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A set of conditions had not been formulated on the boundary of an elastic continuum since the time of 
Saint-Venant. This limitation prevented the formulation of a direct stress calculation method in elasticity 
for a continuum with a displacement boundary condition. The missed condition, referred to as the 
boundary compatibility condition, is now formulated in polar coordinates. The augmentation of the new 
condition completes the Beltrami-Michell formulation in polar coordinates. The completed formulation 
that includes equilibrium equations and a compatibility condition in the field as well as the traction and 
boundary compatibility condition is derived from the stationary condition of the variation functional of 
the integrated force method. The new method is illustrated by solving an example of a mixed boundary 
value problem for mechanical as well as thermal loads. 
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INTRODUCTION 
 
The stress-strain law, the equilibrium equation (EE), and 
the compatibility condition (CC) are the three fundam-
ental relations in elasticity. The material law was formula-
ted in the mid-seventeenth century by Hooke (1635–
1703). The equilibrium equation or the stress formulation 
is credited to Cauchy (1789–1857). Saint-Venant (1797–
1886) developed the CC, or the strain formulation. It is a 
general belief that the fundamental elasticity relations 
were known for over a century. The thrust, therefore, was 
to develop approximate solution techniques because a 
closed-form solution cannot be generated for the vast 
majority of the solid mechanics problems. Such techni-
ques included Airy’s method (Love, 1927), Ritz’s method 
(Ritz, 1909), the moment distribution technique (Cross, 
1932), Kani’s method (Thadani, 1964), the finite element 
technique (Gallagher, 1974) and others.  

It is surprising that the strain formulation was not known 
on the boundary of an elastic continuum, even though 
Cauchy’s stress formulation explicitly contained the boun- 
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dary conditions also known as the traction conditions. 
Because of this deficiency, problems with displacement 
boundary conditions could not be solved using the direct 
stress calculation method, popularly referred to as the 
Beltrami-Michell formulation (BMF) (Sokolnikoff, 1956). 
The strain formulation that was missed on an elastic 
boundary is referred to as the boundary compatibility 
condition (BCC). The BCC has been derived. Now the 
stress and strain formulations are parallel in form; each 
contains field equations and boundary condi-tions. 
Earlier, we derived the BCC for two-dimensional (Patnaik, 
1986) and three-dimensional (Patnaik et al., 2004) 
problems in elasticity in Cartesian coordinates. The BMF 
was completed by adding the new BCC to the classical 
method. The completed Beltrami-Michell formu-lation 
(CBMF) can be used to solve displacement as well as 
mixed boundary value problems in elasticity. The CBMF 
stress formulation is as versatile as the Navier dis-
placement method, yet its equation structure is simpler. 
Solutions to plate and shell problems via the CBMF are 
discussed (Patnaik and Nagaraj, 1987; Patnaik and 
Satish, 1990; Patnaik et al., 1996). 

A conservative elastician, believing the set of existing 
equations to be sufficient, may be reluctant to accept the 
new BCCs. However, it should be realized that some  for- 



 
 
 
 
mulae and equations of the solid mechanics discipline 
were not completed in the first attempt, but were perfec-
ted eventually. For example, perfecting the flexure formu-
lae required a century between Galileo, Bernoulli, and 
Coulomb. Saint-Venant completed the shear stress form-
ula that was initiated by Navier. Cauchy formulated the 
stress equilibrium equation that was also developed by 
Navier in terms of displacement, but it contained only a 
single material constant instead of two. 

The formulation of the BCC in polar coordinates is the 
primary contribution of this paper. The use of the new 
condition is also illustrated through the solution of a 
mixed boundary value problem for thermomechanical 
loads. The CBMF containing the BCC is obtained from 
the stationary condition of the variational functional πs of 
the integrated force method (IFM) (Patnaik and Hopkins, 
2004). The variational calculation is performed in two 
distinct steps:  
 
(1) The terms of the functional πs are transformed to 
obtain integrands, whose coefficients are either displace-
ment variables, stress function, or reactions.  
(2) The stationary condition (Washizu, 1968) of the 
functional δπs with respect to displacement, stress 
function, and reaction yield all the expressions of the 
CBMF.  
 

The BCC is the coefficient of the variational stress 
function in the line integral term. Variational calculus in 
polar coordinates is more difficult than that in the 
Cartesian system (Patnaik, 1986) because the coeffi-
cients of the terms in the functional are functions of the r-
coordinate. Also the Jacobian (J = r) has to be used. A 
nonvariational approach or carelessness can easily miss 
an expression because of the tensorial nature of stress 
and strain. The accuracy of CBMF derivation is essential 
because solution of elasticity problems in polar coordi-
nates is very popular. Solutions have been obtained by 
Novozhilov (1961) and Timpe (1924) for a number of 
problems in polar coordinates, especially for symmetri-
cally loaded circular domain. Many existing elasticity 
solutions can be verified by back-substituting into the 
CBMF. To demonstrate the use of the new condition, two 
mixed boundary value problems are solved. The first 
example is for mechanical load, while the second is for 
thermal load.  

