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This paper presents landslide hazard and risk analysis using remote sensing data, GIS tools and 
artificial neural network model. Landslide locations were identified in the study area from interpretation 
of aerial photographs and from field surveys. Topographical and geological data and satellite images 
were collected, processed, and constructed into a spatial database using GIS and image processing. 
These factors were used with artificial neural network to analyze landslide hazard. Each factor’s weight 
was determined by the back-propagation training method. Then the landslide hazard indices were 
calculated using the trained back-propagation weights, and the landslide hazard map was created using 
GIS tools. Landslide locations were used to verify results of the landslide hazard maps and to compare 
them. The results of the analysis were verified using the landslide location data and compared with 
neural network model with all cases. The accuracy observed was 83, 72, 82, 79 and 81% for training 
sites 1, 2, 3, 4 and 5 respectively. GIS data was used to efficiently analyze the large volume of data, and 
the artificial neural network proved to be an effective tool for landslide hazard analysis. Further, risk 
analysis has been performed using DEM, distance from hazard zone, land cover map and damageable 
objects at risk. DEM was used to delineate the catchments and served as a mask to extract the highest 
hazard zones of the landslide area. Risk map was produced using map overlying techniques in GIS. 
This information could be used to estimate the risk to population, property and existing infrastructure 
like transportation network.   
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INTRODUCTION 
 
Landslide presents a significant constraint to develop-
ment in many parts of Malaysia. Damages and losses are 
regularly incurred because, historically, there has been 
too little consideration of the potential problems in land 
use planning and slope management. Landslides are 
mostly occurred in Malaysia mainly due to heavy rainfall. 
In recent years greater awareness of landslide problems 
has led to significant changes in the control of develop-
ment on unstable land, with the Malaysian government 
and highway authorities stressing the need  
 
 
 
 
*Corresponding author. E-mail: biswajeet@lycos.com. Tel: 603-
8946-7543 Fax: 603-8656-6061. 

for local planning authorities to take landslide into 
account at all stages of the landslide hazard mapping 
process. To assist the implementation of this policy, the 
Malaysian Centre for Remote Sensing (MACRES) com-
missioned one major demonstration projects to assess 
the potential for landslide and to incorporate this infor-
mation in the strategic planning process. So far, few att-
empts have been made to predict these landslides or pre-
venting the damage caused by them. Through this predic-
tion model, landslide damage could be greatly decreased. 
Through scientific analysis of landslides, we can assess 
and predict landslide-susceptible areas, and thus decrea-
se landslide damage through proper preparation. To achi-
eve this aim, landslide hazard analysis techniques have 
been applied, and verified in the study area using artificial 
neural network. In addition, landslide-related factors were 
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Figure 1. Location map of the study area. 

 
 
also assessed. Further, landslide risk analysis was per-
formed using the landslide hazard map and other asso-
ciated factors.  

Risk analysis is a valid technique if and only if it fulfills 
a series of appropriate criteria. It should state the proba-
bility as well as the expected impact, and the latter should 
be expressed in relation to the size of the population at 
risk. Varne (1984); Fell (1994); Whitsman (1984); and 
Christian et al., (1992) have performed stud-ies related to 
risk analysis. There have been many studies carried out 
on landslide hazard evaluation using GIS; for example, 
Guzzetti et al. (1999) summarized many landslide hazard 
evaluation studies. Recently, there have been studies on 
landslide hazard evaluation using GIS, and many of 
these studies have applied probabilistic models (Akgun 
and Bulut, 2007; Dahal et al., 2007; Clerici et al., 2006; 
Cevic and Topal, 2003; Rowbotham and Dudycha, 1998; 
Jibson et al., 2000; Luzi et al., 2000; Parise and Jibson, 
2000; Baeza and Corominas, 2001; Lee and Min, 2001; 
Temesgen et al., 2001; Clerici et al., 2002; Donati and 
Turrini, 2002; Lee et al., 2002a; Lee et al., 2002b; Zhou 
et al., 2002; Lee and Choi, 2003c; Lee et al., 2004b; Lee 
and Talib, 2005a; Lee and Dan, 2005b; Lee and Lee, 
2006a; Pradhan and Lee, 2007; Pradhan et al., 2005). 
One of the statistical models available, the logistic reg-
ression models, has also been applied to landslide haz-
ard mapping (Akgul and Bulut, 2007; Tunusluoglu et al., 
2007; Lamelas et al., 2007; Wang and Sasa, 2005; 
Su¨zen and Doyuran, 2004; Atkinson and Massari, 1998; 
Dai et al., 2001; Dai and Lee, 2002; Ohlmacher and 
Davis, 2003; Lee, 2005c; Lee and Sambath, 2006b), as 
has the geotechnical model and the safety factor model 
(Gokceoglu et al., 2000; Romeo, 2000; Refice and 
Capolongo, 2002; Carro et al., 2003; Shou and Wang, 
2003; Zhou et al., 2003, Lee, 2007a; Lee and Biwajeet, 

