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Using the available data of half-life time of unstable nuclei given that the number of protons is greater 
than the number of neutrons, an elaboration was made on the dependence of half-life time of these 
nuclei on the value of the difference between the two numbers, which is referred to as the isospin 
asymmetry effect. The available data of half-life time was analyzed and two formulas of half-life time 
were suggested. The analysis of the data and the suggested formulas indicated that the half-life time of 
these nuclei and their decay mode are strongly dependent on the isospin asymmetry.  
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INTRODUCTION 
 
The asymmetry effect is a quantum effect arising from the 
Pauli Exclusion Principle which only allows two protons or 
two neutrons (with opposite spin direction) in each energy 
state. Due to this effect, the binding energy of asymmetric 
nuclei decreases and is dependent on the asymmetry 

parameter AZNI /)(  , where Z is the atomic 

number, N is the number of neutrons and A is the mass 
number of nucleus. The A in the denominator reflects the 
fact that a given difference )( ZN   is less significant for 

larger values of A. The physical properties of nuclei, such 
as their masses, neutron and proton density distributions 
and their mean radii depend on the asymmetry parameter 

I (Berdichevsky, 1984; Steiner et al., 2005). The 
energetics associated with the neutron-proton asymmetry 
can be characterized by the so-called symmetry energy.  

The study of the nuclear matter symmetry energy that 
essentially characterizes the isospin-dependent part of 
the equation of state of asymmetric nuclear matter is 
currently  an exciting topic of research in nuclear physics,  

for example (Centelles et al., 2009; Shetty and Yennello, 
2010). Solution of some problems of nuclear collisions 
such as the isoscaling effect, the nuclear multi-
fragmentation accompanied by the emission of 
asymmetric clusters, the isospin instability of nuclei at 
high temperatures and others, depend on our knowledge 
of the nuclear equation of state for the isospin symmetry 
energy, namely, its dependence on the particle density 
and the asymmetry parameter I, for example (Shetty et 
al., 2007; Tsang et al., 2009). Thus, we can say that the 
asymmetry parameter plays an important role in the 
nuclear structure and nuclear collision. Therefore, efforts 
have been made in this work, to discuss the dependence 
of half-life time T1/2 of the radioactive nuclei on the 
asymmetry factor. Only the radioactive nuclei with 

NZ   was consider and we will use the quantity 

NZZ ex  to represent the isospin asymmetry of the 

nucleus.  
The   half-life   time   is    a    fundamental   property   of 
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radioactive nuclei, carrying important information on their 
intrinsic structure. It answers the question of the 
possibility of the observation of the nucleus. In the 
experimental and theoretical studies of nuclear decay 
and half-life time of nuclei, different models and semi-
empirical formulas were used and suggested to explain 
the experimental data of half-life time of different types of 
decay  (Barabash, 2010; Rath et al., 2010; Greiner, 2007; 
Dong et al., 2010; Santhosh et al., 2012).   

Nearly, in all the previous works, the authors were 

concerned with nuclei where ZN  . The light and 

medium radioactive nuclei with NZ  did not take a 
similar interest. Also, the asymmetry effect on the half-life 
time of radioactive nuclei has not been clearly 
represented in previous literatures. Therefore, in this 
work, the isospin asymmetry effect on the half-life time 

and this class of nuclei where NZ  , was studied. Only, 
cases where the asymmetry number 

5and4,3,2,1ex  NZZ
, were also considered. For 

6ex Z
 the radioactive nuclei, almost, does not exist in 

the data. Only with 
6ex Z

 we have two cases, 18

30Ar
 

and 26

46Fe
 with the decay mode and half life time (

p
 ; 

20 ns) and ( , p ; 20 ms), respectively (Firestone and 
Ekström, 2004).  