This paper is organized as follows: First, a variational 
derivation is given for the CBMF. Green’s theorem is 
used for a quick validation of the new boundary condition. 
Then the CBMF is used to solve a problem with stress 
and displacement boundary conditions. This is followed 
by discussion and conclusions. Appendix A is a listing of 
symbols and acronyms found in this paper. Appendix B 
presents the major steps of the variational derivation, 
which can be used by the reader to verify the BCC. 
Appendix C presents the solution of a structure using the 
IFM, which is the discrete analogue of the CBMF. 
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Completed Beltrami-Michell Formulation in polar 
coordinates 
 
The CBMF in polar coordinates is obtained from the 
stationary condition of the variational functional (Patnaik, 
1986) of the IFM. The functional πs has three terms 
(Equation 1a). The first term A(σ, u) represents the strain 
energy, expressed in terms of stress σ and displacement 
u. The second term B(ε, ϕ) is the complementary strain 
energy written in terms of the strain ε and the stress 
function ϕ. The third term W is the potential of the work 
done. Basic steps of the derivation are given in Appendix 
B. The functional is transformed into integrals with inte-
grands whose coefficients are displacement, stress func-
tion, or reaction variables. Symbolically it can be repre-
sented as follows: 
 

s A B Wπ = + −  (1a) 
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Where the two displacement components u

v
� �
� 	

 �

are repre-

sented as {u}. Likewise, {reaction} represents the two 
reactions reaction along 

.
reaction along 

r� �
� 	θ
 �

 Also, D is the plate domain; 11 and 

12 are boundary segments where traction is pre-scribed 
and reaction is induced, respectively; and 1 is the line 
segment where stress is indeterminate. The stationary 
condition of the functional in Equation (1b) with respect to 
displacement, stress function, and reaction can be 
represented by the following symbolic expression: 
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The field EE and field CC are the coefficients of the 
variational displacement and stress function, respectively, 
in the surface integral terms of the functional (see also 
app. B). Likewise the boundary EE and boundary CC are 
the coefficients of the variational displacement and stress 
function, respectively, in the line integral terms. The con-
tinuity conditions are the coefficients of the variational 
reactions. The field equations and boundary conditions of 
the CBMF recovered from the stationary condition of the 
variational functional in Equation (1c) are as follows: 
 
 

Equilibrium equations 
 

Field: 
 

( )1
0rr

rb
r r r

θσ − σ∂σ ∂τ+ + + =
∂ ∂θ

   (2a) 
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θ
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Boundary: 
 

r r rn n Pθσ + τ =       (3a) 
 

rn n Pθ θ θτ + σ =       (3b) 
  
Compatibility conditions 
 
Field: 
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Boundary: 
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The kinematics boundary conditions are 

0u u− =  (6a) 
 

0υ − υ =  (6b) 
 
and  
 
r and θ are the polar coordinates 
σr, σθ, and τ are the stress components 
εr, εθ, and γ  are the strain components 
u and υ are the displacements 
br and bθ are body forces 

rP  and Pθ  are tractions applied along boundary 
segment 11 
u and υ  are initial displacements along boundary 
segment 12 
ϕ is the stress function 
  
The CBMF in Equations (2) to (6) contains the following: 
 
(1) The stress formulation of Cauchy as coefficients of 
variational displacements δu and δυ in the surface 
integral. It consists of two EEs in the field (Equations (2a) 
and (2b)) and two on the boundary [Equations (3a) and 
(3b)] that are popularly known as the traction conditions. 
The stress formulation has two distinct components: the 
field equations and the boundary conditions. 

 
 
 
 
(2) Strain formulation as the coefficient of variational 
stress functionδϕ. It is written in terms of stress for an 
isotropic material with Young’s modulus E and Poisson’s 
ratio υ. It consists of the single field CC [Equation (4)], 
along with one new BCC [Equation (5)]. Saint-Venant, 
unlike Cauchy, formulated only the field condition. He 
missed the boundary conditions that we have completed. 
Now, both the stress and strain formulations are consis-
tent, containing the field equations [Equations. (2a), (2b), 
and (4)) as well as the boundary conditions (Equations 
(3a), (3b), and (5)]. In Appendix B, the strain formulation 
is derived in terms of the strains.  
 
(3) Displacement boundary conditions. Two kinematics 
displacement boundary conditions (Equations (6a) and 
(6b)) are obtained as coefficients of the variational 
reactions. A rigorous derivation of the continuity condition 
is more difficult than the stress and the strain formula-
tions, which are straightforward.  
 

The three-component stress tensor (σr, σθ, and τ) is 
indeterminate in the field and on the boundary because 
the state of equilibrium provides only two equations. To 
achieve determinacy of the stress state, we must add one 
CC in the field as well as one on the boundary. Saint-
Venant has given us the field CC. We have formulated 
the BCC. For the derivation of elasticity equation, the 
variational technique is an elegant method because of 
the tensorial nature of stress and strain. A nonvariational 
approach may miss an equation.  