2007b). As a new approach to landslide hazard evalua-
tion using GIS, fuzzy logic, and artificial neural network 
models have been applied (Xie et al., 2004; Ercanoglu 
and Gokceoglu, 2002; Pistocchi et al., 2002; Lee et al., 
2003a; Lee et al., 2003b; Lee et al., 2004a; Tangestani, 
2004; Lee et al., 2006c, Lee, 2007). 
Landslide occurrence areas were detected in the Pen-

ang area, Malaysia by interpretation of aerial photographs 
and field surveys. A landslide map was prepared from 
aerial photographs, in combination with the GIS, and this 
were used to evaluate the frequency and distribution of 
shallow landslides in the area. Topography and lithology 
databases were constructed and lineament, land cover 
and vegetation index value extracted from Landsat TM 
satellite image for the analysis. Then, the extracted fac-
tors were converted to a 10 × 10 m grid (ARC/INFO 
GRID type). Artificial neural network was applied using 
the database and landslide hazard map was created. 
Further, landslide risk map was computed using DEM, 
distance from hazard zone and landcover map. Finally, 
the map was verified and compared using known land-
slide locations for quantitative verification.  

In the study, Geographic Information System (GIS) 
software, ArcView 3.2, and ArcGIS 9.0 version software 
packages were used as the basic analysis tools for spa-
tial management and data manipulation. 
 
 
Study area  
 
Penang Island, which has suffered much landslide dama-
ges following heavy rains, was selected as a suitable pilot 
area to evaluate landslide risk analysis (Figure 1). 
Penang is one of the 13 states of the Federal territory of 
Malaysia  and  is located on the North West coast of the
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Table  1. Data layer of study area. 
 

Classification GIS Data Type Scale or Resolution 
Spatial Database Factor Spatial Database Factor Spatial Database Factor 
Landslide Landslide ARC/INFO Polygon coverage 

ARC/INFO 
GRID 

1:25,000 

10m×10m 

Topographic Map 
Slope 

ARC/INFO Line and Point 
Coverage 1:25,000 Aspect 

Curvature 

Drainage Map Distance from 
drainage ARC/INFO Line Coverage  

Soil Map Types ARC/INFO Polygon coverage 1:100,000 

Geology Map 
Litho types 

ARC/INFO Polygon, Line 
coverage 1:63,300 Distance from 

lineaments 

Land Cover Land Cover ARC/INFO GRID 30 m × 30 m 

NDVI NDVI 
ARC/INFO  
GRID 

10 m x 10 m 

Precipitation Precipitation GRID  10 m x 10 m  
 
 
 
Malaysia peninsula. It is bounded to north and east by 
the state of Kedah, to south by the state of Perak, and to 
west by the Straits of Malacca and Sumatra (Indonesia). 
Penang consists of the island of Penang, and a coastal 
strip on the mainland, known as Province Wellesley. The 
island covers an area of 285 km2, and is separated from 
the mainland by a channel. The study area is located 
approximately between latitudes 5º15’ N to 5º30’ N and 
longitudes 100º10’E to 100º20’E. The landuse in the 
study area is mainly peat swamp forest, plantation forest, 
inland forest, scrub, grassland and ex-mining area. The 
slope of the area ranges from 25º to as much as 87º. The 
relief of the study area varies between 0 - 420 m above 
mean sea level. Based on Malaysian Meteorological 
Department, the temperature of northern part of Penang 
ranges between 29 to 32ºC and mean relative humidity 
varies between 65 to 70%. The highest temperature is 
during April to June while the relative humidity is lowest in 
June, July and September. The rainfall of about 58.6 to 
240 mm per month is recorded in the study area (at the 
Bayan Lepas weather station provided by the Malaysian 
Meteorological Services Department). GPS data for land-
slide locations has been collected for various part of 
Penang island in the month of July and October 2006. 
There were about 21 active landslides have been record-
ed from the field survey and being used to verify the 
model output. Few of these landslides photos collected 
during the field survey have been shown in Figure 2. 
SPOT 5 satellite image of the study area has been shown 
in Figure 3. 