The asymmetry effect on the half-life time of considered 
nuclei was studied in two steps. The first is the 
classification of these nuclei into different sets with 

respect to the value of exZ
 (Hassan, 2009), so, we will 

discuss the dependence of the value of T1/2 on the 

asymmetry number exZ
. The second step is the 

suggestion of some formulas to describe the data of T1/2 
in each set and discuss the dependence of the 

parameterization of the suggested formulas on exZ . The 
data is taken from Firestone and Ekström (2004). In fact, 
we have found two formulas that described the data of 

Firestone and Ekström (2004). The first for 
1ex Z

 and 

(
ZZ -evenwith2ex  ) and the second 

for 5and4,3),-oddwith2(ex ZZ  . The suggested 
formulas depend on three parameters. At a certain value 

of exZ , these formulas give, in general, a good fit with the 
data of Firestone and Ekström (2004) with the same 
values of the parameters at each Z . For different values 

of exZ we have different values of the parameters or 
different parameterization. This reflects the dependence 
of the half-life time on the isospin asymmetry of nuclear 
matter. Due to the large fluctuations of the half-life time at 

some values of Z  for some values of exZ , the 
2 - 

method is used to gives some indications about the initial 
values of the parameters of formulas.     

 
 
 
 
Half-life time dependence on the isospin asymmetry: 
Data analysis  
  

All nuclei with NZ   are in the region of light or medium 

nuclei. Also, all these nuclei except the two nuclei 1

1H
 

and 2

3He
 are unstable (Firestone and Ekström, 2004). 

The asymmetry number exZ classifies these nuclei into 
different sets. Each set of them is characterized by a 

certain value of exZ
. The set with the asymmetry 

number 
2ex Z

 is divided into two different sets with 

respect to even- or odd- Z . This is because the behavior 
of the data in these two sets is clearly different.  Thus, the 
total number of the sets for all considered nuclei is 6 sets. 
These sets of nuclei are presented with their half-life time 
values in the Tables 1 to 6 (Firestone and Ekström, 
2004). From these tables we can see the strong 
dependence of half-life time on the asymmetry 

number exZ
. In general, for two different sets, for a given 

value of Z , we can see that )()( ex2/1ex2/1 jZTiZT  , 

where
ji 

. Also, we must note that the order of values 

of T1/2 for odd- Z  nuclei, in general, is less than the order 

of T1/2 for even- Z  nuclei in the case of
2ex Z

. For any 

table with certain value of the asymmetry number exZ , 
the half-life time T1/2, can be considered as a function of 

the atomic number Z . Thus, the half-life time T1/2 can be 

suggested as an explicit function of Z  and its 

parameterization is dependent on exZ . More so, it must 
be noted that the type of decay in each set is related, in 

some way, to the asymmetry number exZ
 of the set. In 

fact, the majority of the decay mode in the first two sets 

where exZ
=1 and (2 with even-Z) is 

   with 75% and 
87.5%, respectively, (Tables 1 and 2). In the third set with 

2ex Z
and odd-Z the situation is absolutely different, 

Table 3. This may seem related to the parity of Z. 
However, the clear difference between the possible 
decay modes in this set and the other sets with different 

asymmetry number exZ
, gives some indication on the 

relation between the general feature of the decay modes 
in certain set and its asymmetry number. For 

4and3ex Z  the major decay mode is {
  , 

p
} with 70.4 and 52.94%, respectively, (Tables 4 and 

5). In the last set with 
5ex Z

, we have 6 nuclei with 6 
different decay modes (Table 6). Thus, we can conclude 
that, not only the half-life time is sensitive to the isospin 
asymmetry of nuclei, but, also the type of decay it is 
related to. 

http://arxiv.org/find/nucl-th/1/au:+Santhosh_K/0/1/0/all/0/1
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Table 1. The half-life time data for nuclei with 1
ex

Z
 

(Firestone and Ekström, 2004) 18 odd-even and 18 even-odd radioactive nuclei. The data with (*) are predicted using 

the formula (1). 
 