The CC should be imposed only when the domain is 
indeterminate, whether it is the field or the boundary. The 
CC has no relevance for a determinate domain or a 
determinate boundary. A plane stress problem is one 
degree indeterminate in the field because there are three 
stresses and two displacements. It has one field CC. A 
BCC should not be imposed on a free or a determinate 
boundary, where at least one stress component is zero. A 
clamped boundary is typically indeterminate; thus, one 
BCC is imposed.  
The solution of an elasticity problem using the CBMF has 
two distinct steps: 
 
(1) The stress state is calculated first using the Equations 
(1) to (5) for an elastic continuum with stress and displa-
cement boundary conditions. The displacement boundary 
conditions [Equation (6)] are not used, but the BCC is 
used.  
(2) Displacements are back-calculated by integrating the 
strain field. The kinematics boundary conditions given by 
Equation (6) are used to evaluate the constants of inte-
gration in the displacement function. 
 
The CBMF recognizes that displacement does not induce 
stress. The derivative of displacement, which becomes 
the strain that induces stress, is accounted for through 
the BCC. Displacement conditions are used to eliminate 
rigid body movement as explained in step (2). 



 
 
 
 

 
 
Figure 1.  Annular plate. 

 
 
 
The BCC expressed in strain, stress, and displacement is 
as follows: 
 
Expressed in strain: 
 

( ) 0
2 2

r r
rr n n

r r r r r r rθ θ
ε ∂ε� ∂γ � � ∂γ γ �∂− ε + + − − =� � � �∂ ∂θ ∂θ ∂� � � �

      (7a) 

 
Written in stress for an isotropic material with Poisson’s 
ratio υ: 
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In terms of displacements u and v: 
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     (7c) 

 
The BCC expression contains either all three strains, or 
three stresses, or it contains derivatives of two displace-
ment components. The BCC is not a continuity condition 
in displacement, stress, or strain; however, it is a function 
of the variables. As such, the BCC is expressed in the 
derivatives of stress, strain, and displacement, but it is 
not a component of rotation. The BCC is an independent 
condition. It forms a new elasticity expression that was 
missed since the time of Saint-Venant. The field CC is a 
second-order differential equation, while the boundary 
counterpart is a first-order equation. This characteristic is 
applicable to the stress formulation. The field EEs is first-
order equations, while the boundary (or traction) condi-
tions are algebraic equations.  
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Annular plate subjected to thermomechanical load 
 
We will now illustrate the CBMF calculation strategy 
through the solution of a radially symmetrical annular 
plate with mixed boundary conditions for mechanical and 
thermal loads. Consider a plate made of an isotropic 
material with Young’s modulus E and Poisson’s ratio υ. It 
has thickness h (considered unity) with outer and inner 
radii of a and b, respectively, as shown in Figure 1(a). 
The mechanical load case consists of a uniform radial 
load of intensity p applied at the outer boundary r = a. 
The inner boundary is restrained: u = 0 at r = b. The 
CBMF for the mixed boundary value problem is genera-
ted from a special case of the variational functional. It is 
obtained using the condition of symmetry or by setting 
the shear stress τ and transverse displacement υ to zero 
(τ = 0, υ = 0) as well as by neglecting variation with 
respect to the angle θ: f

0
∂� 
=� �∂θ� �

. Also, a simpler stress 

function ψ is used.  
 

r Uσ = ψ −                      (8a) 
 

d
r U

dr rθ
ψ ψ� 
σ = + −� �

� �
        (8b) 

 
Where U = 0 for this example. 
 
 
Solution for mechanical load only 
 
The equations of CBMF for a symmetrical annular plate 
subjected to a uniform mechanical load of intensity p are 
listed in Equations. (9) to (11): 
 
Equilibrium equations 
 
Field: 
 

( )
0rr

r r
θσ − σ∂σ

+ =
∂

                    (9a) 

 
Boundary: 
 

   at  r p r aσ = =                   (9b) 
 

Compatibility conditions 
 

Field: 
 

( ) ( ) ( )1
0r rr rθ θ

+ υ∂ σ − υσ + σ − σ =
∂

    (10a) 

 

Boundary: 
 
 0  at  r r bθσ − υσ = =                  (10b) 

 
 

Where the displacement boundary condition is 
 

0  at  u r b= =                                (11) 
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There are two stresses σr and σθ and one displacement u. 
In the field, there is one EE [Equation (9a)] and one CC 
[Equation (10a)]. On the boundary there is one traction 
condition [Equation. (9b)] and a single BCC [Equation 
(10b)]. Also, at the inner boundary there is one kinem-
atics condition [Equation (11)]. Solution to Equations (9a), 
(9b), (10a), and (10b) yield the stress response. The 
single displacement u is back-calculated by integrating 
the strain and evaluating the integration constant using 
the kinematics condition [Equation (11)].  

