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Using the mathematical aspects of the Schwarzschild metric, we present different variables 
transformation which proves that the central singularity hypothesis does not exist. The geometric 
interpretation of the black hole from the Schwarzschild metric is not mathematically convincing. The 
different mathematical approaches taken by many authors were viewed, such as the Painleve metric 
and its complex variant, and the Schwarzschild metric, to deduce a metric with a throat sphere which 
leads to a mirror space-time. Subsequently, the possibility of a bi-metric tangent to the Schwarzschild 
metric's throat sphere was deduced.  It was also shown that a false interpretation of the variables of the 
Schwarzschild metric can lead to false physical deductions and, in particular, to the concept of 
singularity. We computed the general solution of Einstein's equations in the presence of a non-zero 
energy tensor, that is, for a homogeneous fluid ball with energy conditions. This study method of 
resolution involves a reformulation of the Einstein equation and integration of the differential system. 
The metrics found are asymptotic to the Schwarzschild metric outside the fluid ball. Assumptions were 
presented for the pressure inside the fluid ball and the corresponding metrics were derived. Then, by 
solving the continuity equation of the energy-impulse tensor, we deduce an expression for the pressure 
inside the star that permits the express on of the interior and exterior metrics. 
 
Key words: Schwarzs child’s metric, black hole, singularity, gravity, bi-metric, internal metric. 

 

 
INTRODUCTION 
 
The Schwarzschild metric has become popular since the 
beginning of the 20th century for two main reasons. The 
first reason is that the first explicit solutions of Einstein's 
equations in vacuum, and demonstrated significant 
advancement in general relativity. The enthusiasm of 
cosmologists about the Schwarzschild metric was later 
undermined by 20th century mathematicians and 
physicists Eddington (1921), and then in the 21st  century 

by Vankov (2011) and Mizony (2015), who have 
addressed the subject. The physical interpretation of 
variables in the metric cannot be subject to untested 
theories of time reversal singularity, or even spacetime 
rupture. The popular science press, eager for 
sensationalism, the science fiction movies have 
contributed to keeping its popularity alive the basis of 
Einstein's  equations   and,   consequently,   the   role   of 
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variables in a metric requires a serious reassessment. 
The second reason for its popularity is that the 

gravitational field deduced from the metric solves the 
problems of the anomalous advance of Mercury's 
perihelion and gravitational lensing effects. However, the 
scientific basis of these discoveries has been poorly 
disseminated and misunderstood. Cinema and the 
popular press, as well as fallacious computational 
simulations, under the pretext of educating and 
entertaining the general public, have made erroneous 
representations of the phenomena. Until very recently, 
radiophotography of the M87* black hole in the center of 
a galaxy, the same name had confused both the public 
and some dedicated physicists. This image, 
reconstructed from the contrast of radio radiation, is 
certainly of great interest, but cannot confirm the 
presence of a black hole. It could be a very massive 
neutron star, or strange star, with a redshift magnitude of 
5 to 6, surrounded by a disk of a hot material. 

Moreover, many mathematicians and physicists have 
warned about the interpretation of the Schwarzschild 
metric. Even if it seems to meet some physical 
assumption such as stability, asymptotic convergence at 
infinity to the Minkowski metric, and spherical symmetry, 
the questions raised by this metric, and especially by the 
description of the black hole it describes, have three 
types. 

First, this metric is deduced from the Einstein tensor 
expressed in the vacuum. The equations deduced from it 
express both the vacuum and presence of a central 
mass. This contradiction remains unresolved. 

Second, the Schwarzschild radius, the limit beyond 
which space-time is no longer real, does not have a 
coherent physical interpretation. The various papers on 
the black hole problem often omit the reality of a four-
dimensional (4D) topology and continue to explain a 
three-dimensional (3D) time-dependent phenomenon, 
which is not the same physical phenomenon. 

Third, Birkhoff's theorem is often misused by some 
physicists who, instead of considering a 4D spherical 
symmetry, continue to solve Einstein's equations with the 
assumption of a 3D central symmetry, which leads to 
misinterpretations of the theorems of Hawking and 
Penrose(1965 - 1970) on the emergence of a singularity 
by gravitational collapse. 