Nucleus 
2/1

T and decay mode Nucleus 
2/1

T and decay mode Nucleus 
2/1

T and decay mode Nucleus 
2/1

T and decay mode 

1

1
H  Stable 

11

21
Na  

22.49 s±4 


   21

41
Sc  

596.3 ms±17 


   30

59
Zn

 

182 ms±18 

,


  p  

 
 

 
 

 
 

 
 

2

3
He  Stable 

12

23
Mg  

11.317 s±11 


   22

43
Ti  

509 ms±5 


   31

61
Ga

 

0.15 s±3 


   

 
 

 
 

 
   

3

5
Li  

56.1953 y* 

p  13

25
Al  

7.183 s±12 


   

23

45
V

 
 

547 ms±6 


   

32
63

Ge
 

 

95 ms±23 


   

 
 

 
 

 
 

 
 

4

7
Be  

53.12 d±7 

  14

27
Si  

4.16 s±2 


   24

47
Cr

 

500 ms±15 


   33

65
As

 

11
7-s19.0 

 


   

 
 

 
 

 
 

  

5

9
B  

 

19.5727 h* 

p2  15

29
P  

4.140 s±14 


   25

49
Mn

 

382 ms±7 


   

34

67
Se

 

 

17
11-

ms60 
 

,


  p  

 
 

 
 

 
 

  

6

11
C  

20.39 m±2
 


   16

31
S  

2.572 s±13 


   26

51
Fe

 

305 ms±5 


   36

71
Kr

 

8
5-ms64 

 


 

, 
p  

 
 

 
 

 
 

  

7

13
N  

9.965 m±4 


   17

33
Cl  

2.511 s±3 


   27

53
Co

 

240 ms±20 


   

38

75
Sr

 
 

71
24-

ms71 
 

,


  p  

 
 

 
 

 
 

  



 

616          Int. J. Phys. Sci. 
 
 
 

Table 1. Contd. 

 

8

15
O  

122.24 s±16 


   18

35Ar  

1.775 s±4 


   27

53
Co

m

 

247 ms±12 


 

,
p  39

77
Y  

69 ms* 

,


  p  

 
 

 
 

 
 

 
 

9

17
F  

64.49 s±16 


   19

37
K  

1.226 s±7 


   28

55
Ni

 

212.1 ms±38 


   

  

 
 

 
 

 
 

 

 

10

19
Ne  

17.22 s±2 


   20

39
Ca  

859.6 ms±14 


   29

57
Cu  

199.4 ms±32 


   

  

 
 
 

Table 2. The half-life time data for nuclei with 2
ex

Z
 

and even- Z (Firestone and Ekström, 2004) 16 

even-even nuclei. The data with (*) are predicted using the formula (1). 

 

Nucleus  
2/1

T and decay mode Nucleus 
2/1

T and decay mode 

4

6
Be

 

5.4816 d*, 2p 
20

38
Ca  0.440 s±0.008,++ 

6

10
C  19.255 s±53, ++ 

22

42
Ti  0.199 s±0.006, ++ 

8

14
O  70.606 s±18, ++ 

24

46
Cr  0.26 s±6,  ++ 

10

18
Ne  1.672 s±0.008++ 

26

50
Fe  0.150 s±0.030, ++, +p 

12

22
Mg  3.857 s±9, ++ 

28

54
Ni  s*++ 

14

26
Si  2.234 s±13++ 

30

58
Zn  0.065 s±0.009 ,++ 

16

30
S  1.178 s±5, ++ 

32

62
Ge

 
0.058247 s* , ++ 

18

34
Ar  0.8445 s±0.034, ++ 

34

66
Se

 
s*++ 
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Table 3. The half-life time data for nuclei with 2
ex

Z  and odd-Z  (Firestone and Ekström, 2004) 14 odd-odd nuclei. 

The data with (*) are predicted using the formula (3). 
 

Nucleus 
2/1

T s and decay mode Nucleus 
2/1

T s and decay mode 

5

8
B   s±0.003++, 2 

17

32
Cl  0.298 s±0.001,++, , p 

7

12
N  0.011 s±0.016, ++, 3 

19

36
K  0.342 s± 0.002, ++, p,  

9

16
F

 
0.59005 s* , p 

21

40
Sc  0.1823 s±0.007++, , p 

11

20
Na

  
 s±0.023, ++,  

23

44
V  0.090 s±0.025,  ++,  

13

24
Al

       
 2.053s±4++,  

23

44
V

m
 ~0.150 s,  ++ 

13

24
Al

m
 0.1313 s±0.025,++,  

25

48
Mn  s±0.022++, p,  

15

28
P  0.2703 s±0.005, ++, p,  

27

52
Co

 

0.018 s±0.013, ++ 

   
 
 
The suggested formulas 
    
In this section we try to suggest some functions of Z to 
describe the half-life time of considered nuclei. Also, we 
will discuss the dependence of this function and it’s 

parameterizations on the asymmetry number exZ
. 