The EE and CC in the field are arranged to obtain the 
following two simpler uncoupled equations: 
 

( ) 0r
d
dr θσ + σ =                           (12a) 

 
( )

0  rrd
dr r

θσ − σσ
+ =             (12b) 

 
Integration of the first Equation (12a) yields the sum of 
the stresses σr + σθ to be a constant. The second Equa-
tion (12b) is uncoupled and solved. The two constants in 
the stress variables are determined from the traction 
condition [Equation (9b)] and the new BCC [Equation 
(10b)]. The stress solution follows: 
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For a plate with E = 30×106 psi, υ = 0.3, p = 1 psi, a = 20 
in., and b = 10 in., the stresses at the outer boundary are: 
 

σr = 1.0, while σθ = 0.763 psi and σr + σθ = 1.763 psi. At 
the inner boundary these are σr = 1.356 psi, σθ = 0.407 
psi, and σr + σθ = 1.763 psi. The sum of the stresses σr + 
σθ = 1.763 psi is independent of the r coordinate of the 
plate. The BCC 

2

62
0.62r

r
θσ − υσ = −  has an inverse quadratic 

variation with respect to the radius, with a minimum value 
of zero at the restrained boundary (r = 10 in.) and a 
maximum value of 0.46 psi at the outer free boundary  
(r = 20 in.). The BCC should not be imposed on the free 
boundary at r = a = 20 in. The stress state in the mixed 
boundary value problem is obtained without any use of 
the prescribed displacement boundary condition. The dis-
placement function u is  obtained  following  the  standard  

 
 
 
 
elasticity solution strategy. Stress is changed into strain 
using Hooke’s law. It is integrated to obtain the displace-
ment function that contained a constant c. 
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          (14a) 

 
The constant c does not affect the stress state. For the 
problem, the constant is calculated to be zero (c = 0) from 
the homogeneous kinematics boundary condition u = 0 at 
r = b [Equation (11)]: 
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          (14b) 

 
The values of displacements are u = 0 at the inner boun-
dary, r = b, and u = 3.5×10–7 in. at the outer boundary, r = 
a.  
 

The CBMF produced the solution to the mixed boun-
dary value problem in two steps: First the stress state 
was calculated using the field EE and CC, along with the 
traction condition as well as the BCC. Then the displace-
ment function was back-calculated. Solution to the mixed 
boundary value problem could not have been obtained by 
the classical BMF stress formulation. Solution to the 
mixed boundary value problem is not available in stan-
dard textbooks in elasticity (Sokolnikoff, 1956; 
Timoshenko and Goodier, 1969; Saada, 1983) 
 
 
Solution for thermal load only 
 
The CBMF solution for the annular plate is obtained for a 
temperature distribution given as 
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T T

T T r b
a b
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−
                        (15) 

 
The temperature distribution is shown in Figure 1(b). It 
has a linear variation with values Ta and Tb at r = a and r 
= b, respectively. The coefficient of thermal expansion is 
α. The CBMF equations for the annular plate subjected to 
a thermal load are given below: 
 
Equilibrium equations 
 
Field: 
 

( )
0rr

r r
θσ − σ∂σ

+ =
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                                     (16a) 

 
Traction on boundary: 
 
 0  at  r r aσ = =                                      (16b) 
 
Compatibility conditions 
 
Field: 
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θ θ
+ υ∂
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∂
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                           (17a) 

 
Boundary: 

  at  r ET r bθσ − υσ = −α =               (17b) 
 
where the displacement boundary condition is  
 

0  at u r b= =                                    (18) 
 
Both the field and the boundary CCs [Equations (10a) 
and (10b)] for the mechanical load are modified for the 
temperature load to obtain Equations (17a) and (17b). 
The field EE is not changed. The mechanical load is set 
to zero (p = 0) in the traction Equation (16b). The EE and 
CC in the field are rearranged to obtain the following two 
simpler working equations: 
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dr drθσ + σ = −α                           (19a) 
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The field equations are solved for the boundary 
conditions to obtain the response, consisting of σr, σθ, 
and u: 
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The numerical values of the response parameters for Ta 
= 100 °C, Tb = 50 °C, and α = 12×10–6/°C are 
 

 (1) at r = a: σr = 0 ksi, σθ = –17.5 ksi, and u = 0.012 in. 
 (2) at r = b: σr = 14.2 ksi, σθ = –13.7 ksi, and u = 0 in. 
 

The sum of the stresses σr + σθ = 18508 – 1800r has a 
linear variation with respect to the r coordinate because 
of a similar distribution of temperature [see Equation 
(15)]. The BCC 

2

1427.797
6.478 0.780 ksir ET r

r
θσ − υσ + α = + −  is zero 

at the inner boundary.  
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The CBMF solved the thermal load problem for a mixed 
boundary value problem. Superposition of solutions for 
mechanical and thermal loads yields the result for ther-
momechanical combined load. The CBMF solution satis-
fying the field equations and boundary conditions given 
by equation sets (2-6) can be considered accurate 
because of simultaneous compliance of the equilibrium 
equations and the compatibility conditions.  
 
 
DISCUSSIONS 
 
This section examines the CBMF concept. Attributes of 
the CC are also given. The annular plate example is 
supplemented with an eight-bar discrete truss structure. 
The solution to the truss problem using the integrated 
force method (IFM), which is the discrete analogue of 
CBMF, is given in Appendix C. 
 
