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INTRODUCTION 
 
Many manufacturing enterprises use a production 
inventory system to manage fluctuations in consumers’ 
demand for the product. Such a system consists of a 
manufacturing plant and a finished goods warehouse to 
store those products which are manufactured but not 
immediately sold. The advantages of having products in 
inventory are: first they are immediately available to meet 
demand; second, by using the warehouse to store excess 
production during low demand periods to be available for 
sale during high demand periods. This usually permits 
the use of a smaller manufacturing plant than would 
otherwise be necessary and also reduces the difficulties 
of managing the system. 

We are concerned with the optimization problem to 
minimize the expected discounted cost control of 
production planning in a manufacturing system with 
degenerate stochastic demand. 
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On simplification if c = h = 1, p¯  = x¯  = 0, then the above 
production inventory problem becomes: 
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subject  to the dynamics  of the state  equation  which 

says that  the inventory  at  time t is increased  by the  
production  rate  and  decreased  by the  demand  rate  
can be written  as according to 
 

( ) ( )0, , 0, 1.2t t tdx p y dt x x x= − = >          (1.2) 
 
and the demand  equation  with the production  rate  is 
described by the Brownian motion 
 

0, , 0 1.3t t t tdy Ay y dw y y yσ= + = >
          (1.3) 

 
in the class P of admissible controls of production 
processes pt  with non-negative constant 0tp ≥  defined 
on a complete probability space (�, F , P ) endowed with 
the natural filtration  Ft generated by �(ws , s � t) carrying 
a one-dimensional standard Brownian motion wt , xt is 
the inventory level for production rate at time t (state  
variable), yt  is the demand  rate at  time  t,  pt   is the  
production rate at time t (control  variable), � > 0 is the 
constant non-negative discount rate, A is the non-zero 
constant, � is non-zero constant diffusion coefficient, x0  
is the initial value of inventory level, y0 is the initial value 
of   demand    rate,  h   is   the    inventory    holding   cost  
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coefficient h > 0, c is production cost coefficient c > 0, p¯  
is the value of  factory-optimal production  level, and x¯  is 
the value of factory-optimal inventory  level. 

The purpose of the paper is to give an optimal 
production cost control by an existence Riccati solution 
associated with the reduced (one-dimensional) HJB 
equation. We first applied the technique of dynamic 
programming principle (Bellman, 1957) to obtain the 
general (two-dimensional) HJB equation corresponding to 
production inventory control problem. We also developed 
revised optimal inventory-production control problem. 

The control problem of production planning in a 
manufacturing systems with discount rate has been 
studied by many authors like Fleming et al. (1987), Sethi 
and Zhang (1994). The Bellman equation associated with 
production inventory control problem is quite different 
from them and it is treated by Bensoussan et al. (1984) 
for the one-dimensional manufacturing systems with the 
unbounded control region. This type of optimization 
problem studied also by Morimoto and Kawaguchi (2002) 
for renewable resources, Baten and Morimoto (2005) for 
linear degenerate systems, Baten and Sobhan (2007) for 
one-sector neoclassical growth model with the CES 
function where the dynamics of the capital-labor ratio can 
be described by a diffusion-type stochastic process. 
Generally speaking, the similar types of linear control 
problems investigated for the stochastic differential 
systems with invariant measures like Bensossan (1988), 
Borker (1989). 

This paper was organized as follows. In section 2 we 
obtained the general (two- dimensional) HJB equation by 
the Bellman principle of optimality and then we reduced 
the two-dimensional HJB equation to one-dimensional 
second-order differential equation. Then we derived the 
dynamics of inventory-demand ratio that evolves 
according to stochastic neoclassical differential equation 
through Ito’s Lemma. In section we established the 
Riccati based solution of production inventory control 
problem that was satisfied by the value function of this 
optimization problem. Finally conclusions were made in 
the last section. 
 
 
MATERIALS AND METHODS 
 
Development of optimal inventory production control problem 
 
The Hamilton-Jacobi-Bellman equation 
 
Suppose u(x, y, t) : Rn × R × Rn � R is a function whose value is 
the minimum value of the objective function of the production  
inventory control problem for the manufacturing system given that  
we start  it at time t in state  x, and y. That  is, 
 

( ) ( ), , inf
p

u x y t J p=
 

 
where the value function u is finite valued and twice continuously 
differentiable on (0, �). We initially assume that the u(x, y, t) exists 
for all x, y and t in the relevant ranges. 

 
 
 
 
Since (1.2) and (1.3) is a scalar equation, the subscript t here 
means only time t. Thus, x and y will not cause any confusion and, 
at the same time, will eliminate the need of writing many 
parentheses. Thus, dwt is a scalar. 
 