 
 
The first suggested formula  
   

The data of nuclei where
1ex Z

, which are given in 

Table 1, and the data of Table 2, where 2ex Z  and 

even- Z  are presented in Figures 1a and 2a, 
respectively. These figures are of semi-log scale. The 
behavior of the data, in the two cases, in this semi-log 

scale, is similar to the behavior of the function Z

1

. 
Therefore, we suggest the following formula for half-life 
time of nuclei in these two sets 
 

C
Z

B
AZT  }exp{)(2/1

,                                         (1) 
 
Where A, B and C are fitting parameters. The good fit 

with the data are obtained with s018.0A , 76B  and 
s0550.C   for 1ex Z , (Figure 1a). Also, with 

s0135.0A
 5.69B and s060.C   for 

2ex Z
 

and   even- Z   a   good  fit   with   the   data   is   obtained 

(Figure 2a). The χ
2
 values for the results in the two 

Figures 1a and 2a are given in Table 8. χ
2
 is defined 

as

2.
2/1

.exp
2/1

2 )]()([ i
theo

i
i zTzT 

. Also, given in 
the same table, the sum of experimental errors square 

 

i
i

22 ][

, where i  is the experimental error at Zi . 
Since the difference between the two cases is the value 

of exZ , the different values of the parameters in the two 
cases can be considered as a result of the asymmetry 
effect in nuclei, that is, we can say that the quantities A, B 

and C are dependent on  exZ  as a parameter. 

The sensitivity of 2/1T with respect to the values of the 
Parameters A and B is clear at all values of Z,                                 
Figures 1b, 2b, 1c and 2c, respectively. The parameter C 

plays a role at 3920  Z in the first set and at 
3420  Z  in the second set, Figures 1d and 2d, 

respectively. Thus, from the previous paragraph, this 
sensitivity reflects, in some way, sensitivity with respect 

to the asymmetry number exZ . From these figures we 
can introduce and accept the concept of the range of the 
parameters. We can consider that this concept is, in our 
case, the theoretical analog for the experimental error. Of 
course, we will consider the range of only one parameter. 
We choose this parameter with the help of the figures. In 
our two cases we can take the range of the parameter A 
(or B) to obtain a theoretical box that contains most of the 

data. For nuclei with 
1ex Z
, we can take s028.001.0 A



 

618          Int. J. Phys. Sci. 
 
 
 

Table 4. The half-life time data for nuclei with 3
ex

Z
 

(Firestone and Ekström,  2004) 16 even-odd nuclei 

and 11 odd-even nuclei. The data with (*) are predicted using the formula (3). 
   

Nucleus 
2/1

T s and decay mode Nucleus 
2/1

T s and decay mode 

5

7
B  0.089233 s*    Xp 

19

35
K  0.19 s ±0.03, ++, p 

6

9
C  0.1265 s±0.009,++,p2 

20

37
Ca  0.1811 s±0.01,++,p 

7

11
N

 

0.120578 s*,     p 
22

41
Ti   s±0.002++, p 

8

13
O  0.00858 s±0.005,++,p 

23

43
V  >0.800 s ,  ++ 

9

15
F

 

0.153306 s*,      p 
24

45
Cr

 

0.050 s±0.006 , +
+, p 

10

17
Ne  0.1092 s±0.006, ++, p,  

25

47
Mn

 

0.100 s±0.05 , ++, p 

11

19
Na  0.182461 s*,     P 

26

49
Fe

 

0.070 s±0.003, ++, p 

12

21
Mg

 
 0.122 s±0.003, ++, p 

28
53

Ni
 

0.045 s±0.015,
 
++, p 

13

23
Al  0.47 s±3, ++, p 

29

55
Cu

 