From mathematical calculations, we present alternative 
physical interpretations of the Schwarzschild metric and 
the probable nature of the singularity. The general inner 
and outer solution of the Einstein equations for a 
homogeneous fluid star was also studied. 
 
 

REVIEW OF THE SCHWARZSCHILD METRIC IN A 
VACUUM 
 

Let us consider a metric of the following form: 
 

                                           (1) 

Coranson-Beaudu and Lampla             109 
 
 
 
where  and  are 

functions of the variable  satisfying the equations of 

Einstein in a vacuum. 
 

                                                  (2)  
 
From a physical perspective, the problem is less evident, 
but many questions have been raised (Painlevé, 1921; 
Chazy, 1930; Eddington 1960; Mizony, 2015; Crothers, 
2015).  

It was recalled that Einstein, was the first to raise the 
Schwarzschild problem and gave an approximate 
solution before Schwarzschild gave an exact solution in 
1916 in two remarkable publications. 

One can, quickly solve the mathematical problem in a 
vacuum, then interpret the constants by assuming the 
presence of a central mass and by prejudging the 
interpretation of the variables of the metric. The latter is 
adapted to the physical problem of the black hole posed 
a posteriori. This method, which is used in many articles 
and is also taught, has often been contested.  

First, we define the variable  of the space-

time where the metric will be calculated. 
Variable «  » is not the radial distance, but is a 

monotonic function of the radial distance . When r 

becomes very large, we can assimilate r into  .  Then, 

 very far from the star. After the mathematical 

resolution of Equations 2 in vacuum, we obtain the 
following metric: 
 

                (3) 
  
whose determinant is equal to: 
 

 
 
Constant C is determined according to the laws of 
physics, and the systems limit conditions.  

With the correct constant, this metric is spherically 
symmetric, static, and asymptotically equivalent to the 
Minkowski metric at infinity.  It can be written as the 
Schwarzschild metric, with C given by the following: 
 

; 
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where M being the mass of the star, G the gravitational 
constant, c the speed of light that is taken to be equal to 
1 in the following, and   the Schwarzschild radius or the 

black hole horizon. In many scientific papers, variables  

and  are arbitrarily and respectively assimilated to time t  

and  radial distance . 

Thus we have: 
 

                 (4) 
 

We note that Equation 4 shows the presence of two 
singularities, at , and at , the horizon of the 

black hole. 
In this paper, we consider that far from a star of mass 

M and radius a, that is, , variables  and  are, 

respectively assimilated into time t, and radial distance r. 
Close to the star and inside the star, these variables 
cannot be considered as time and radial distance. 
 
 

CHANGE OF VARIABLES IN THE METRIC 
 

In the following, we investigate what impacts is observed 
on the metric and curvature if variables, that is is, are 
changed without changing the physical cause.  Let us 
posit:  
  

 

The Schwarzschild metric in Equation 3 can be written 
as: 
 

     
                                                                                    (5) 
 

Which satisfies the physical compatibility conditions if and 
only if the space is asymptotically flat for large r; that is, 
 

 
 

For example: 
 

 ,                                                     (5.1) 

 
 
 
 
where  is a function derivable and monotone on 

, and asymptotically flat at infinity. There are 

infinitely many such examples. 
All these metrics in Equation (5.1) verify the Einstein 

equation in vacuum , and are spherically 

symmetric, static, and  asymptotically flat. By a change of 
variables, infinitely many metrics equivalent to the 
Schwarzschild metric could be found. 

Let us consider the following metric: 
 
Changing variable  as , which translates 

to 

 
 
where  is a continuous and differentiable function on 

, the Schwarzschild metric can be written as: 

 

 

 

 
 
with      

 
Discussion on sign of the constant: 

 

If c ≤0, with c= -Rs, we choose , 

and   

 
 
With this change of variable, the metric is written: 

 

          (6) 

 
This formulation is called the Painleve-Gullstrand metric  
(Gullstrand, 1922; Fric, 2013; Crothers, 2015).  



