic operators. Thus, the edges of a tree
represent dataflow from bottom to top.

Once a query tree is constructed, the heuristics is applied to
transform a given query into a more efficient representation. Using
relational algebraic equivalence rules, we have ensured that no
necessary information is lost during the transformation of the tree.
The heuristic rules help to break the conjunctive selects into cas-
cading selects and to move selects down the query tree to reduce
the number of returned "tuples." The projects are moved down the
query tree to eliminate the return of unnecessary plants’ charac-
teristics. A Cartesian product operation followed by a select opera-
tion is combined into a single join operation. Using these steps we
have observed that the efficiency of a query is improved and it is
further enhanced by rearranging the remaining select and join
operations so as to reduce the amount of system overhead.

We have found out from the experimentation that the queries
based on certain selection criteria, the execution orders fetch
minimum and maximum number of rows. The heuristic rule is said
to first execute the queries with minimum result and further and
them with the other queries, if required. This is the reason why we
have kept the specialization query as the inner most query. Even
though most of the database design works tend to represent the
queries in a mathematical form, we have followed rather accurate
query illustration for ease of understanding and fluidity in the
representation. The goal of optimization in this work aims at
minimizing the number of joins and hence we have considered the
exact query and the query tree. Consider the query “Retrieve the
medicinal plants with ovate leaves”. The inner query is written as
under
 σ shape = ‘ovate’ (LEAVES)

From the experiment, we observed that this query returns minimum
result of around 30% from the desired database. Hence, we have
identified the plants whose leaves are ovate, identification of their
unique features becomes easier. From the analysis of result, we
have found that the number of tuples returned for the charac-
teristics ‘root’ is minimum and for ‘leaves’ it is maximum, as evi-
dent from Figure 9. Based on this fact, we have achieved an effi-
cient execution plan, whenever a query is applied. We have tested
queries on this developed medicinal plants’ database containing
100 plants. Tables 7 and Table 8 gives relation size and selectivity

270 Int. J. Phys. Sci.

Table 8. Selectivity and dilation factor for query with ovate leaves.

� Kanada_name, slno � Kanada_name, slno � Kanada_name, slno

 � Slno=Slno σ Shape= ‘ovate’ � Slno=Slno

σ Shape= ‘ovate’ PLANTS � Slno=Slno � slno � Kanada_name, slno

LEAVES LEAVES PLANTS σ Shape= ‘ovate’ PLANTS

 LEAVES

 T1 T2 T3

Figure 6. (i) T1 and T2 are Query Trees (ii) T3: Efficient Tree.

and dilation factor for the query, Retrieve the plants with Kanada
name and SlNo and having ovate leaves. From our database, we
have found that each tuple for plants database has a size of 200
bytes and for Leaves 150 bytes. The query is written in relational
algebra as follows.

� Kanada_name, slno ((σ shape= ‘ovate’(LEAVES)) � LEAVES. slno = PLANTS. slno

PLANT)

The possible three query trees for the above query are shown in
Figure 6. The performance of this database system is often deter-
mined by the execution order of select-project-join operation. From
literature survey, we have found out that almost all the past
methods for query effectiveness adopt an existing algorithm or a
modified form to find a effective solution for a given large search
space. Some techniques using combinatorial algorithms (Swami
and Gupta, 1988), (Swami, 1989), such as iterative improvement
(Ioannidis and Kang, 1990) and simulated annealing (Kirkpatrick,
1983; Ioannidis and Wong, 1987), require a long execution time. A
major problem of these methods is their lack of formal represent-
tation to operate on query parameters, such as relation size and
join selectivity factor. Hence, we have compared the execution cost
in terms of space. Lee et al. (2001) proposed that ”PushDown”
algorithm is the best algorithm compared other algorithms pro-
posed in (Hellerstein, 1994). The PushDown algorithm always tries
to push the selections and projections down a query tree and joins
are always need to be arranged in such an order that a join with a
smaller selectivity factor is performed first. Using this concept, we
have computed the statistical information for a query tree and
generate an effective execution plan of the corresponding query
tree. By effective we mean the process that uses least number of
tuples.