Accurate detection of the landslide location is very 
important for probabilistic landslide hazard and risk analy-
sis. Remote sensing methods, using aerial photographs 
and satellite images are employed to obtain significant 

and cost-effective information on landslides. In this study, 
1:10,000 – 1:50,000-scale aerial photographs were used 
to detect the landslide locations. These photographs were 
taken during 1981 – 2000. Landslide locations were det-
ected by aerial photo interpretation and further verified by 
fieldwork. These landslides can be seen in aerial photo-
graphs by interpreting breaks in the forest canopy, bare 
soil, and other typical geomorphic characteristics of land-
slide scars. A total of 463 landslides were mapped within 
285 km2 to assemble a database to assess the surface 
area and number of landslides in the study area.  

Identification and mapping of a suitable set of instability 
factors having a relationship with the slope failures req-
uire priori knowledge of the main causes of landslides 
(Guzzetti et al., 1999). These instability factors include 
surface and bedrock lithology and structure, seismicity, 
slope steepness and morphology, stream evolution, gro-
undwater conditions, climate, vegetation cover, landuse, 
and human activity. The availability of thematic data var-
ies widely, depending on the type, scale, and method of 
data acquisition. To apply the probabilistic model, a spa-
tial database that considers landslide-related factors was 
designed and constructed. These data are available in 
Malaysia either as paper or as digital maps. The spatial 
database constructed is listed in Table 1. 

There were ten landslide inducing factors considered in 
calculating the probability. These factors were trans-
formed into a vector-type spatial database using the GIS. 
For the DEM creation, 10 meter interval contours and 
survey base points showing the elevation values were 
extracted from the 1:25,000-scale topographic maps. 
Using this DEM, slope angle, slope aspect, and slope 
curvature were calculated. In addition, the distance from 
drainage was calculated using the topographic database.  
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Figure  2. Field photographs illustrating the characteristic and 
types of landslides in Penang Island. 
 
 
 

The drainage buffer was calculated at 100 m intervals 
and classified into 10 equal area classes. The lithology 
map is prepared from a 1:63,300-scale geological map 
and the distance from lineament is calculated based on 
the Euclidean distance method in ArcView. The lineament 
buffer was calculated in 100 meter intervals and classified 
into 10 equal area classes. Landuse map was prepared 
using Landsat TM image (30 m spatial resolution) using 
unsupervised classification method and field survey. 
There were 11 landuse classes identified, such as urban, 
water, forest, agriculture, and barren area. Finally, the 
Normalized Difference Vegetation Index (NDVI) map was 
generated from SPOT 5 (2.5 m spatial resolution) satellite 
images. The NDVI value was calculated using the for-
mula NDVI = (IR – R) / (IR + R), where IR is the energy 
reflected in the infrared portion of the electromagnetic 
spectrum, and R is the energy reflected in the red portion 
of the electromagnetic spectrum. The NDVI is useful in 
delineating vegetation. 
 
 
Artificial neural network 
 
An artificial neural network is a “computational mecha-
nism able to acquire, represent, and compute a mapping 
from one multivariate space of information to another, 
given a set of data representing that mapping” (Garrett, 
1994). The back-propagation training algorithm is the 
most frequently used neural network method and is the 
method used in this study. The back-propagation training 
algorithm is trained using a set of examples of associated 
input and output values. The purpose of an artificial 
neural network is to build a model of the data-generating 
process, so that the network can generalize and predict 
outputs from inputs that it has not previously seen. This 
learning  algorithm  is  a  multi-layered neural network,  

 
 
 
 
which consists of an input layer, hidden layers, and an 
output layer. The hidden and output layer neurons pro-
cess their inputs by multiplying each input by a corres-
ponding weight, summing the product, and then proces-
sing the sum using a nonlinear transfer function to pro-
duce a result. An artificial neural network “learns” by 
adjusting the weights between the neurons in response to 
the errors between the actual output values and the tar-
get output values. At the end of this training phase, the 
neural network provides a model that should be able to 
predict a target value from a given input value. 

There are two stages involved in using neural networks 
for multi-source classification: the training stage, in which 
the internal weights are adjusted; and the classifying 
stage. Typically, the back-propagation algorithm trains the 
network until some targeted minimal error is achieved 
between the desired and actual output values of the net-
work. Once the training is complete, the network is used 
as a feed-forward structure to produce a classification for 
the entire data (Paola and Schwengerdt, 1995). 