 
 
 
 
It can also be written as: 
 

                          (7) 
 
If c≥0, 
 

we choose  

Then the metric can be written as: 
 

       (8) 
 
This is a Riemannian metric on a holomorphic fibration 
tangent to the space , which is isomorphic to  

(Dumitrescu, 2001). 
It can also be written as: 

 

                        (9) 
 
We do not wish to give a physical interpretation of the 
metric. Our approach is to find mathematical expressions 
of the metrics, by solving a tensor equation. The physical 
interpretation will be given as required. 

 
 
Remark 
 
For the case , we can observe from 

Equation 6 that the singularity at  does not exist 

and Equation 6 can be written as: 
 

(10) 

 
 
Minkowski’s metric 

 
The Minkowski metric, which represents an empty 
spacetime, is written as: 
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The determinant of this metric is equal to: 
 

 
 
To the Minkowski metric, let us apply the following 
changes of variables: 
 

 

 
 
with  being a continuous function, except at 

localized points, and function  tending asymptotically 

to 0 at infinity. 
The change of variables can be written in matrix form: 

 

 
 
where  the matrix of the change of variables. It is 

isometric as the determinant of this matrix is equal to 1. 
The metric can be written as: 

 

 

Even if we posit  , this metric cannot be 

interpreted as the Schwarzschild metric. Thus there is 
indeed a difference between the so-called Schwarzschild 
solution and empty space metric. 

Also, we will assume that the Schwarzschild metric is a 
particular solution of the Einstein’s equation.   

To consider that the energy tensor is zero (  ) 

and that the solution represents a central mass does not 
have physical or mathematical basis. We demonstrate 
that the solution of Einstein’s equation with second term 
allows us to find a general solution in a non-empty space-
time, and that the particular solution is asymptotically the 
Schwarzschild solution (Chapter F).  
 
 

Remarks on singularity 
 

All  Schwarzschild  metrics  have  a physical singularity at  
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the center of mass, that is, at . The Kretschmann 

scalar for these metrics is written using the Riemann 
tensor as: 
 

 
 
This shows first that the singularity at  is purely 

geometric and that the variable  is not the radial 

distance. Thus there is no singularity at OM=0, unless 
. 

According to Equation 5.1, there always exists a metric 
solution of the Einstein equations such that . 

 
 
According to current definitions, gravitational singularities 
in general relativity are locations in spacetime where the 
gravitational field becomes infinite. Some physicists, such 
as De Witt (1967), Dvali and Gomez (2014), Farnes 
(2018), Barrau et al. (2019), and philosophers, such as 
Saint-Ours (2011) propose that because the density of 
matter tends towards infinity in the singularity, the laws of 
behavior of spacetime are no longer compatible with 
classical physics. This has given rise to a multitude of 
theories, such as quantum gravity, loop quantum gravity, 
string theory applied to black holes, and space-time 
reversing. 

Nevertheless, there still are debates and general 
disagreement between physicists, mathematicians, and 
philosophers regarding the definition of singularity (Saint-
Ours, 2011; Fromholz et al., 2014). 

Although it changes the local geometry, it is difficult to 
consider a singularity as a point that lies at a location in 
spacetime. Therefore, some physicists and philosophers 
cautiously refer singular space-time instead of 
singularities (Curiel and Bokulich, 2018). The most 
important definitions allude either to incomplete paths or 
to the idea of missing space in space-time. The concept 
is often called singular structure with pathological 
behavior. 

Hawking and Penrose (1970) showed the existence of 
a singularitý during gravitational collapse. However, one 
should be careful about the meaning of this term. In their 
work, these authors do not prove the existence of a point 
where the geometry of space-time would become 
singular in the mathematical sense. What they have 
explained is the existence of incomplete-geodesics 
specific to  time  or  light  zone  of  space-time  where  the  

 
 
 
 
history of the objects that penetrate it stops after a finite 
time. 

To illustrate this mathematical concept, let  and 

 in the Schwarzschild metric. We have: 

 
 
We seek a representation in a space such that: 

 

 

 
 

By equating the coefficient in the two relations we have: 
 

 
 

The visualization of the Schwarzschild space-time is 
obtained using of a 2D surface embedded in a space-
time of dimension 3D. The Schwarzschild surface is thus 
visualized by the function , which can be written as 

follows for  and  : 

 

 
 
That is, 
 

 
 
which is a Flamm paraboloid, with a throat circle at 

. This represents two 2D parabolic layers 

connected by a 1D throat circle with parameter  in 

3D space. 
For a very large, that is, far from the center of mass, we 

have: 
 

 
 

 



 
 
 
 
At infinity, this two dimensional surface embedded in a 
3D dimensional space is a visualization of 
Schwarzschild's asymptotic space-time, that is, 
Minkowski's flat space-time (Figure 1). 

