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Multiple responses optimization problems have three phases including design of experiments, 
modeling and optimization. Artificial neural networks and genetic algorithm are applied for second and 
third phases. Committee machines include some experts such as some neural networks which operate 
together to get response. Current article applies a committee machine including four different artificial 
neural networks to model multiple responses optimization problems. Genetic algorithm is applied to 
calculate weights of committee machine and also it optimizes desirability function of all responses to 
get optimum point. Seven different cases in multiple responses optimization were modeled and 
analyzed. The results show the error of committee machine is near half of average error of artificial 
neural networks and global desirability of committee machine is the same as average global desirability 
of artificial neural networks. 
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INTRODUCTION 
 
The subject of multiple response optimization (MRO) is to 
find a set of input variable amounts (x's) to achieve a 
desired set of outputs (y's).  

Usually MRO is done in three phases including 
experiments design, modeling and optimization. Modeling 
as second phase, is a potential field to achieve superior 
responses. Usually mathematical functions or artificial 
neural networks (ANNs) are applied for modeling in this 
phase. Committee machine (CM) or committee neural 
network is a special neural network which could be 
applied to MRO modeling. This article is an effort to 
implement CM and genetic algorithm (GA) to solve some 
MRO problems. The results show CM yields superior 
responses to individual ANNs.  

Experiments design is arranged based on some known 
patterns in design of experiments (DOE) knowledge such 
as factorial design, fraction factorial design. Some deigns  
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in response surface methodology (RSM) such as central 
composite design (CCD) and Box Behnken (Del Castillo 
et al., 1996; Guo et al., 2010). Also, Taguchi orthogonal 
arrays (Antony et al., 2006; Chang, 2008; Kumanan et 
al., 2007; Yao et al., 2008) which is derived from Taguchi 
method.  

Second phase is done by means of different 
mathematical or statistical modeling such as multiple 
linear and nonlinear regression in the form of polynomials 
(Del Castillo et al., 1996; Lepadatu et al., 2005; 
Pasandideh and Niaki, 2006) and Artificial Neural 
Networks (ANNs). Due to the fact that relationship 
between inputs and outputs usually are complicated, 
ANNs mostly are used for modeling rather than 
polynomials. A typical Artificial Neural Network (ANN) is 
back propagation neural network (BPNN) that is used in 
many engineering problems (Mukherjee and Ray, 2008; 
Noorossana et al., 2008). Cheng et al. (2002) used 
MANFIS (Multi Adaptive Neuro Fuzzy Inference System) 
for modeling and showed the results are superior to RSM 
polynomial models.  
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Last phase is optimization which usually is done on 
global desirability function. In this process, every 
predicted response is converted to a value between 0 
and 1 by a function with name desirability function. So for 
all responses, a combination function is defined which 
converts all desirability functions to a unique number by 
global desirability function (GDF). Then with optimization 
of GDF, optimum or optimal values of independent 
parameters could be found. Different optimization 
techniques were used to optimize GDF, for example 
Excel solver, search methods such as Hook and Jeeves 
(Del Castillo et al., 1996), Evolutionary Algorithms such 
as Genetic algorithm (Pasandideh and Niaki, 2006; 
Noorossana et al., 2008) and Tabu Search (Mukherjee 
and Ray, 2008). Also, Chatsirirungruang and Miyakawa 
(2009) proposed a combination of GA with Taguchi and 
have used benefits of these techniques together to get 
more accurate responses. 
 
 
ARTIFICIAL NEURAL NETWORKS AND COMMITTEE 
MACHINE  
 

There are different kinds of neural networks to model and 
apply in complicated prediction problems. This study has 
considered four neural networks. They are Feed Forward 
Neural Networks, Radial Basis function networks 
Generalized Regression also, Adaptive Neural Fuzzy 
Inference System (ANFIS).  

Feed Forward Neural Networks include one input layer, 
one output layer and one or some hidden layers (Kamo 
and Dagli, 2009). Radial basis neural network or Radial 
basis function neural network (RBFN) includes three 
layers, input layer for feeding the feature vectors into the 
network, a hidden layer of radial basis function neurons 
for calculating the outcome of the biases functions and a 
layer of output neurons for calculating a linear 
combination of the biases functions (Celikoglu, 2006). A 
generalized regression neural network (GRNN) is often 
used for function approximation (Matlab User’s Guide, 
2010). A fuzzy inference system (FIS) is defined as a way 
of mapping an input space to an output space using fuzzy 
logic (Ardil and Sandhu, 2010). Adaptive Neuro Fuzzy 
Inference System (ANFIS) is a kind of adaptive fuzzy 
inference system which employs a hybrid-learning 
algorithm to determine fuzzy system parameters 
automatically (Bo et al., 2009).  

Nowadays, the problems with more volume and 
complexity data are growing rapidly and so the tools to 
solve these problems have to be more efficient and 
powerful. This can be done by applying different 
techniques such as soft approximation (Feng et al., 2011) 
and also new techniques in neural networks such as 
committee machines. A Committee Machine (CM) 
consists of a group of intelligent systems named Experts, 
and a combiner which combines the outputs of each 
expert (Figure 1). Its advantages are that it reaps the 
benefits of all work with only little additional computation. 
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Figure 1. A typical architecture of a committee machine based 

on static structure. 
 