We have used Selectivity Factor (SF) and Dilation Factor (DF) for
the binary and unary operations as a good measure for space
computation. We have formally defined the following parameters
that are used in space representation.

Selectivity factor (SF): Selectivity factor is a factor representing
the ratio of the cardinality of the result to the cardinality of the input
relations. For the binary operation (join) and unary operations
(selection and projection) the SF of given predicate pi is defined
as:

SFi = | Resi | / |R|×|S| if pi is a binary operation
 | Resi | / |R| if pi is a unary operation

Where |X| means the cardinality of relation X. and where Resi
stands for the result of predicate pi and R and S are input operands
of pi.

Dilation factor (DF): Dilation factor is a ratio of the result tuple size
(width) to the sum of the base relations tuple sizes. Formally, it is
defined as follows:

DFi = ||Resi|| / ||R| + ||S|| if pi is a binary operation
 ||Resi|| / ||R| if pi is a unary operation.

Where ||X|| means the width of each tuple X.

We have used these two factors to derive the query optimization
process. We have considered a good query processing strategy
represented by ‘T3’compared to strategies represented by T1 and
T2. In T1 selection is done at intermediate node and this returns
tuples with more cardinality and size during join operation. The
selectivity factor is more. From our experiment we have found out
29 plants with ovate leaves are retrieved. SFi = 29/100 = 0.29. All
29 plants with all attributes (around 5800 Kb) having more dilation
factor is involved in join process. This join operation is more
expensive. In tree T2, first plants which have got leaves property
are joined. In case of any plant whose leaves property is not
defined then that plant is not considered for join operation which
gives less SFi. In T2, selection is made after join, which generates
unnecessary properties and leads to increase in size and gives SFi

Tree/Condition Selectivity factor Dilation factor
 T1 / C ovate 0.29 1.2
 T2 / Cjoin 1.0 1.2
 T3/ C ovate with push down selection and projection 0.29 0.85

Anami et al 271

 � Kanada_name, slno � Kannada_name, slno � Kanada_name, slno

σ L.shape = ‘alternate’& P.Slno=L.slno & σ P.Slno=B.slno � B.slno=P.slno
 L.slno=B.slno & B.stem = ‘gray’

 X X � B.slno � Englishname.slno

 x PLANT_BODY σ P.Slno = L.slno σ B.stem = ‘gray’

 X PLANTS

 PLANTS LEAVES PLANTS σ L.shape = ‘alternate’ PLANT_BODY � B.slno=L.slno

 LEAVES

 � B.slno � L..slno

 σP.stem= ‘gray’ σ L.shape= ‘ alternate’

 PLANT_BODY LEAVES

 7(a) 7(b) 7(c)

Figure 7. Execution plan for complex query (a) Initial Canonical tree. (b)Moving select operations down the
tree (c) Applying the more restrictive select operation first , replace Cartesian product and Select with join
operation.

100/100 = 1. As per experimental results, Figure 9, we have found
leaves are most prominent parts for recognizing the plants. All
plants are defined with leaves. Hence, this provides an expensive
execution plan.

In case of tree T3 it is effective because the selection and project-
tion are moved down the tree. So that it reduces the number of
intermediate properties and cardinality and SFi as shown in Table
3. The DFi during join operation at intermediate level is 0.85 and
SFi is 0.29. Hence, we have inferred that the performance of push-
down strategy gives an effective execution plan. Hence, it is
necessary to select the properties which lead to smaller number of
tuples with less size and storage. Such operations are evaluated
first. Since the execution plan is dictated by the database design,
the queries are rendered effective. This is illustrated by a fairly com-
plex query on the database and is shown in Figure 7. Consider a
query corresponding to Retrieval of Kanada Names, SlNo of plants
with alternate leaves and gray color stem.