The physical singularity at  does not exist as the 

throat circle at   is the physical limit for any object 

plunging into the Schwarzschild metric. An object 
traveling from the upper sheet, which dives towards the 
center of mass following a parabolic geodesic, crosses 
the gorge, then slides toward the lower sheet, and 
disappears forever. The object cannot be trace any 
further. In this interpretation of the black hole, it is the 
zone of no return, where the history of the object stops. 

The hypothesis, that for the object, the throat circle is 
impossible to cross because of the pulsation of the circle 
remains to be verified.  

The aforementioned visualization of the Schwarzschild 
space is a sheet of dimension 2 with a hole, but the 
reality, with four dimensions, would rather be a 
hyperplane of dimension 4D with a throat sphere of 
dimension 3D. 

An object falling from the upper sheet and having a 
slightly oblique trajectory will go around the throat one or 
more times before passing on the other sheet and 
disappearing forever. The throat sphere functions as a 
transition zone between our space-time and another 
space-time to be determined. 

We call the space-time the upper sheet, the one in 
which we live  and the lower space-time, the 

complementary space-time of the lower sheet . 

Then, a metric was defined  on each space-time:  

and  respectively and an Einstein tensor for each of 

the metrics, such that and  satisfy the equations 

of relativity, respecting the continuity on the throat sphere 
between the two space-times. We have:  
 

 

 

This defines two metrics. In our space-time, with positive 
masses: 
 

          (11) 
 
Meanwhile   in   the   mirror   space-time    with   negative  
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masses: 
 

          (12) 
 
This hypothesis of negative mass has been developed 
and is perfectly accepted in contemporary physics. The 
consequences on the concepts of energy, frequencies, 
and momentum in mechanics must be reviewed based 
on these new concepts. 
 
 
Complementary space-times 
 
Bondi (1957) and Rosen (1973) were the first to express 
a bi-metric representation of space-time. Subsequently, 
Sakharov (1980), Hossenfelder (2008), Hassan and 
Rosen (2012), Damour and Nikiforova (2019), and Petit 
et al. (2021) also developed their models on this basis. 
Boyle et al. (2018) published a cosmological model 
based on the existence of a mirror universe, populated by 
antimatter and going back in time, such in Sakharov’s 
model. The scientific literature shows that the absence of 
negative mass matter in our known universe, supports 
the hypothesis of a bimetric of space-time that separates 
the known matter from this negative mass matter.  

Many researchers, starting with Dirac, predicted 
intuitively that the mirror universe (at the antipodes of our 
universe), should be sought not in our space, but rather 
in a space where particles have masses and energies of 
opposite signs. Since the masses in our universe are 
positive, those in the mirror universe will be negative, 
according to Borissova and Rabounski (2009). 

Both Newton's and Einstein's theories of gravitation 
predict non-intuitive behavior for negative masses. For 
two bodies of equal and opposite masses, the positive 
mass attracts the negative mass, but the latter repels the 
positive mass; the two masses pursue each other. The 
motion along the line joining the centers of mass of the 
considered bodies would thus be a motion with constant 
acceleration. 

The throat sphere that separates our universe from the 
mirror universe prevents particles of negative and 
positive mass from coming into contact, thus prohibiting 
any particle annihilation, except in the case of quantum 
tunneling. 

From the geometrical perspective, the throat sphere in 
3D contains particles of null mass that move tangentially 
to the regions occupied by particles characterized by 
( , or ( . The particles of zero mass, can 

interact both with the particles of our universe ( , 

and with those of the mirror universe, (  

The  throat  sphere  contains  only energy in the form of  
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Figure 1. 3D visualization of the Schwarzschild hyper-surface. 
Source: Grapher v 2.7 – Apple Inc. 