0.042574s*   ,
 
++ 

14

25
Si  0s±0.003++, p 

30

57
Zn

 

0.04 s±0.01, ++, p 

15

27
P

 

0.260 s±0.08, ++, p 
32

61
Ge

 

0.04 s±0.015, ++, p 

16

29
S  0.187 s±0.004, ++, p 

34

65
Se

 
s*++, p 

17

31
Cl  0.15 s±0.025, ++, p 

38

73
Sr

 
s*++, p

18

33
Ar  0.173 s±0.02, ++, p  

 
 
 

Table 5. The half-life time data for nuclei with 4
ex

Z (Firestone and Ekström, 2004) 12 even-even nuclei 

and 5 odd-odd nuclei.  The data with (*) are predicted using the formula (3). 
 

Nucleus 
2/1

T s and decay mode Nucleus 
2/1

T s and decay mode 

6

8
C  0.047s*,   Xp 

18

32
Ar  0.098 s±0.002, ++ , p 

8

12
O  0.063s*,    2p 

20

36
Ca  0.102 s±0.002,++,p 

9

14
F

 

0.071s*,     p 
22

40
Ti   s±0.015+ 
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Table 5. Contd. 

 

10

16
Ne  

s*,p 

24

44
Cr  

0.053 s±0.004, ++,p 

12

20
Mg

 

08.0
0.05-

s095.0 
, ++, p 

25

46
Mn

 

0.041 s±0.007 ,, p 

13

22
Al  

05.0
0.035-

s07.0 
, ++, p+ p 

26

48
Fe

 

0.044 s±0.007,++, p 

14

24
Si  

0.102 s±0.035, ++ , p 

27

50
Co

 

0.044 s±0.004,++, p 

15

26
P

 
 

035.0
0.015-

s02.0 
, ++, p+p 

28

52
Ni

 

0.038 s±0.005,
 
++, p 

16

28
S  

0.125 s±0.010, ++, p   

 
 
 

Table 6. The half-life time data for nuclei with
5exZ

(Firestone and Ekström, 2004) 6 even-odd nuclei. 

 

Nucleus 2/1
T

s and decay mode 

16

27
S

 

0.021s±0.004, ++ , p, p 

18

31
Ar

 

0.0151 s±0.012, ++, p, p, p 

20

35
Ca

 

0.05 s±0.03,++,p 

22

39
Ti

 

008.0
0.007-s026.0 

 , p+ p 

24

43
Cr

 

0.021s±0.004, ++, p,  

26

47
Fe

 

032.0
0.010-s027.0 

, ++, p 
 
 
 
(or 8666 B ), (Figure 1b and 1c). In the second case 

with 
2ex Z

 and even- Z , we can take 

s017.001.0 A  (or 7565B ), (Figure 2b and 

2c). In the latter case, we have two points at 6Z  and 
10Z  outside the theoretical box. However, we can 

obtain the exact value of T1/2 at these values of Z using 
the formula (1) and certain values of the parameters. In 

fact, for 10

18
Ne

 the exact value of T1/2 =1.672s (Firestone 
and Ekström, 2004), can be obtained using 

,s012.0A 50B
 
and  s1090.C  . Also,  we   can 

use 
,s013.0A
 44B  and 

s64.0C
 to obtain the 

exact value of T1/2 for 6

10
Ne , where 

s255.192/1 T
 (Firestone 

and Ekström, 2004). This means that the suggested 
formula is a very good representation of the half-lives of 

nuclei in the two considered sets where 1ex Z  and (
2ex Z
 

with even-Z ). Finally, some radioactive nuclei in the 
previous two cases are given in the reference, Firestone 
and Ekström (2004) without half-life time values. 
Therefore, the predicted values of half-life time for these 
nuclei, using formula (1) and the same values of the 
fitting  parameters of  the  Figures  1a and 2a are given in 
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Figure 1. (a) T1/2

 
for nuclei with Zex=1. The solid curves represent the results of the formula (1), where A= 0.018 s,  B=76 and C=-0.055 s. 