 
 

Inputs are entered to experts, and all experts' responses 
are transferred to a combiner to get final response. To 
combine the experts' outputs, there are different ways in 
the combiner. It could be an intelligent system such as a 
neural network. The most popular method is the simple 
ensemble averaging method according to Equation 1 
(Ismail et al., 2010).  
 

                                (1)                                                        
 
where N is the total number of the experts used, wi is the 
weight coefficient of expert ith and yi is the estimated 
response from expert ith (Kadkhodaie-Ilkhchi et al., 
2009). 

Genetic Algorithm could be obtained by combination of 
the experts' contribution (weights) in a committee 
machine. Equation 2 represents committee machine 
gives smaller errors than the average of all the experts 
(Kadkhodaie-Ilkhchi et al., 2009; Karimpouli et al., 2010).  
 

≤        (2)                                                 
 

 is error of predicted and real 

response of every ANN or expert. is squared error for 

the ith expert. is the average error for each of 

the experts acting alone.  is error of CM.  
 
 
GENETIC ALGORITHM AND GLOBAL DESIRABILITY 
 
Genetic Algorithm (GA) can quickly and reliably solve 
problems that are difficult to tackle by traditional methods. 
It is extensible and can interface with existing models and 
hybridize with them (Liang, 2008). GA works according to 
selection of the  initial  population.  Then  algorithm  starts 



 
 
 
 
to evaluate the fitness function and select the best ones, 
it applies genetic operations such as mutation and 
crossover to reproduce new individuals and repeats 
evaluation and reproduction to get best population that it 
is optimal response (Tian and Noore, 2005). 

Global desirability function is used to convert a problem 
of multiple responses into a single response case. By 
desirability function, each estimated response is 
transformed into a dimensionless desirability value di. For 
different situations, di values are defined by the following 
continuous function (Benyounis et al., 2008; Chang and 
Chen, 2011). 

For goal of target, the desirability is defined by: 
 

di(yi) = 

0 yi≤Li 

( )s 
Li≤yi≤Ti 

( )t 
Ti≤yi≤Ui 

0 yi≥Ui                          (3) 
 
For goal of maximum, the desirability is defined by 
  

di(yi)  = 

0 yi≤Li 

(  )s 
Li≤yi≤Ui 

1 yi≥Ui                      
 
For goal of minimum, the desirability is defined by 
 

di(yi)= 

1 yi≤Li 

(  )s 
Li<yi<Ui 

0 yi≥Ui       (5)             
  
For goal In range, the desirability is defined by (6) 
 

di(yi)  = 
1 Li≤yi≤Ti 

0 Otherwise  
 
s and t are coefficient of convexity and determine how 
strictly target value will be desired. In current study they 
are equal to one. Combination of di's for same x's will 
yield "Global Desirability" (GD). Usually this global 
desirability function formula is: 
 

                                                     (7) 
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Dependent to the problem, every response desirability is 
calculated by means of equations of 3 to 6, all 
desirabilities are entered to Equation 7, and finally GD is 
calculated. The di's range varies from zero to one, and 
respectively global desirability rang is from 0 to 1. 
Important notice is that optimization of GD is concerned 
to all desirabilities and thus denoted as simultaneous 
optimization of all responses. Current study introduces 
application of CM in MRO. Also GA is applied both in 
modeling and optimization phases. GA Fitness function in 
modeling phase is root mean square error and it is GD in 
optimization phase. 
 
 
METHODOLOGY 

 
The base of selection of training data sets was Dixit and Chandra 
suggestion (Dixit and Chandra, 2003) which expresses for n input, 
the minimum number of training set should be such that it 
encompasses the corners of n-dimensional space with to respect 
more contribution for input variables with more influence on output. 
But this suggestion was applied for corners of lower and upper 
limits for all responses. Number of training data sets was 80° of all 
data number.  

There are different criteria to evaluate forecasting models 
performance. In the current study three criteria were selected to 
compare simulated results from models and the observed or real 
data. They are root mean square error (RMSE), mean absolute 
error (MAE) (Haghizadeh et al., 2010) and correlation coefficient (R) 
(Krause et al., 2005). 
 

RMSE =                       (8) 
 

MAE =                             (9) 
 

=                                 (10) 
 
-1≤R≤+1 
                                                 

 is the ith actual value,  s ith predicted value (model output) 

and n is the number of data used for prediction. Also  and  are 
the mean of actual and predicted values. The first criterion 
measures the average error for all points. Smaller values of RMSE 
indicate higher accuracy in prediction and also coefficient of 
determination measures the accuracy of prediction of the model 
(Banik et al., 2009). There are two conditions to build ANNs model 
in the current study. The first condition is that RMSE for all data is 
minimum. The second condition is that correlation coefficient of 
testing data is positive.  