 
Completed Beltrami-Michell Formulation  
 
Hooke’s law, which is common to all analysis methods, 
relates stress to strain through the material matrix [G]: 
 
{ } [ ]{ }Gσ = ε                                                (21) 

 
Stress σ must satisfy the state of equilibrium in the field 
as well as on the boundary of an elastic continuum. Like-
wise, strain has to comply with the condition of compati-
bility in the domain as well as on the boundary. The 
stress and strain formulations are sufficient for the deter-
mination of the stress state in an elastic continuum with 
stress and displacement boundary conditions. The equa-
tions that are required to calculate the stress state can be 
conceptualized in the following symbolic expression: 
 

{ }
Equilibrium equations Mechanical load

stress
Compatibility conditions Initial deformation
� � � �� �=� � � 	
� � � �� � 
 �

       (22) 

 
The state of equilibrium and compatibility is sufficient for 
the determination of the stress state. Displacement is not 
required to calculate stress. An elastic body can undergo 
rigid body displacement and rotation that does not induce 
stress. Total displacement can be decomposed into an 
elastic component and a rigid body component:  
disp = dispelastic + disprigid. The stress calculation in the 
CBMF accounts for the elastic component via the strain 
in the field and on the boundary. Recovery of the 
displacement from the stress state uses the kinematics or 
the rigid body displacement component. 

Calculating stress by combining the equilibrium and 
compatibility was envisioned by Michell, and it is descri-
bed by Love (1927) in the following quotation. 
  

“It is possible by taking account of these relations 
[compatibility conditions] to obtain a complete system of 
equations (Equation 19) which must be satisfied by stress  
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components, and thus the way is open for a direct deter-
mination of stress without the intermediate steps of form-
ing and solving differential equations to determine the 
components of displacements.” 

The proposition of Beltrami and Michell can be realized 
now with the availability of the new BCC. A direct method 
is now available to calculate the stress state in a general 
elastic continuum with displacement as well as stress 
boundary conditions. The stress state is obtained without 
any recourse to displacement, which is back-calculated 
by integrating the strains. In the quotation, “intermediate 
steps” refers to Navier’s displacement method that con-
tains higher order differential equations. For the annular 
plate example, the CBMF required the solution of two 
uncoupled differential equations. Navier’s method in con-
trast would have required the solution of a third-order 
differential equation.  
An IFM of structural analysis has previously been formu-
lated (Patnaik et al., 2004).  IFM is the discrete analogue 
of the CBMF in elasticity. In IFM, forces are calculated 
from a set of equations [S]{F} = {P*} that include the EE 
and the CC. Displacements are back-calculated. The IFM 
solution to a truss problem is given in Appendix C. 
 
 
Nature of compatibility condition 
 
The CC is a controller type of relation. Strains are 
controlled, f(εr, εθ, γ) = 0, in elasticity (or the strain 
formulation); likewise the deformations β are balanced, 
f(β1, β2, . . . , βn) = 0, in a discrete structural system. The 
controller type of relation cannot be derived from an 
application of the standard concepts of mechanics, like 
“action equal to reaction” (leading to the EE), or the 
“cause effect relation” (that has given us Hooke’s law), or 
the “displacement continuity concept” (the “strain conti-
nuity” is conceptually incorrect). This is probably one 
important reason for the late development of these CCs. 
In elasticity, the field CC (or Saint-Venant's “strain formu-
lation”) can be derived by simply eliminating the displa-
cements from the strain displacement relations. However, 
the derivation of the BCC requires the use of variational 
calculus. For structures, a direct application of Saint-
Venant's “strain formulation” would have been sufficient 
for the derivation of the CC (Patnaik and Hopkins, 2004) 
No calculus would have been required because, like EE, 
the CC is also an algebraic equation. But such a proce-
dure was not adopted, and the CC was not developed as 
a deformation balance concept. Variational calculus is the 
right tool to derive the BCC because of the tensorial 
nature of stress and strain. 
 
 
Nontriviality property of boundary compatibility 
condition 
 
The field CCs fCC are satisfied automatically when 
expressed in continuous displacement functions u and υ: 
fCC(u, υ) = ξ(u, υ) – ξ(u, υ) = 0. However, the BCC, when  

 
 
 
 
expressed in terms of displacements, produces a nontri-
vial condition: 
 

2 2 2 2
2

2 2
0r

u u u
r n r r r r n

r r rr
θ

� 
 � 
∂ ∂ υ ∂υ ∂ ∂ υ ∂υ ∂− − + + υ− − − =� � � �� � � �∂ ∂θ ∂θ ∂ ∂θ ∂ ∂θ∂θ ∂� � � �

         (23) 

 
The Navier displacement method should account for the 
BCC because this is not a trivial condition in displace-
ment. The BCC should be enforced along the interele-
ment boundaries in a finite element model. The role of 
BCC should be investigated further in the Navier displa-
cement method. A two-span plate made of two different 
materials supported on an elastic foundation may be an 
ideal example for the investigation. 
 