The data are taken from (Firestone and Ekström, 2004). (b) Same as Figure (a) except A=0.01, 0.018 and 0.028 s. (c) Same as Figure 
(b) except A=0.018 s, B=66, 76 and 86. (d) Same as Figure (c) except B=76 and C=-0.1, -0.055 and 0.055 s. 

 
 
 
 the Tables 1 and 2. 

From the formula (1), we get the rate of decay of nuclei 
in these two sets as: 

C
Z

B
AT

Z





}exp{

2ln2ln
)(

2/1



                                   (2)
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Figure 2. (a) T1/2

 
for nuclei with Zex= 2 and even-Z. The solid curve represents the results of the formula (1) where A =0.0135 s, 

B=69.5, and C=-0.06 s. The data are taken from (Firestone and Ekström, 2004). (b) Same as Figure (a) expect A =0.01, 0.0135 
and 0.017 s.  (c) Same as Figure (b) expect A=0.0135 s, B=65, 69.5 and 75. (d) Same as Figure (c) expect B=69.5 and C=0, -0.06 
and -0.1s.  

 
 
 
Of course, by the definition, the rate of decay is also 
dependent on the  isospin  asymmetry  of  nucleus. In the 

considered two sets with 1ex Z  and ( 2ex Z with even-Z) 

we  can  neglect  the  parameter  C   for  20Z  and the  
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Figure 3. (a) T1/2 for nuclei with Zex =2 and odd-Z. The solid curves represent the results of the formula (3) where 

A=0.76 s, B=0.0022, C=-0.25 s and Zmax=5. The data are taken from (Firestone and Ekström, 2004). (b) Same as 
Figure (a) expect Zex=3, A=0.2 s, B=0.00926, C=0.01 s and Zmax=15. (c) Same as Figure (a) expect Zex=4, A=0.1 s, 

B=0.00926, C=0.0075 s and Zmax=16. (d)  Same as Figure (a) expect Zex=5, A=0.025 s, B=0.01, C=0.001 s and 
Zmax=20.   

 
 
 

Equations (1) and (2) take the forms 
}exp{)(2/1

Z

B
AZT 

 

and 
}exp{)/2(ln)(

Z

B
AZ 

, respectively.    

 
 
The second formula 
  
The representations of the half-life time for nuclei 

where 2exZ  with odd-Z, 3, 4 and 5; as seen in Tables 3, 
4, 5, and 6, respectively;  are  given  in  the Figure 3. The 

general shape of these data in all cases, approximately, 
has two characters: concave down and has a maximum 
at some points. We can say that the shape of the data is 
similar to a parabola with an up vertex. Since the figures 
have a semi-log scale, we can suggest the following 
formula for the half-life time of nuclei in these four cases: 

 

CZZBAZT  })(exp{)( 2
max2/1 ,                              (3)     

 

where  maxZ   is  the value of Z at a maximum of T1/2 such  
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Table 7. The values of the parameters which give a good agreement with the data of 
2/1

T  for 

different last four cases of  exZ . 

 

Parameter ZoddexZ  ,2  3exZ  4exZ  5exZ  

A , s 0.76 0.2 0.1 0.025 

B  0.0022 0.00926 0.00926 0.01 

C , s -0.25 0.01 0.0075 0.001 

max
Z  5 15 16 20 

Range of A, s
 

0.60→1 0.1→0.3 0.08→0.12 0.02→0.03 

Range of C, s -0.3→ -0.15 -0.045→+o.o45 -0.02→+0.02 0→0.002 

 
 
 

Table 8. The values of
2

   and 
2

  for different  cases of  exZ . 

 

exZ  2
  

2
  

The total number 

of data
 

The number of 

included data
 

1 0.21 m
2 

0.2958 m
2
 33 29 

2, even-Z 0.01 m
2 

0.0864 m
2
 12 9 

2, odd-Z 0.17 s
2 

0.0022 s
2
 13 11 

3
 

0.022 s
2
 0.0117 s

2
 20 17 

4
 0.0099 s

2
 0.0118 s

2
 13 12 

5 0.00075 s
2

 0.0022 s
2

 6 6 

 
 
 
that this maximum in the flow of the data, A, B and C are 
fitting parameters. In general, a good fit with the data in 
different cases is obtained with different values of the 
parameters, (Figure 3). The values of the parameters are 