 SELECT P.Slno,P.Kanada_name
 FROM PLANT as P
 WHERE P. slno IN ((SELECT L.slno
 FROM LEAVES as L
 WHERE L.shape= ‘alternate’ and L.slno IN
 (SELECT B.slno
 FROM PLANT_BODY as B

 WHERE B.stem= ‘gray’ AND B.slno = L.slno))

 The query is represented in relational algebra as follows.
 LEAF_PROP ← σ shape= ‘alternate’(LEAVES)

 STEM_PROP ← σ stem= ‘gray’(PLANT_BODY)

 PLANT_LF_STEM ← LEAF_PROP � LEAF_PROP.slno = STEM_PROP.slno

STEM_PROP
 UNIQUE_PLANT ← �Kanada_name, slno (PLANT_LF_STEM �

PLANT_LEAF_STEM.slmo= PLANTS.slno PLANTS) From the experiment we
have found that eight plants with alternative leaves are retrieved
Then for the query with gray stem, five plants are retrieved. If we
apply the join operation among these two operations, we have got
only one plant with kanada name ‘kanagi’ having both alternative
leaves and gray stem retrieved. Hence, these properties become
unique features for recognizing plants. The transformation rules are
applied and alternative execution plans are generated as in Figure
7(a) - Figure 7(c). From the database, we have obtained only few
plants with stem than leaves. We have applied the heuristic rule for
selection of stem relation followed by leaves. The efficient query
execution plan is shown in Figure 7.

The semantics of the query is captured in initial query tree from
Figure 7(a). Executing the initial query tree directly gives a very
large Cartesian product of all PLANTS, LEAVES, PLANT_BODY.
By applying the heuristics rules (Frasincar et al., 2001) improve-
ment is observed by switching the positions of relations and se-

272 Int. J. Phys. Sci.

lect operation. All three query trees are equivalent. To understand
why it is more efficient to execute the query tree of Figure 7(c)
instead of either the tree of Figure 7(a) or the tree of Figure 7(b), we
have given here a quantitative information for our database
containing information on 100 medicinal plants. For the tree shown
in Figure 7(a), we need to compute the Cartesian product 100 x 100
x 100 = 106 elements. For the tree shown in Figure 7(b), we require
8 x 100(plants with alternate leaves) + 5 x 100 (plant with gray
stem) = 1200 elements and for the tree shown in Figure 7(c), we
require 5 x 8 = 40 elements. Of these, only one (plant with both
alternate leaves and gray stem) plant is retrieved. It is observed
that the tree in Figure 7(c), is most effective.

The effectiveness of the database design is determined by the
number of iterations or the attempts taken to define a unique
properties of the plants. We have considered 10 major properties,
all together, hence the maximum number of possibilities is 10 for
any given plant. In large databases, this is considered quite a small
number of iterations. Hence, we have inferred that the proposed
design gives good results for any plant.

EXPERIMENTATION

The characteristics differ from plant to plant, we have designed a
view-based approach that takes input parameters from the user and
passes them to the query processor to generate the results. We
have created the relations in the view level. Many entries in data-
base PLANT is null as their values are not well defined or do not
exist. It not only suppresses the insert or update or delete ano-
malies but also minimizes the normalization overhead. The main
purpose is to uniquely identify the plants, immaterial of normali-
zation of the database for optimum processing and storage. Some
of the examples of common queries that are supported are given as
under.

(i) Classification based on the base tip of leaves

SELECT[plants].[kanada_name],[plants].[hindi_name],[plants].[sci_
name],[plants].[distribution],[plants].[parts_used],
[plants].[about_plant]
FROM plants, leaves
WHERE([plants].[slno]=[leaves].[slno]) And
([plants].[collno]=[leaves].[collno]) And (([leaves].[base] Like
[@base]) Or ([leaves].[tip] Like [@tip]));

(ii) Classification based on flower color

SELECT[plants].[kanada_name],[plants].[hindi_name],[plants].[sci_
name],[plants].[distribution],[plants].[parts_used],[plants].[about_pla
nt], [flowers].[color], [flowers].[shape]
FROM plants, flowers
WHERE(([plants].[slno]=[flowers].[slno])And[plants].[collno]=[flowers
].[collno]) And (([flowers].[shape] Like [@shape]) Or
([flowers].[color]=[@color])))
ORDER BY [COLOR];