 
Rotation and compatibility condition 
 
The BCC should not be confused with rotation. An elastic 
body under load moves from its initial position to occupy 
the final form by undergoing strain, a x  translation, and a 
θ  rotation (see Figure 1c). Only strain (not translation or 
rotation) induces stress. Strain is zero when the body is 
rigid. Rotation and strain are independent of each other, 
even though both quantities are defined in terms of the 
derivatives of displacement. For example, the BCC, 
which is a function of the strains is defined in polar 
coordinates as 
 

( ) 0
2 2

r r
rr n n

r r r r r r rθ θ
ε ∂ε� ∂γ � � ∂γ γ 
∂− ε + + − − =� �� �∂ ∂θ ∂θ ∂� � � �

     (24) 

 
The BCC enforces an equality constraint on the strain 
components; it imposes no restriction on either transla-
tion or rotation. The annular disk requires the BCC for 
analysis even while it is undergoing translation and rota-
tion on a flat surface (with z = 0), as shown in Figure 1(c).  
 
 
Stability of structure 
 
Consider the discrete truss shown in Figure 2. Its 
analysis is given in Appendix C. The truss has one field 
CC and one boundary CC as follows: 
 
Field CC: 
 

1 2 3 4 5 62 2 0 (expressed in bar deformation, �)β + β − β − β + β + β =
                                                                       (25a) 
 

1 2 3 4 5 62 2 0 (expressed in bar stress, �)σ + σ − σ − σ + σ + σ =
                                                                       (25b) 
 

Boundary CC: 
 

2 7 0 (in deformation)β + β =                                (25c) 
 

2 7 0 (in stress)σ + σ =                                            (25d) 



 
 
 
 

 
 
Figure 2.  Eight-bar truss. 

 
 
 
The field CC in Equation (25a) restrains the six bars 
stresses. This is the discrete analogue of Saint-Venant’s 
strain formulation (Equation (4)). On the boundary, two 
member stresses are related [Equation (25c)]. The two 
stresses σ2 and σ7 cannot assume independent values in 
the lower boundary chord in Figure 2(a). The situation is 
similar to the BCC of the annular plate. The stresses σr 
and σθ cannot assume independent values along the 
inner boundary because of the BCC 

0 0.4068 0.3 1.356 0, or .r rθ θσ − υσ = � − × = σ = υσ  
Compatibility conditions are required for the analysis of 
indeterminate structures, which are more stable than their 
determinate counterpart. Stability of a structure may con-
cern the state of equilibrium. The CC does not degrade 
the stability of a structure. The original truss shown in 
Figure 2(a) is displaced in two steps. The axial constraint 
at node 5 is released first. This process eliminates the 
BCC but the structure is still stable. It is one degree 
indeterminate and the support at node 5 can move along 
the x-coordinate direction. If the transverse restraint is 
released at that node, then the structure rotates. The 
truss undergoes a x  translation and a θ  rotation as 
depicted in Figure 2(b). It can be analyzed as a mecha-
nism by accounting for the field CC [given by Equation 
(25a)]. 
 
 
Number of boundary compatibility conditions 
 
There are two displacement boundary conditions in a 
plane elasticity problem. The question is “should there be 
two BCCs?” The answer is “no.” The number of BCCs is 
equal to the number of field CCs, which is equal to the 
indeterminacy r, defined as the difference in the number 
of stress n and displacement m variables (r = n – m). The 
elasticity problem in polar coordinates has three stresses  
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and two displacements. It is one degree indeterminate, 
and it has one field CC and one boundary CC. The 
number of displacement boundary conditions in the 
Navier displacement method is not equal to the number 
of BCCs. Consider the displaced position for the annular 
plate and the truss shown in Figures. 1(c) and 2(b), 
respectively. The plate undergoes translation and rota-
tion, referred to as the kinematics conditions. The plate is 
restrained at the inner boundary, which is the elastic 
condition. The calculation of the displacement function in 
the Navier displacement method requires the simulta-
neous compliance of both types of conditions: kinematics 
as well as the elastic conditions. In the CBMF, the 
kinematics and the elastic conditions are enforced in two 
steps. First, the elastic condition, which essentially is the 
BCC, is used to calculate the stress response. In the 
annular plate example, the BCC is used to calculate 
stress in the CBMF. The kinematics condition u = 0 is 
then used to evaluate the integration constant in the 
displacement function.  
 
 
Verification of existing elasticity solutions 
 
Existing elasticity solutions (Mushkelishvili, 1953) should 
be examined and adjusted for the compliance of bound-
ary compatibility conditions. The compliance can be veri-
fied by calculating the residue in the new condition given 
in equation 7. The solution should be adjusted when the 
residue is not zero.  
 
 
Concluding remarks 
 
The boundary compatibility condition (BCC) for an elastic 
continuum has been derived in polar coordinates using a 
variational approach. The BCC in essence is a constraint 
that is imposed on the strain or the stress state. The new 
boundary condition completes the stress formulation in 
elasticity. The completed Beltrami-Michell stress formula-
tion can be used to calculate the stress state in a general 
elastic continuum without any reference to the displace-
ment in the field or on the boundary. The displacement is 
back-calculated from the stress state. The BCC when 
expressed in displacements yields a nontrivial condition.  
 