given in Table 7. The values of 
2

   and 2
    for the results 

in the Figures 3a, b, c and d are given in the Table 8. 
Also, as in the case of formula (1), since the only 
considered difference between the four cases is the value 

of exZ
, the different values of the parameters in the these 

cases can be considered as a result of the isospin 
asymmetry in nuclei, that is, we can say that the 

quantities BA, , C  and maxZ are dependent on exZ as a 

parameter. Then, the dependence of 2/1T
on these 

parameters reflects the isospin asymmetry effect on the 
half-life time of the considered nuclei. It is clear that T1/2 is 

sensitive to the parameters BA, ,C and the value of maxZ
 in 

all cases, Figures 4a, 5a, 6a, 7a; 4b, 5b, 6b, 7b; 4c, 5c, 
6c, 7c; and 4d, 5d, 6d, 7d, respectively. Also, considering 

a range for the parameter A (orC ), all the data can be 
approximately contained in the theoretical box; Figures 
4a  (or   4c),    5a  (or 5c),    6a  (or 6c)   and    7a  (or 7c).  

The ranges of the parameters are given in Table 7. Also, 
as in the case of formula (1), we can obtain the exact 
value of T1/2 for any nucleus in these four sets of Tables 
3, 4, 5 and 6 using formula (3) with certain values of the 
parameters. This means that the formula (3) is a good 

representation of 2/1T
 in these four sets.   

We have noted that the effect of the parameter C  in 

the formula (1) appears only at the values of 20Z , 
while its action is clear at all values of Z for the most 
calculations of the formula (3). This is due to the small 
values of the correction parameter C, at the same time, 
the values of T1/2, which are calculated by the formula (1), 
are relatively large except at the values of 20Z . On the 

other hand, the values of T1/2 which are calculated by 
formula (3) are relatively small at the most values of Z . 

Also, some radioactive nuclei in the considered four 
cases are given in Firestone and Ekström (2004) without 
half-life time values. Therefore, the predicted values of 
half-life time for these nuclei, using formula (3) and the 
values of the parameters in Table 7 are given in Tables 3, 
4 and 5.  

From  the formula (3), for the total rate of decay we get: 
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Figure 4. (a) T1/2for nuclei with Zex=2 and odd-Z. The solid curves represent the results of the formula (3) where A=0.60, 

0.76 and 1 s, B=0.0022, C=-0.25 s and Zmax=5. The data are taken from (Firestone and Ekström, 2004).  (b) Same as 
Figure (a) except A=0.76 s, B=0.0012, 0.0022 and 0.0032 (c) Same as Figure (b) except B=0.0022 and C=-0.15, -0.25 
and -0.3 s. (d) Same as Figure (c) except C=-0.25 s and Zmax=0, 5 and 10. 

 
 
 

CZZBA
Z




})(exp{

2ln
)(

2

max



                                (4) 
 

In the formulas (3) and (4) we cannot neglect any 
parameter where all parameters play significant roles at 
all values of Z.  

DISCUSSION  
 
In this work we have tried to answer the question, does 

the asymmetry number exZ  has a role in the evaluation of 
half-life time T1/2?. Classifying the data with respect to the 

value  of exZ  we  have  6 sets, each of which has a certain
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Figure 5. (a) T1/2 for nuclei with Zex=3. The solid curve represents the results of the formula (3), where A=0.1, 0.2 and 0.3 s, 

B=0.00926, C=0.01 s and Zmax=15. The data are taken from (Firestone and Ekström, 2004). (b) Same as Figure (a) except 
A=0.2 s, B=0.005, 0.00926 and 0.013. (c) Same as Figure (b) except B=0.00926 and C=-0.045, 0.01 and 0.045 s. (d) Same 
as Figure (c) except C=0, 0.01 and Zmax=13, 15 and 17. 