A neural network consists of a number of intercon-
nected nodes. Each node is a simple processing element 
that responds to the weighted inputs it receives from 
other nodes. The arrangement of the nodes is refer-red to 
as the network architecture (Figure 3). The receiving 
node sums the weighted signals from all the nodes that it 
is connected to in the preceding layer. Formally, the input 
that a single node receives is weighted according to 
Equation (1). 
 

i
i

ijj ownet ⋅=�                              (1)                              

 
WHERE WIJ REPRESENTS THE WEIGHTS BETWEEN NODES I AND 
J, AND OI IS THE OUTPUT FROM NODE J, GIVEN BY  
 

)( jj netfo =                             (2) 

                 
The function f is usually a non-linear sigmoid function 

that is applied to the weighted sum of inputs before the 
signal propagates to the next layer. One advantage of a 
sigmoid function is that its derivative can be expressed in 
terms of the function itself: 
 

))(1)(()(' jjj netfnetfnetf −=             (3)                                 

 
The network used in this study consisted of three layers. 
The first layer is the input layer, where the nodes were 
the elements of a feature vector. The second layer is the 
internal or “hidden” layer. The third layer is the output 
layer that presents the output data. Each node in the 
hidden layer is interconnected to nodes in both the 
preceding and following layers by weighted connections 
(Atkinson and Tatnall, 1997).The error, E, for an input 
training pattern, t, is a function of the desired output.
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Figure 3. Architecture of neural network. 
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The error is propagated back through the neural net-

work and is minimized by adjusting the weights between 
layers. The weight adjustment is expressed as: 
 

ijijij wonw ∆+⋅=+ αδη )()1(           (5)                        

 
Where η is the learning rate parameter (set to η = 0.01 

in this study), δj is an index of the rate of change of the 
error, and α is the momentum parameter (set to α = 0.01 
in this study). 

The factor jδ  is dependent on the layer type. For 

example, for hidden layers,  
 

)()( jjkkj netfw ′= �δδ     (6)  and for output layers, 

)()( kkkj netfod ′−=δ .     (7)          

 
This process of feeding forward signals and back-

propagating the error is repeated iteratively until the error 
of the network as a whole is minimized or reaches an 
acceptable magnitude. 

Using the back-propagation training algorithm, the 

weights of each factor can be determined and may be 
used for classification of data (input vectors) that the 
network has not seen before. Zhou (1999) described a 
method for determining the weights using back propa-
gation. From Equation (2), the effect of an output, oj, from 
a hidden layer node, j, on the output, ok, from an output 
layer (node k) can be represented by the partial derivative 
of ok with respect to oj as; 
 

jkk
j

k
k

j

k wnetf
o

net
netf

o
o

⋅=
∂

∂
⋅=

∂
∂

)('
)(

)(' .      (8)

           
 

Equation (8) produces both positive and negative 
values. If the effect’s magnitude is all that is of interest, 
then the importance (weight) of node j relative to another 
node j0 in the hidden layer may be calculated as the ratio 
of the absolute values derived from Equation (8): 
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We should mention that kjw 0  is simply another weight 

in jkw  other than ikw . 
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For a given node in the output layer, the results of 
Equation (9) show that the relative importance of a node 
in the hidden layer is proportional to the absolute value of 
the weight connecting the node to the output layer. When 
the network consists of output layers with more than one 
node, then Equation (9) cannot be used to compare the 
importance of two nodes in the hidden layer. 
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Therefore, with respect to node k, each node in the 

hidden layer has a value that is greater or smaller than 
unity, depending on whether it is more or less important, 
respectively, than an average value. All the nodes in the 
hidden layer have a total importance with respect to the 
same node, given by: 
 

Jt
J

j
jk =�

=1

                    (12) 

 
Consequently, the overall importance of node j with 

respect to all the nodes in the output layer can be 
calculated by: 
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Similarly, with respect to node j in the hidden layer, the 

normalized importance of node j in the input layer can be 
defined by: 
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The overall importance of node i with respect to the 

hidden layer is: 
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Correspondingly, the overall importance of input node i 

with respect to output node k is given by: 
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Spatial data base using GIS and remote sensing 
 
The data used for the analysis is shown in Table 1. The 
application of remote sensing methods, such as aerial 
photographs and satellite images, are used to obtain 
significant and cost-effective information on landslides. In 
this study, 1:25,000 – 1:50,000-scale aerial photographs 
were used to detect the landslide locations. These photo-
graphs were taken during the period 1981 – 2000, and 
the landslide locations were detected by photo inter-
pretation and the locations verified by fieldwork. Recent 
landslides were observed in aerial photographs from 
breaks in the forest canopy, bare soil, or other geomor-
phic characteristics typical of landslide scars, for example, 
head and side scarps, flow tracks, and soil and debris 
deposits below a scar. To assemble a database to assess 
the surface area and number of landslides in each of 
three study areas, a total of 463 landslides were mapped 
in a mapped area of 285 km2. The list of all the data 
layers has been illustrated in Figure 3. 