(iii) Classification based on fruit shape description

SELECT *
FROM fruit_seed
WHERE len(fruit_shape)>1;

(iv) Classification based on fruit seed

SELECT[plants].[kanada_name],[plants].[hindi_name],[plants].[sci_
name],[plants].[distribution], [plants].[parts_used],
[plants].[about_plant]
FROM plants, fruit_seed

WHERE(([plants].[slno]=[fruit_seed].[slno])And([plants].[collno]=[frui
t_seed].[collno])And(([fruit_seed].[fruit_shape]Like[@Fruit_shape])O
r [fruit_seed].[seed_property]=[@Seed])));

The variable names (preceded by @) are used to pass values
because the statements are all compounded statements and the
‘*value*’ format detects the key words even when they are
embedded in a sentence along with other words. Since “height”
attribute is numeric, absolute values are be passed in order to
detect the plants with specific heights. The aggregate function
called count is used for counting the number of rows.

RESULTS AND DISCUSSION

The querying allows the user to do a complex and flexible
search, especially when the database is large. In this
work, user expresses a detailed query, using conjunct-
tions and disjunctions. Moreover, in the case of medicinal
plants, we use continuous property, such as the leaf size,
or an interval data such as between 2 cm and 5 cm or a
linguistic variable such as small. It is also common to use
modifiers such as very small to attribute a different level
of importance. An illustration of global and fragmentation
schemas for medicinal plant database for retrieval of the
Plants English name with white flower, conical fruits and
herbaceous is given below.

Global schema

PLANTS(slno,collno,hindiname,kanadaname,englishnam
e,scietificname,distribution,about_plant,parts_used,prope
rty_used)
 LEAVES(slno,tip,base,spacial,hairy, shape)
FRUIT(slno,fruit_shape,fruit_color,seed_property,ovary,s
eed_no)
 FLOWER(slno,color,shape,petals,others)
PLANTBODY(slno,
type,height_from,height_to,stem,branching,roots)

Fragmentation Schema

PLANT_FL = SL FLOWER.color= ‘white’ PJslno (FLOWER)
 PLANT_FR= SL FRUIT.shape= ‘conical’ PJ slno (FRUIT)
 PLANT_TP= SL PLANTBODY.type= ’ herb’ PJ slno
(PLANTBODY)
 PLANT_TEMP = (PJ slno (PLANT_FL JN PLANT_FL.slno =

PLANT_FR.slno PLANT_FR))
 PLANT_RECN = PLANT_TEMP JN PLANT_TEMP.slno =

PLANT_TP.slno PLANT_TP
 PLANTNAME_RECN_UNIQUE=PJslno,English name(PLANTS
JN(PLANTS.slno = PLANT_RECN.slno) PLANT_RECN)
Plants_with_white_Flower={2,3,4,63,71,72,75,10,83,54,8
4,62,8,33,55,16,1,7,9,13,18,34,5,11,6,20,61}
 Plants_ With_Conical_Fruits={7,54}
Herb_Plants={1,2,4,5,6,12,19,25,27,32,33,36,37,42,45,4
9,54,55,60,65,66,74,75,76,77,82,84}
White flower∩ Conical_Fruits ∩ Herb_Plants={54}
Therefore plant 54 is a herb which possesses a conical

Figure 8. Percentage of different Medicinal Plants

Figure 9. Classification of medicinal plants based on the plant
properties

Figure 10. Classification based on the plant sub properties.

fruit with white flower
Consider query for retrieval of the plants with white flower
and yellow fruit
Plants_Fruit_Color_Yellow={3,21,28}
Hence Plants_With_White_Flower ∩
Plants_Fruit_Color_Yellow=3

Hence, a plant with serial number 3 has white flower and
yellow fruit which is unique feature for recognizing the
plant. We have presented some preliminary results of
experimentation on the designed database. A large num-
ber of queries are executed on the database, where
plants are divided mainly into three categories herbs,

Anami et al 273

shrubs and trees. Figure 8 gives the percentage of
retrieval of different medicinal plants from the database.
The number of database entries items from which the
plant needs to be identified is brought down to nearly
50% for most of the time and nearly 10% for shrubs.
Hence, the conjugate queries usually require plant classi-
fication based on plant type. Shrubs are in small numbers
and considered as the first query in the whole optimi-
zation process.