 
 
 
elementary particles of zero mass, described by quantum 
fields. This energy contributes to generating the 
gravitational field. 
 
 
Solution of Einstein's general equation in a nonempty 
space 
 
Here, we present the mathematical solution of Einstein's 
equations in a non-empty space-time. We suppose that a 
massive, fluid, and homogeneous spherical object of 

radius , generates a gravitational field inside and 

outside the object. 

Let  be the mass of the homogeneous 

fluid contained in the sphere of radius a. We assume in 
that the Schwarzschild radius of the star is such that 

.  

The matter in the interior of the star is described by a 
fluid of energy-impulse tensor  as proposed by 

Schwarzschild (cf Haag, 1931; Brillouin, 1935), Antoci 
(1999), Barletta et al.,(2020). 

The energy tensor is written as:  
 

 

 

where     represents   the  proper  density,   is  the 

internal pressure tensor, and  is the quadratic 

components of the generalized velocity.  
Also, we assumed that the metric is of general form: 

 

 
 

with  and  two functions of  variable .  

We define the metric tensor as:  
 

 

 
 

The pressure in the fluid is described by the equation of 
state , and because of homogeneity, we 

assume that: 

 
 

 
; the pressure tensor is then 

written as: 
 

 



 
 
 
 

The pressure has a normal component  and a 

transverse component . 

The energy tensor in the star is then written: 
 

 
 
Considering the metric, we have: 
 

 
 

with  located outside the fluid 

sphere; thus  located outside the star. 

This hypothesis is compatible with the presence of a 
fluid with density .  The structure of the gravitational 

field of the star is thus determined by four functions 

 which are functions of variable . 

The general equations of Einstein are written as: 
 

 
 

where  is the curvature radius of the metric,  is the 

metric tensor, and . 

 

  , and    

    

 
Then Einstein equations are written as: 
 

                                                 (13) 
 
After calculations, the Ricci tensor is: 
 

 
 

As the trace of the energy tensor is: 

with ;          
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Equation 13 can be expressed by the following system of 
four nonlinear differential equations: 
 

 
 
That is 
 

 
 

where  are functions defining the desired 

interior and exterior metrics. These functions depend on 
the parameters of the energy tensor . 

We calculate: 
 

 
 

That is, 
 

                                              (14) 
 
Equation  can be rewritten as: 

                               (15) 
 

Differentiating and adding Equations 14 and 15, we 
obtain: 
 

                                                  (16) 
 

                                                     (17) 
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To solve these equations, in the first example, we 
assume some mathematical hypothesis such as the 
density is constant, or the pression is a simple explicit 
function of variable R. In the second example we show 
that the energy conditions in the fluid will determine the 
metric. The equations relating the pressure and density of 
the fluid determine these energy conditions. 

 
 
Hypothesis F.1 
 
We assume that the density  is constant in 

throughout the fluid. This assumption is compatible with 
the physics of classical stars.  

If the pressure in the fluid is a function of   (this is a 

mathematical hypothesis), then: 
 ,  

 
It can be written:  
 

 
 
The general solution of Equation 17 is: 
 

  (18)  
 
For , we find the particular solution of the metric 

outside the star: 

 
 
Since the density is constant in the star and given the 
general expression for , we write Equation 16: 

 

                                     (19) 
 
The solution of this equation is: 
 

                                     (20) 
 

 

 
 
 
 
where  is a polynomial, with 

roots , and  are coefficients depending on constants 

. 

For , the particular solution of the 

metric located outside the star is: 
 

 
 
 
Hypothesis F.2  
 
If the pressure in the fluid is a function of   (this is a 

mathematical hypothesis) with 
 . Then, it can be written:  

 

 
 
The solutions for the Einstein equations are obtained in 
the form of Equations 18 and 20, assuming the continuity 
of pressure and limit conditions ( ) and ( . 

We have: 
 

 
 
with 
 

 
 
Then  
 

 
 
For , the particular solution of 

the metric located outside the star is: 

 

 



 
 
 
 

 
 
 
PHYSICS OF PRESSURE AND DENSITY IN THE STAR 
 
The divergence of the energy tensor verifies the following 
physical property because of Einstein's equations: The 
energy condition is: 
 

 
 
That is, 
 

 
 
In a perfect fluid sphere, we have:   

The previous equation reduces to the following 
expression:  
 

   (21) 
  
  and , can be deduced from Equation 21,  

 and  can be calculated. 