There were ten factors considered for the analysis, and 
the factors were extracted from the constructed spatial 
database. The factors were transformed into a vector-
type spatial database using the GIS, and landslide-rela-
ted factors were extracted using the database. A digital 
elevation model (DEM) was created first from the topo-
graphic database. Contour and survey base points that 
had elevation values from the 1:25,000-scale topographic 
maps were extracted, and a DEM was constructed with a 
resolution of 10 meter. Using this DEM, the slope angle, 
slope aspect, and slope curvature were calculated. In the 
case of the curvature negative curvatures represent con- 
cave, zero curvature represent flat and positive curva-
tures represents convex. The curvature map was pre-
pared using the avenue routine in ArcView 3.2. In addition, 
the distance from drainage was calculated using the 
topographic database. The drainage buffer was calcu-
lated in 100 m intervals. Using the geology database, the 
lithology was extracted, and the distance from lineament 
were calculated. The lithology map was obtained from a 
1:63,300-scale geological map, and the distance from 
lineament map was calculated in 100 m intervals. Land 
cover data was classified using a LANDSAT TM image 
employing an unsupervised classification method and 
field survey. The 9 classes identified, such as urban, 
water, forest, agricultural area, tin mines, rubber and palm 
oil plantation were extracted for land cover mapping. A 
soil map was prepared based on soil texture map 
retrieved from Malaysian agricultural department. The 
source data was in a hard copy format that was con-
verted to digital data for further processing in GIS. Finally, 
the Normalized Difference Vegetation Index (NDVI) map 
was obtained from SPOT satellite images. The NDVI va- 



 
 
 
 

Table 2. Average weights of each factor  
 

Factors/Methods Average values for 
(Case 1, Case 2, Case 3, 

Case 4 and Case 5) 
Slope 0.930 
Aspect 0.382 
Curvature 0.186 
Distance from Drainage 0.071 
Distance from lineament 0.274 
Geology 0.489 
Land cover 0.326 
NDVI 0.214 
Soil 0.266 
Precipitation 0.147 

 
 
 
lue was calculated using the formula NDVI = (IR – R)/(IR 
+ R), where IR value is the infrared portion of the 
electromagnetic spectrum, and R-value is the red portion 
of the electromagnetic spectrum. The NDVI value deno-
tes areas of vegetation in an image. Historical rainfall 
data was collected from the rain gauge station in the stu-
dy area. The data collected over last 20 years were inter-
polated using IDW method. 
 
 
Landslide hazard and risk analysis using the artificial 
neural network 
 

Before running the artificial neural network program, the 
training site should be selected. So, the landslide-prone 
(occurrence) area and the landslide-not-prone area were 
selected as training sites. Cells from each of the two 
classes were randomly selected as training cells, with 
463 cells denoting areas where landslide not occurred or 
occurred. First, areas where the landslide was not occur-
red were classified as “areas not prone to landslide” and 
areas where landslide was known to exist were as-signed 
to an “areas prone to landslide” training set.  

The back-propagation algorithm was then applied to 
calculate the weights between the input layer and the hid-
den layer, and between the hidden layer and the output 
layer, by modifying the number of hidden node and the 
learning rate. Three-layered feed-forward network was 
implemented using the MATLAB software package. Here, 
“feed-forward” denotes that the interconnections between 
the layers propagate forward to the next layer. The num-
ber of hidden layers and the number of nodes in a hidden 
layer required for a particular classification problem are 
not easy to deduce. In this study, a 9 x 19 x 2 structure 
was selected for the network, with input data normalized 
in the range 0.1 - 0.9. The nominal and interval class gro-
-up data were converted to continuous values ranging 
between 0.1 and 0.9. Therefore, the continuous values 
were not ordinal data, but nominal data, and the numbers 
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denote the classification of the input data.  

The learning rate was set to 0.01, and the initial wei-
ghts were randomly selected to values between 0.1 and 
0.3. The weights calculated from 10 test cases were 
compared to determine whether the variation in the final 
weights was dependent on the selection of the initial 
weights. The back-propagation algorithm was used to 
minimize the error between the predicted output values 
and the calculated output values. The algorithm propa-
gated the error backwards, and iteratively adjusted the 
weights. The number of epochs was set to 2,000, and the 
root mean square error (RMSE) value used for the stop-
ping criterion was set to 0.01. Most of the training data 
sets met the 0.01 RMSE goal. However, if the RMSE 
value was not achieved, then the maximum number of 
iterations was terminated at 2,000 epochs. When the lat-
ter case occurred, then the maximum RMSE value was 
0.051. The final weights between layers acquired during 
training of the neural network and the contribution or 
importance of each of the 9 factors used to predict land-
slide hazard are shown in Table 2.  
For easy interpretation, the average values were cal-