From the graph shown in Figure 9, we conclude that
leaves, height, flower, branching and fruits are the most
common properties, which are defined for majority of the
plants and amongst them leaves are the most well
defined properties in the recognition of plants. Hence the
retrieval percentage is high.

The Plants, with properties given in Figure 9 constitute
90% of the entire database. There are some plants,
which have the same global attributes for two different
plants. Hence, in order to classify, we have found out
some minute local properties specific to a particular plant.
Such attributes are used to differentiate between set of
similar plants. The Figure 10 gives the graph of
percentage of retrieval versus the sub properties. The
plants are segregated based on the sub properties of
each property combined in a single query. From the
experimentation, it shows that most of the plants are well
defined for these common properties.

MEDICINAL PLANT DATABASE ON WEB

In order to keep the database for online use, it is web
enabled and implemented using ASP.Net and Web
Matrix Server. This representation of schema shows, how
easily the plant attributes are fragmented and analyzed.
The OLEDB database interface is considered, which
involves the MS-Access database access independent of
(dot) Net core component ADO.Net, integrated with Web
Matrix. It resolves the connection string as the direct path
to MS-Access, which is located in the web directory. For
record representation, a serialized object (DataGrid) and
one non serializable object (DataReader) are used. The
Grid is used for displaying and joining results, where the
Reader is used to fetch independent records.

Conclusion

The medicinal plant database creation and content based
information retrieval suggested in this paper are useful to
researchers and practitioners in this area. It is an uni-que
effort to design a web enabled database on Indian medi-
cinal plants. Future work focuses on combining text and
image for content–based information retrieval. The pro-
posed methodology has given 80% accuracy for a unique
property. Hence, entire database is made of completely
classifiable with defined values for the sub properties.
Ultimate goal is to develop a machine vision system for
medicinal plants considering properties and sub proper-

274 Int. J. Phys. Sci.

ties for their retrieval.

REFERENCES

Andres F (2000). A Flexible approach to Retrieve Medicinal Plant

Images, National Institute of Informatics Journal, 12(1): 23-31.
Bhat KKS (1995). Medicinal Plants information databases, Global

Initiative For Traditional System of Health(GIFTS), UK.
Bultingsloewen GV (1987).Translating and optimizing SQL queries

having aggregates ,proceedings of the International Conference on
Very Large Databases(VLDB), pp. 235-243.

Cao B, Badia A (August 2007). SQL Query Optimization through
Nested Relational Algebra”, ACM Transactions on Database Systems
University of Louisville, 32(3):1-46

Ceri S, Gottlob G (1985). Translating SQL into Relational algebra:
Optimization,semantics and equivalence of SQL queries, IEEE
Transactions on Software Engineering, 11(4): 324-345.

Chaudhuri S (1998). An Overview of Query Optimization in Relational
Systems”, ACM , proceedings of Symposium on Principles of
Database Systems (PODS), Seattle, USA, pp. 34-43.

Frasincar F, Houben G, Pau C (2001). XAL: an Algebra for XML Query
Optimization, proceedings of Thirteenth Australasian Database
Conference ADC 2002, Melbourne, Australia, pp. 49-56.

Hellerstein J (1994). Practical predicate placement, Proceedings of
ACM International Conference on Management of Data (SIGMOD),
held at Minneapolis, USA, pp. 325-335.

http://www.cimap.res.in, Central Institute of Medicinal and Aromatic
Plants, Lucknow, India.

http://www.frlht.org.in/,Encyclopedia of medicinal plants .
Hussain T, Shafay S, Mian MA (2003). Eliminating Process of

Normalization In Relational Database Design” , Proceedings IEEE
International Multitopic Conference (INMIC), pp. 408- 413.