 
 
Hypothesis G.1 
 
For , 

 

 
 
The general solution of Equation 17 is: 
 

 
 
with  
 

 
Equation 14 gives  
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Then 
 

 
 
That is, 
 

 
 
For , the particular 

solution of the metric located outside the star is: 

 
 

 
 
 

Hypothesis G.2 
 

The density is constant:  

With , and  = , Equation 21 gives: 

 

 
 

as . 

 

Condition   will decide on the critical 

conditions for density  (Haag, 1931). 

Let calculate the general expression of the function . 

Equation 14 can be written as: 
 

                                             (22) 
  
We deduce: 
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Let’s   then  

then we have: 
 

   (23) 
 
Case 1: letting  in Equation 18, and substituting the 

expression for B in Equation 23, we obtain a simple 
equation, we can easily solve for the Schwarzschild 
solution. 
  

 
 
whose solution is to the nearest constant: 
 

 
 
This solution was found by Schwarzschild in 1916 , with 
 

 

 
 
Case 2: . The inhomogeneous equation to obtain 

function  is difficult to solve, and involves hyper 

elliptic integrals. 
The general solution of Equation 23, is  

 

 
 

and 
 

 
 
 

Remark 
 

If , then: 

 

 
 
 

 
This is the particular solution of the Einstein equations 
out of the star. 
 
 
Hypothesis G.3 
 
We assume that the star is a special fluid, where 

 and  are the energy conditions 

If , then ; that is, energy is negative, if , 

then ; that is, mass is negative. Then, the energy 

conditions can be written as: 
 

 
 
The solution of Equation 14 is  
 

 
 

Assume that . Then 
 

 
 
Equation 17 gives 
 

 
 
The interior solution is a particular De Sitter-
Schwarzschild metric: 
 

 
 

 
 

Meanwhile the exterior solution is: 
 

 
 
 

Conclusion 
 
After carefully reading the second article of Schwarzschild  



 
 
 
 
(1916), and through reasonable mathematical 
assumptions, we showed that the physical interpretation 

of the variable  in the Schwarzschild metric is not a 

radial distance for a point located close to the star.  
  Also, we addressed the problem of the singularity in 

this metric by providing an explanation of gravitational 
collapse, as discussed by Hawking and Penrose (1970). 

Starting from the principle of non-singularity, we 
constructed a metric from the Einstein tensor in a 
vacuum. This metric, asymptotic to a plane metric far 
away from the star and tangent to a throat sphere near 
the center, extends to a mirror metric. In the mirror 
metric, the masses are negative, and time is reversed.  

Subsequently, we explained the general solution of the 
Einstein equation, including second term, considering 
various assumptions about the pressure and density 
inside the fluid ball representing the star. 

If , then  
 

 
 

If , then  

 

 
 

with  
 

 
 

This is a particular De Sitter-Schwarzschild’s metric in a 
special fluid. 

If , then  
 

 
 
 
 

𝑨�𝓡 𝑩�𝓡 =

 

 
ℵ𝝆𝟎 𝟏 +

𝑪𝟎
𝒂   

𝟐
 𝒕𝑩�𝒕 𝟑/𝟐𝒅𝒕

𝓡

𝟎

+ 𝟏

 

 

𝟐

 

 
 

This is the hyper-elliptic interior solution that generalizes 
the interior Schwarzschild’s solution. 

In the next paper, we will make new physical 
assumptions about the 3D throat sphere. We will 
examine the physics and nature of zero mass and 
relativistic particles, which can pass through that throat 
sphere.  

The topology of the  sphere embedded in a 4D space 

is   not   easily    visualizable.  Indeed,  the  stereographic 
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projection of the  sphere in our space is the entire  

space plus a point at infinity according to our viewpoint. 

The gorge sphere is then isomorphic to , in which time 

has been stopped. The sphere  forms the junction of 

our paraboloid space-time, with the mirror space-time 
where matter with property of negative mass exists. 
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