culated, and these values were divided by the average of 
the weights of the some factor that had a minimum value. 
The distance from drainage value was the minimum value, 
0.071, and the slope value was the maximum value, 
0.930. Finally, the weights were applied to the entire stu-
dy area, and the landslide hazard map was created (Fig-
ure 5). The values were classified by equal areas and 
grouped into four classes for visual interpretation. The 
possibility was classified into four classes (highest 10%, 
second 10%, third 20% and reminding 60%) based on 
area for visual and easy interpretation.  
Risk maps demarcate the areas under potential conse-

quences where consequences can be those affecting 
human life, having economic effects or causing environ-
mental changes for instance. A particular surface area 
subject to the same hazard can face a variety of conse-
quences, depending on land use. Landside risk map was 
prepared through the overly of land use maps on hazard 
map explicitly with a map reflecting property values. It is 
not only possible that the same danger (hazard) pro-
duces different risks dependent on the land use but the 
reverse, namely, different dangers (hazards) affecting the 
same area can happen. Risk map will reflect not only 
landslide hazards but also avalanches affecting the same 
area. In landslide hazard map a particular surface area 
subjected to the same hazard can face a variety of 
consequences, depending on landuse. The flow chart for 
the risk analysis is shown in Figure 4. Three main input 
parameters taken for the risk model calculation are DEM, 
hazard zones map and land use map. DEM was used to 
delineate the catchments and served as a mask to extract 
the highest hazard zones of the landslide area. Three 
types of land use are selected, i.e. agricultural, urban and 
settlement, were overlaid with the extracted hazard zone 
to produce the different categories of risk area. Risk map 
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Figure 4. Flow chart of the risk analysis. 

 
 
 
have been classified qualitatively into 4 different zones 
with respect to the percentage of areas such as follows: 
No risk area -  60%; Moderate risk area - 20%; High risk  

 
 
 
 

 
 
Figure 5 (a) - (e): Landslide hazard mapping using artificial 
neural network. (a) Case 1: Use of landslide location as 
prone training site and slope is 0 as non-prone training site. 

 
 
 

 
 
Figure 5 (a) - (e). Landslide hazard mapping using artificial 
neural network. (b) Case 2: Use of landslide location as prone 
training site and result from likelihood ratio as non- prone 
training site. 

 
 
 
area - 10% and Very high risk area - 10%. Figure 6 
shows the landslide risk map of the study area. It has 
been observed that, many settlements have been built up 
on high landslide risk areas where the probability of 
occurrence of landslide is very high. Those high risk 
areas need to be brought to the notice of the public so 
that people can realize the possibility of future landslides.  



 
 
 
 

 
 
Figure 5 (a) - (e). Landslide hazard mapping using 
artificial neural network. (c) Case 3: Use of landslide 
location as prone training site and result from logistic 
regression as non- prone training site. 

 
 
 

 
 
Figure 5 (a) - (e). Landslide hazard mapping using artificial 
neural network. (d) Case 4: Use of result from likelihood 
ratio as prone training site and result from likelihood ratio as 
non-prone training site. 

 
 
 
This could save their property and life. 
 
 
Verification 
 
The  landslide hazard analysis result was verified using  
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Figure 5 (a) - (e). Landslide hazard mapping using 
artificial neural network. (e) Case 5: Use of result from 
logistic regression as prone training site of result from 
logistic regression as non-prone training site. 

 
 
 
 
 
known landslide locations. Global Positioning System 
data for landslide locations has been collected for various 
part of Penang island in the month of July and October 
2005. 21 active landslides have been recorded and used 
to verify the model output. The result shows that there is 
a fair agreement between the prediction accuracy and the 
occurrence of landslide in a particular area. The rate 
curves were created and its areas of the under curve 
were calculated for all cases. The rate explains how well 
the model and factor predict the landslide. So, the area 
under curve can assess the prediction accuracy qualita-
tively. To obtain the relative ranks for each prediction pat-
tern, the calculated index values of all cells in the study 
area were sorted in descending order. Then the ordered 
cell values were divided into 100 classes, with accumu-
lated 1% intervals. The rate verification results appear as 
a line in Figure 7. For example, in the case of all factor 
used, 90 to 100% (10%) class of the study area where 
the landslide hazard index had a higher rank could 
explain 35% of all the landslides. In addition, the 80 to 
100% (20%) class of the study area where the landslide 
hazard index had a higher rank could explain 58% of the 
landslides. To compare the result quantitative, the areas 
under the curve were re-calculated as the total area is 1 
which means perfect prediction accuracy. So, the area 
under a curve can be used to assess the prediction accu- 
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Figure 6. Landslide risk map for the study area. (a) Landslide risk map for the north eastern part of the study area.  