Ioannidis Y (1996). "Query Optimization",ACM Computing Surveys,
symposium issue on the 50th Anniversary of ACM, 28(1): 121-123.

Ioannidis YE, Kang Y (1990). Randomized Algorithm for Optimizing
Large Join Queries, Proceedings of ACM Special Interest Group on
Management of Data (SIGMOD) International Conference , pp 312-
321.

Ioannidis YE, Wong E (1987). Query Optimization by Simulation
Annealing, Proceedings of ACM Special Interest Group on
Management of Data (SIGMOD) International Conference , pp 9 - 22.

Ji_Xiang Du, Xia_Feng Wang, Guo_Jun Zhang (2007). Leaf shape
based Plant Species Recognition, Applied Mathematics and
Computation, 185: 883-893.

Joseph M, Hellerstein J (June 1998). Optimization Techniques for
Queries with Expensive Methods, ACM Transactions on Database
Systems, 23(2): 113-157.

Kameshwararao C (2001). Database Of Medicinal Plants, Current
Science Karnataka state council for science and Technology , Govt of
Karnataka state, India, 80(3): 463-464

Kettner C, Kosch H, Lang M, Lachner J, Oborny D and Teppan E
(2005). Creating a Medicinal Plant Database Proceedings of the
Workshop on Database Issues in Biological Databases (DBiBD) in
conjunction with the Tenth International Conference on Database
Theory (ICDT), Edinburgh, Scotland.

Kirkpatrick S, Gelatt CD, Vecchi MP (1983). Optimization by Simulating
Annealing,Science New Series, 220(4598) : 671-680.

Lee C, Shih C, Chen Y (2001). A Graph-theoretic model for optimizing

queries involving methods, The Very Large DataBases (VLDB)
Journal, 9: 327-343.

Lee C, Shih C, Chen Y (2001).Optimizing Large Join Queries using a
Graph-based approach, IEEE Transaction on Knowledge and Data
Engineering, 13(2): 298-314.

Lee D, Barber R, Niblack W (1994). Indexing for Complex Queries on a
Query- By- Content Image Database, Proceedings of 12th
International Conference on Computer Vision and Image Processing,
1(9-13): 142-146

Mark I, Becker HJD, Lin J (2001). Representing multivalued attributes in
database design, proceedings of International Association and
Computer Information Systems (ICIAS), pp. 160-166.

Rajasri Bhattacharyya, Sabita Bhattacharya and sidhartha
chaudhuri,(2005). Conservation and documentation of the medicinal
Plant resources of India journal, Springer Netherlands publication,
15(8): 2705-2717.

Siegel M, Sciore E, Sharon Salveter (1992). A Method for Automatic
Rule Derivation to Support Semantic Query Optimization, ACM
Transactions on Database Systems, 17(4): 563-600.

Srikanta JB, Haritsa JR, Sen SU (2003).The Building of BODHI, a Bio-
diversity Database System, Information Systems, Vol. 28, No 4.

Srikanta JB, Jayant RH, Sen SU (2004). BODHI: a DATABASE habitat
for Biodiversity information, ACM International conference on Special
Interest Group on Management of Data(SIGMOD), held in Paris,
France.

Swami A (1989). Optimization In Large Join Queries: Combining
Heuristics and Combinatiorial Techniques, Proceedings of IEEE
International Conference on Data Engineering, pp. 367-376.

Swami A, Gupta A (1988). Optimization of Large Join Queries,
Proceedings of ACM International conference on Special Interest
Group on Management of Data (SIGMOD) International Conference,
pp. 8-17.

Warrier PK, Nambiar VPK, Ramankutty C (2003). Indian Medicinal
plants –A Compandium of 500 Species, Published by Orient
Longman PVT Ltd, Hyderabad, INDIA , 3rd Edition, Vol. I – V.