 
Appendix A—Symbols and Acronyms 
 
Symbols: 
 
A  strain energy; a, b  plate outer and inner radii, 
respectively; B complementary strain energy; br, bθ   body 
forces; c  displacement function constant; D  plate 
domain; E  Young’s modulus; f  function; {F}  member 
force vector; Gr, Gθ  Green’s functions; [G]   material 
matrix;  h  plate thickness;  J  Jacobian; 1 domain 
boundary;  11, 12   boundary  segments;    nr, nθ      direction  
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cosines;   {P*}  load vector;  ,rP Pθ   prescribed loads or 
tractions;   p  mechanical load;   Rr, Rθ  reactions;   r, z, θ  
polar coordinates;  [S]   IFM governing matrix;  T  
temperature distribution;  U  potential function;  u, v    
displacements;   ,u v  prescribed displacements;   V  body 

force potential;   W   potential of work done;  x   
translation;  α  coefficient of thermal expansion;  β   
deformation;   εr, εθ, γ    plain strain components;  θ   
rotation;  �   function of displacement;   πs   variational 
functional of the integrated force method;  σi   bar stress;  
σr, σθ, τ   plain stress components;  υ   Poisson’s ratio;   ψ   
simple stress function;   ϕ   stress function 
 
 
Acronyms: 
 
BCC  boundary compatibility condition;   BMF   Beltrami-
Michell formulation;   CBMF  completed Beltrami-Michell 
formulation;   CC  compatibility condition;   EE   
equilibrium equation;  IFM   integrated force method;  
 
 
Appendix B—Variational Formulation for the 
Completed Beltrami-Michell Formulation 
 
This appendix provides the variational derivation of the 
completed Beltrami-Michell formulation in polar coordina-
tes that includes the new boundary compatibility condition 
(BCC). The equations are obtained from the stationary 
condition of the integrated force method (IFM) functional 
πs, defined previously in Equation (1a) as 
 

s A B Wπ = + −                (B1) 
 
Where 
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The plate domain D has boundaryλ, that is separated into 
segments 11and 12, 1 = 11 + 12. Body forces are br and bθ. 
Along the boundary segment λ1, loads rP  and Pθ  are 
prescribed, and displacements u and υ are free. The 
segment 12 has prescribed displacements u and υ  that 
can induce reactions Rx and Rr. The derivation sets the 
uniform plate thickness to unity (h = 1) without any 
consequence. 
The term A represents the strain energy, and it is 
expressed in stress and displacement, which are  

 
 
 
 
considered independent of each other. The strain energy 
term B is expressed in strain and stress function ϕ, which 
are also considered independent of each other. The 
potential of the work done is W. Body force potential V is 
defined as  and r

V V
b b

r rθ
∂ ∂= =
∂ ∂θ

. The stress function ϕ is 

defined as  
 

2

2 2r V
r r r

∂ϕ ∂ ϕσ = + −
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                        (B3a) 
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                                     (B3b) 
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Each term of the functional is reduced to obtain new 
terms that contain two factors. The second factor can be 
displacement, a stress function, or reaction. The first 
factor is an expression in terms of stress, strain, and 
load. The stationary condition of the functional with 
respect to displacement, stress function, and reactions 
will yield the following expressions: 
 
(1) Field equilibrium equations (EEs) in stress. They are 
the coefficients of the variational displacements δu and 
δυ in the surface integral terms. 
(2) Boundary EEs, or traction conditions. They are the 
coefficients of δu and δυ in the line integral terms. 
(3) Field CC in strains. It is the coefficients of the 
variational stress function (δϕ) in the surface integral 
term. 
(4) Boundary CC. It is the coefficient of (δϕ) in the line 
integral term. 
(5) The displacement continuity condition. It is the 
coefficient of the variational reactions in the line integral 
term. 
 
Derivation of equations stated in items (1) to (4) listed 
above (see Equation (B4) below) is straightforward. The 
derivation of the continuity condition (item (5)) required 
back-calculation (see Equations (B10) to (B12) below). 
The first 11 terms of the functional reduced using 
techniques of calculus are given in Equation (B4). The 
other five terms (12 through 16) are retained without any 
operation. 
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All 11 terms are combined to obtain the following form of 
the functional: 
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The variation of the functional with respect to 
displacements δu and δυ yields the field EEs 
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Likewise, the field CC is obtained as the coefficient of the 
variation of the stress functionδϕ: 
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Along the boundary segment 11, the variation of the 
displacements δu and δυ yields the EEs or the traction 
conditions 
 

r r rn n Pθσ + τ =                                                     (B8a) 
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rn n Pθ θ θτ + σ =                                              (B8b) 
 
Along an indeterminate boundary, the BCC is obtained as 
the coefficient of the variation of the stress function δϕ: 
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In summary, stress equilibrium is enforced in the field 

[Equation (B6)] and on the boundary (Equation (B8)). 
Likewise strain compliance is achieved in the field 
(Equation (B7)) and on the boundary [Equation (B9)]. 
 