 
 

 

value of exZ
. The elements in each set have a common 

isospin asymmetry property, the same value of exZ
. The 

different values of the asymmetry number exZ
lead to 

different physical properties between the sets. This is 
because many fundamental quantities, equations and 
reactions  are  dependent  on  the  isospin  asymmetry  of 

nuclei (Berdichevsky, 1984; Steiner et al., 2005; 
Centelles et al., 2009; Shetty and Yennello, 2010; Shetty 
et al., 2007; Tsang et al., 2009).  

In general, we can say that the value order and the 

behaviors of T1/2 are dependent on the value of exZ .  Also, 
the data indicate some relation between the type of 

decay  and  the asymmetry number exZ . At the same time, 
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Figure 6. (a) T1/2 for nuclei with Zex=4. The solid curve represents the results of the formula (3) where A=0.08, 0.1 and 

0.12 s, B=0.00926, C=0.0075 s and Zmax=16. The data are taken from (Firestone and Ekström, 2004). (b) Same as 
Figure (a) except A=0.1 s, B=0.005, 0.00926 and 0.013. (c) Same as Figure (b) except B=0.00926, C=-0.02, 0.0075 
and 0.02 s.  (d) Same as Figure (c) except C=0.0075 s, Zmax=13, 16 and 18.  

 
 
 
the parameterization of the suggested formulas for T1/2  
and the values of the contained parameters are 

dependent on the value of the asymmetry number exZ
. 

We can see this fact if we consider isotopes of an 

element. With the same Z and different exZ
, each isotope 

belong to different  one  of the 6 sets. To obtain the value 

of T1/2 , we will use the formula (1) for the isotopes in the 
first two sets with two different sets of values of the 
parameters. The formula (3) is used for the isotopes in 
the other four sets with different values of the parameters 

for each set. For example, the isotopes of 10
Ne , 20

Ca
 and 15

P
.  

Thus, the data of Firestone and Ekström (2004) and the 
suggested  formulas  lead  to the same conclusion, which
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Figure 7. (a) T1/2 for nuclei with Zex=5. The solid curve represents the results of the formula (3), where A=0.02, 0.025 

and 0.03 s, B=0.01, C=0.001 s and Zmax=20. The data are taken from (Firestone and Ekström, 2004). (b) Same as 
Figure (a) except A=0.025 s, B=0.007, 0.01 and 0.013.  (c) Same as Figure (b) except B=0.01, C=0, 0.001 and 0.002 
s. (d) Same as Figure (c) except C=0.001, Zmax=18, 20 and 22.  

 
 
 
is, that the isospin asymmetry of nuclei plays important 
role in nuclei half-life time evaluation and that a 

connection between the asymmetry number exZ and the 
type of decay does exist.    

In general, we can consider that the formulas obtained 
herein describe well the half-life time of nuclei in each one 

of 6 considered sets, especially, if we consider the 
suggested    theoretical    box.    However,     we    cannot 

determine the reasons of the existence of some nuclei 
outside the theoretical box. But, this may be due to the 
decay modes of these nuclei that are, in some cases, 
different from the major decay mode of the set. Also, our 
formulas are in a good agreement with the last 
measurements of half-life time of some nuclei. For 
example, in Triambak et al. (2012) the measurement of the 

half-life    time    of 10

19Ne ,    where  
1ex Z
,   equals to 17.262 s,  
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which can be obtained using the formula (1) with A= 
0.017452s, B=69 and C=-0.055s.  In Iacob et al. (2010) 

the measurement of the half-life time of 14

26Si
, 

where 2ex Z and Z is even, equals to 2.2453 s, which can 
be obtained using the formula (1) with A=0.016098s, 
B=69.5 and C=-0.06s.  

 

 
Conclusions 

 

In conclusion, the half-life time and decay mode of 

radioactive nuclei with NZ  is sensitive to the isospin 
asymmetry of nuclei which is represented by the 

asymmetry number exZ
. Any one of suggested formulas 

of T1/2 is a function of Z and dependent on exZ
as a 

parameter, that is, we can write 
5,4,3,2,1),( ex2/1 2/1

 ZZTT ex
Z

.,  

or 

)2(,1ex,}exp{

5,4,3),2(ex,}2)max(exp{
)(2/1 2/1

ZevenwithZC
Z

B
A

ZoddwithZCZZBA
ZTT exZ





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