To solve the problem defined by (1.1), (1.2) and (1.3), let u(x, y, t) 
known as the value function, be the expected value of the objective 
function (1.1) from t to infinity, when an optimal  policy is followed 
from t to infinity,  given xt = x, yt  = y. Then by the principle of 
optimality [Richard Bellman (1957)], 
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We assume that u(x, y, t) is a continuously differentiable of its 
arguments. By Taylor’s expansion, we have  
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From (1.2), we can formally write  
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and   
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The exact meaning of these expressions comes from the theory of 
stochastic calculus; Arnold (1974), Karatzas and Shreve (1991). For 
our purposes, it is sufficient to know the multiplication rules of 
stochastic calculus  
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Substitute (2.2) into (2.1) and use (2.3), (2.4) (2.5), (2.6) and (2.7) 
to obtain 
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Note that we suppressed the arguments of the functions involved in 
(2.2). 
Canceling the term u on both sides of (2.8), dividing the remainder  
by dt, and letting t � 0, we  obtain  the  dynamic  programming  
partial  differential  equation  or Hamilton- Jacobi-Bellman equation 
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where ( )F x∗

 is the Legendre transform of ( )F x , that is,  
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and 
, , ,x y xx yyu u u u

 are partial derivatives of ( ), ,u x y t  with 
respect to x and y. The main feature of the HJB equation (2.9) is 
the vanishing of the coefficient of uyy for y = 0 in partial  differential  
equation  terminology,  then  the  equation  is degenerate  elliptic. 
Generally speaking, the difficulty stems from the degeneracy in the 
second order term of the HJB equation (2.9). 
 
 
RESULTS AND DISCUSSION 
 
A reduction to 1-dimensional case 
 
In this subsection, the general (two dimensional) HJB 
equation reduced to a one-dimensional second-order 
differential equation.  From the two dimensional state 
space form (one state x for inventory level and the other 
state y for demand rate) it reduced to one-dimensional 

form for 
( )/z x y=

the ratio of inventory to demand. 

There exists a 
( )0,v∈ ∞

 such that ( ) ( )2, / , 0.u x y y v x y y= >   
Since  
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Setting z = x/y and substituting these in (2.9), we have 
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Then the HJB equation (2.10) became 
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Stochastic neoclassical differential equation and value 
function. 
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In this subsection, the dynamics of the state equation of 
inventory level (1.2) reduced to a one-dimensional 
process by working in intensive (per capita) variables. 

  Define t tz : inventory-demand ratio and q : per-capita production.t t

t t

x p
y y= =

 
 
To determine the stochastic differential for the inventory-
demand ratio,  

tz ,t

t

x
y≡

 we apply Ito’s formula as follows 
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From Ito’s formula,  
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From (1.2), we have that (dy) 2 = �2 y2 dt. Substituting 
the above expressions into (2.12), we have that the 
dynamics of zt to be the inventory-demand ratio at time t 
which evolves according to the stochastic neoclassical 
differential equation for demand 
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where  

2 , 1.B A k qσ= − + = −  
 
The inventory production control problem became 
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subject to degenerate  stochastic  differential equation 
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Let us consider the minimum value of the payoff function 
is a function of this initial point. The value function 
defined as a function whose value is the minimum value 
of the objective function of the production inventory 
control problem (2.14) for the manufacturing system, that 
is,  
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The value function  V (z)  is a solution  to the  reduced  
(one dimensional)  HJB  equation (2.11) and the  solution 
of this HJB  equation can be used to test  controller  for 
optimality  or perhaps  to construct  a feedback controller.   
Riccati Based Solution to optimal control problem. 
This section finally dealt with the Riccati-based solution 

of the reduced one-dimensional HJB equation (2.11) 
corresponding to the production inventory control 
problem (2.16) subject to (2.13) using the dynamic 
programmming principle [Richard Bellman, 1957]. 

To find the  Riccati  based solution  of HJB  equation  
(2.11), we referred to Prato  (1984), Prato  and Ichikawa 
(1990) for the  degenerate  linear control  problems  
related  to Riccati equation. 

By taking the derivative of (2.11) with respect to k and 
setting it to zero, we minimized the expression inside the 
bracket of (2.11).    

This procedure built up 
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Substituting (3.1) into (2.11) yields the equation 
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known as the  HJB  equation. This is a partial differential 
equation which has a solution form 
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Then 
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Substituting (3.3) and (3.4) into (3.2) yields 
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Since (3.5) must hold for any value of z, we must have 
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is called a Riccati equation from which we obtain 
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So, (3.3) is a solution form of (3.2). 
 
 

 
 
 
 
Conclusion 
 
In general we can further study a stochastic optimal 
inventory production control problem for linear 
degenerate systems to minimize the discounted expected 
cost: 
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over p �P subject  to (1.2), (1.3) and  (1.4) and  in 
addition  a continuous,  non-negative, convex function h 

� R  satisfying the polynomial growth condition  such that 
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for some constant 0.K >  
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