 
Displacement continuity 
 
The displacement boundary conditions 0u u− =  and 

0υ − υ =  are routinely used in analysis. Their derivations 
are shown through back-calculation. This strategy is follo-
wed to avoid artificiality in a direct derivation process. 
The expression 
( ) ( ) ( ) + ( ) 0r r r ru u P n n P n nθ θ θ θ− δ = σ + τ υ − υ δ = τ + σ =  yields the 
continuity conditions. Because u and υ  are contained in 
terms 14 and 15 in Equation (B2c), we have to prove the 
following formula along boundary segment λ2: 
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The variational form of Eq. (B10a) can be written as 
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Consider the reduction of the first of the two right-hand 
terms in Equation (B10a): 
 

( )
2

2 2

b ca

r r r ru n n d u n n n d
r r r rr

θ θ

� �� 
 � �∂ϕ ∂ ϕ ∂ϕ∂� 
 � 
� �σ + τ = + −� �� 	� �� � � �� �∂ ∂ ∂θ� � � �∂θ � �� �� �
 �
� �l lÑ Ñ

    (B11a) 

 
The terms b and c that contain higher derivatives of the 
stress function are reduced to obtain terms in the first 
derivative of the stress function: 
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The variation of the first right-hand term of Equation 
(B10a) becomes 
 

( ) 2r r r
u u u

u n n d n n d
r r r rr

θ θ
� �� �� 
δ∂ϕ ∂ϕ ∂ϕ∂ ∂� 
 � 
 � 
� 
� �δ σ + τ = − δ + δ� 	� �� � � �� � � � � �∂ ∂θ ∂ ∂θ� �� � � � � �∂θ� �� �� �
 �

� �l lÑ Ñ
     (B11c) 

Likewise, the second right-hand term is reduced: 
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� �δ τ + σ υ = + −� 	� �� � � �� � � �∂θ ∂ ∂ ∂� �� � � �∂θ� �� �� �
 �

� �l lÑ Ñ
 (B11d) 
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Verification of the formula given by Equation (B10a) is 
obtained by combining the two Equations (B11c) and 
(B11d): 
 

( ) ( )( )
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r r r
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 � 
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�

�

l

l

l

l

Ñ

Ñ
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d
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l
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   (B12) 

 
 
Verification of boundary compatibility condition 
 
Green’s theorem is used for a quick verification of the 
BCC. The BCC is inserted in the line integral coefficient 
to recover the well known field CC in the surface integral 
term. The integral theorem in polar coordinates can be 
written as 
 

( ) ( )1
r r r

G
rG ds G n G n d

r r r
θ

θ θ
∂� 
∂ − = +� �∂ ∂θ� �

�� � lÑÒ                   (B13) 

 
Where Gr and Gθ are the coefficients of direction cosines 
nr and nθ in Equation (B9), respectively: 
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r
r

r
G

r r r r
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∂ ∂θ
                                         (B14a) 
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r r r
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− −

∂θ ∂
=                                      (B14b) 

 
The surface integral terms are generated as 
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2 2 2 2
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r r r r r r r r rr r r
θ θ θ� 
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          (B16) 

 
The coefficient within the bracket is the field CC. The 
compatibility concept applies to the field as well as to the 
boundary. The nature of the compatibility expression 
changes in compliance with the domain and the boun-
dary. The same interpretation is true for Cauchy’s field 
EEs. 
 
 
Appendix C—Solution to an eight-bar truss 
 
The solution to the eight-bar truss shown in Figure 2(a) is 
obtained using the integrated force method (IFM), 
(Patnaik, 1986)  which  is  the  discrete  analogue  of   the  

 
 
 
 
completed Beltrami-Michell formulation (CBMF). The 
IFM, like the CBMF, generates the force solution by 
coupling the equilibrium equations (EEs) to the compati-
bility conditions. Displacements are back-calculated from 
the force solution. The truss is made of steel with 
Young’s modulus E = 30 000 ksi. Each of the eight bars 
has an area of 1 in2. Nodes 1 and 5 are fully restrained. It 
is subjected to a gravity load of magnitude P = –10 kip at 
the midspan location. The problem is to calculate the 
force and displacement response. 

The six EEs of the structure can be written in terms of 
bar forces F as 
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              (C1) 

 
The two compatibility conditions (CCs) in bar 
deformations β can be written as 
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            (C2) 

 
The CC is rewritten in member forces using the flexibility 
relation FL

AE
� 
β =� �
� �

 for bar length L, area A, modulus E, and 

member force F: 
 

1

2

3

4

5

6

7

8

1 1 2 2 1 1 0 0 0
0 1 0 0 0 0 1 0 0

F

F

F

F

F

F

F

F

� �
� �
� �
� �
� �

− −� � � �� �=� 	 � 	� �
� � 
 �� �

� �
� �
� �
� �

 �

            (C3) 

 
Simultaneous solution of the six EEs and the two CCs 
yields the eight member forces {F}. The six displace-
ments {X} are back-calculated: 
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5 4
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