 
 
 
racy qualitatively.  

Verification results show that in the training site 1 (case 
1) where slope equal to “zero” used for hazard map, the 
area ratio was 0.8345 and the prediction accuracy was 
83.45%. In the training site 2 (case 2) for high frequency 
ratio values, the area ratio was 0.7271 and the prediction 
accuracy was 72.71. In the training site 3 (case 3) for low 
frequency ratio values, the area ratio was 0.8200 and the 
prediction accuracy was 82.00%. In the training site 4 
(case 4) for high logistic regression values, the area ratio 
was 0.7904 and the prediction accuracy was 79.04%. In 
the training site 5 (case 5) for low logistic regression val-
ues, the area ratio was 0.8101 and the prediction accu-
racy was 81.01%. So from the prediction accuracy gra-
phs (Figure 7), it is quite evident that, training site 1 
shows the best prediction accuracy of 83.45%, where as 
training site 2 shows the least prediction accuracy of 
72.71% with difference is about 10%. Therefore, selecting 
training site is very important.  

In the analysis, weight has an impact on the accuracy 
of the landslide hazard calculation, as the results with 
weighting were more suitable for landslides hazard map-
ping, and the weights distinguished the LHIs more widely. 

DISCUSSIONS AND CONCLUSION 
 
Landslides present a significant constraint to develop 
ment in Malaysia, notably through the inadvertent reacti-
vation of ancient inland landslides. A series of Govern-
ment funded research projects has provided much back-
ground information and identified suitable methods for the 
use of landslide hazard information in land use planning. 
However, a number of significant problems remain over 
the use of this information. In this study, a data mining 
approach to estimating the susceptible area of landslides 
using GIS and remote sensing is presented. The relation-
ship between landslide occurrence and slope (Table 2) 
shows that steeper slopes have greater landslide proba-
bilities. Below a slope of 15°, the frequency ratio was 
0.20, which indicates a very low probability of landslide 
occurrence. For slopes above 16°, the ratio was >1, 
which indicates a high probability of landslide occurrence. 
As the slope angle increases, then the shear stress in the 
soil or other unconsolidated material generally increases. 
Gentle slopes are expected to have a low frequency of 
landslides because of the generally lower shear stresses 
associated with low gradients. Steep natural slopes  re-
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Figure 6. Landslide risk map for the study area. (b) Landslide risk map for the north western part of the study area.  

 
 
 
sultting from outcropping bedrock, however, may not be 
susceptible to shallow landslides. In the case of the 
aspect (Table 2), landslides were most abundant on 
south-facing and northeast-facing slopes. The frequency 
of landslides was lowest on east-facing, west-facing, and 
northwest-facing slopes, except in flat areas. The curva-
ture values represent the morphology of the topography. 
A positive curvature indicates that the surface is upwardly 
convex at that pixel. A negative curvature indicates that 
the surface is upwardly concave at that pixel. A value of 
zero indicates that the surface is flat. As shown in Table 2, 
the more positive or negative the curvature value the 
higher the probability of landslide occurrence. Flat areas 
had a low frequency ratio of 0.20. Concave areas had a 
frequency ratio of 0.41. The reason for this is that follow-
ing heavy rainfall; a concave slope contains more water 
and retains this water for a longer period which could lead 
to failure of slope triggering landslide. Convex areas had 
a frequency ratio of 3.07. The reason for this is that a 
convex rounded hilltop slope could expose to repeated 
dilation and contraction of loose debris on an inclined sur-
face that might induce a creeping or mudslide due to 
heavy rainfall. Analysis was carried out to assess the in-

fluence of drainage lines on landslide occurrence. For 
this purpose, the proximity of landslide to drainage line 
was identified by buffering (Table 2). It can be seen that 
as the distance from a drainage line increases, the 
landslide frequency generally decreases. At a distance of 
<250 m, the ratio was >1, indicating a high probability of 
landslide occurrence, and at distances >251 m, the ratio 
was <1, indicating very less probability. This can be attri-
buted to the fact that terrain modification caused by gully 
erosion may influence the initiation of landslides. How-
ever, at a distance of <50m, the frequency ratio is 0.81 
which is due to the less number of previously occurred 
landslides.  

For geological factors (Table 2), it was found that in the 
case of the lithology, the frequency ratio was higher (1.3) 
in igneous rock areas, and was lower (0.02) in alluvium 
areas. In the case of the distance from lineament, the clo-
ser the distance was to lineament, the greater was the 
landslide-occurrence probability. For distances of <1000 
m, the ratio was >1, indicating a high probability of land-
slide occurrence, and for distances of >1000 m, the ratio 
was <1, indicating a low probability. As the distance from 
lineament  decreases, the fracture of the rock increases,
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Figure 6. Landslide risk map for the study area. (c) Landslide risk map for the southern part of the study area.  

 
 
 
and the degree of weathering increases resulting in 
greater chances of landslides. In the case of landuse 
(Table 2), the landslide-occurrence values were higher in 
tin mine and cultivated land areas, and lower in grass, 
coconut and oil palm plantation areas. In the case of the 
vegetation index (Table 2), for NDVI values below 37, the 
frequency ratio was <1, which indicates a low landslide-
occurrence probability, and for NDVI values above 37, the 
frequency ratio was >1, indicating a high landslide-
occurrence probability. However, for NDVI value between 
41 and 43 the frequency ratio was 0.96 which is almost 
equal to 1. This result means that the landslide probability 
increases with the vegetation index value. This could be 
due to more vegetation is seen along structurally weaker 
zones. For soil class (Table 2), it was found that the 
frequency ratio was higher for Rengambukit temiang 
association (2.07) and steep land (1.41), and was lower 
(0.0 – 0.22) in other series. This result indicates that the 
landslide probability increases with the steep land. In the 
case of rainfall precipitation (Table 2), for precipitation 
amount below 2707mm, the frequency ratio was <1, 
which indicates a low landslide-occurrence probability, 
and for precipitation amount above 2707mm, the frequ-
ency ratio was >1, indicating a high landslide-occurrence 

probability. However, for precipitation value between 2719 
and 2742 mm, the frequency ratio was 0.96 and 0.89 
which is almost equal to 1. This could be due to the pro-
long spell of rainfall during monsoon season that could 
led to the high landslide-occurrence probability. 

An artificial neural network approach has been used to 
estimate areas susceptible to landslides using a spatial 
database for a Penang Island. Five estimation methods 
were used for comparison purposes. The results using 
result from logistic regression as prone training site and 
result from logistic regression as non-prone training site 
(Case 5) and result from likelihood ratio as prone training 
site and result from likelihood ratio as non-prone training 
site (Case 4) were better than the other three estimation 
cases, with the results using of landslide location as 
prone training site and result from likelihood ratio as non- 
prone training site being the worst.. From the application 
of artificial neural network, the relative importance, weight, 
between factors was calculated. From the result, the 
slope is most importance factor which is more than 2 time 
among the other factors, for landslide hazard mapping. 
The results of average normalized value for all the five 
cases of training sites shows slope has the highest 
weight  values of 0.930. Geology plays an important role
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Figure 7. Success rate curve of each case. 

 
 
 
giving a weight value of 0.489; then aspect 0.382. Dis-
tance from drainage has the lowest weight age value 
0.071. 

The back-propagation training algorithm presents diffi-
culties when trying to follow the internal processes of the 
procedure. The method also involves a long execution 
time, has a heavy computing load, and there is the need 
to convert the database to another format. However, land-
slide susceptibility can be analyzed qualitatively. In addi-
tion to using a multi-faceted approach to a solution, they 
enable the extraction of reliable results for a complex pro-
blem, and for continuous and discrete data processing.  

Risk analysis was performed for the study area. The 
landslide hazard map was overlaid on settlement map to 
produce the landslide risk map. These results can be 
used as basic data to assist slope management and land-
use planning. The methods used in the study are also 
valid for generalized planning and assessment purposes, 
although they may be less useful on the site-specific 
scale, where local geological and geographic hetero-
geneities may prevail. For the model to be more generally 
applied, more landslide data are needed, as well as 
application to more regions.  

Decision making under uncertainty is closely related to 
risk analysis. Landslide risk map will help for decision 
making for planners. These decisions are usually in the 
form of technical countermeasures, regulatory manage-
ment or combinations of the two. Classic examples of 
regulatory management are zoning maps which, for inst-
ance, exclude some areas from habitation. Regulatory 
management is often quite intricate in prescribing differ-
ent permit procedures which may include detailed eva-

luations and additional exploration or even go so far to 
prescribing particular slope designs (slope grades e.g.). 
The latter is actually a combination of regulatory and 
technical management. Technical mitigating measures 
range from a variety of stabilizing measures to protective 
measures such as rock fall galleries to warning devices. 
One of the most important steps of developing a hazard 
mitigation plan is assessing risks, or estimating potential 
losses to the people and properties within the landslide 
prone area. 
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