As it is mentioned, MRO solution includes three phases. First, 
experiments design phase which in the current work, all data is 
selected from literatures. Second, modeling which is done by 
building four different neural networks including feed forward, RBF, 
GRNN and one ANFIS models. All ANNs have same inputs and 
one output and so the number of ANNs in every model is equal to 
the number of responses (Figure 2).  
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Figure 2. Input and outputs of every model. 
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Figure 3. Committee machine architecture. 
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Figure 4. Methodology schematic to solve MRO by CM and GA. 

 
 
 
A committee machine (CM) was constructed by combination of all 
four models (Figure 3). M Inputs are entered to every expert of CM 
simultaneously, and N responses are multiplied to their weights and 
then are added together to get final response. CM combiner is an 

ensemble averaging. CM weights were determined by Genetic 
Algorithm with the object to minimize RMSE of CM response (Fi. So 
CM weights will be a M*N matrix. 

Schematic   of  methodology  is  shown in Figure 4, also pseudo 
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Table 1. GA Specification. 
 

Variable Magnitude/kind Variable Magnitude/kind 

Parent population 20 Mutation type Uniform 

Selection function Stochastic uniform Number of variables 5 

Number of elites 2 Number of responses 1 

Crossover fraction 0.8 Migration direction 'Forward' 

Crossover function  Scattered Migration fraction 0.2 
 
 
 

Table 2. Cases properties. 

 

Case no. No. of x's No. of y's No. of experiment Reference 

1 3 6 15 Noorossana et al., 2008 

2 6 3 52 Rajakumar et al., 2011 

3 4 2 18 Giordano et al., 2010 

4 3 3 30 Martinez et al., 2009 

5 2 2 13 Bhatti et al., 2011 

6 3 3 20 Benyounis et al., 2008 

7 4 4 30 Aggarwala et al., 2008 

 
 
 

code is as follow: 

 
get Data //include X,Y matrixes 
set RMSE_network =1  // beginning of  modeling 
phase 
set min_RMSE=0.4 
for all kind of neural networks  
while (RMSE_network >min_RMSE   or   coefficient of 
correlation<0) and iterations<50 
set X and Y randomly 
train network 
calculate RMSE_network and coefficient of correlation 
if RMSE_network < min_RMSE 
set  min_RMSE=RMSE_network 
end if 
add one to iterations 
end      // end of while 
end for       
calculate CM weights using GA for goal of minimum in overall 
RMSE      // end of modeling phase 
calculate X* using GA for goal of maximum in Global desirability             
// 

 
 
RESULTS AND DISCUSSION 
 
Genetic algorithm is used in two steps. First to find CM 
weights with object of minimizing the overall RMSE of CM 
and second to find x's by GA and ANNs with object of 
maximizing global desirability. For all of them, GA 
specifications are as Table 1. 

Seven MRO problems were selected to solve with CM. 
these problems include different number of inputs and 
outputs, also different number of experiments. Their 
properties are shown in Table 2. 

Case 1 
 
The problem is based over the wire-bonding process in 
the semiconductor industry. During this process, the 
manufacturer should assemble a hybrid module in a pre-
molded package by bonding wires between the leads. 
The input and output variable are listed in Table 3. 
Different neural networks were made to model data of 
experiments. These ANNs specifications are listed in 
Table 4. 

To have better comparison between committee 
machine and other neural networks, same specifications 
were considered for all other cases as Table 5 except 
Case 4, and that was due to get acceptable results. 

Four ANNs include feedforward, Radial Base Function, 
GRNN and ANFIS were consisted for every response for 
every problem data. So every problem found 24 models. 
Consequently, the results of every model are according 
to Table 6. 

A committee machine was made with object to 
minimize overall RMSE and CM's weights are according 
to Table 7. In addition, Table 8 shows CM and ANNs 
results and minimum and average of ANNs results. 
 
 
Case 2 
 
The target is to get amounts of quantitative chara-
cteristics of the friction stir welded AA6061-T6 aluminium 
alloy in the welding process. The input and output 
variable are listed in Table 9. 

Different  neural  networks  were made to model data of 
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Table 3. Input and response variables and optimization criteria for every response (output) in Case 1. 
 

Input (Independent) variable Output (Dependent) variable Opt. criteria 

x1: Flow rate (SCFM) y1:  Maximum temperature at position A (°C) Target 

x2:  Flow temp (°C) y2:  Beginning bond temperature at position A (°C) Target 

x3:  Block temp (°C) y3:  Finish bond temperature at position A (°C) Target 

 
y4:  Maximum temperature at position B (°C) Target 

 
y5: Beginning bond temperature at position B (°C) Target 

 
y6:  Finish bond temperature at position B (°C) Target 

 
 
 

Table 4. Networks specifications for Case 1. 
 

Response 
No. of neurons in hidden and 
output layer of feed forward 

RBF spread 
coefficient 

GRNN spread 
coefficient 

ANFIS membership 
function 

y1 3-6-1 0.75 0.55 dsigmf 

y2 3-6-1 0.75 0.67 trimf 

y3 3-4-1 0.9 0.67 trimf 

y4 3-3-1 0.45 0.6 trimf 

y5 3-6-1 0.9 0.65 gbellmf 

y6 3-3-1 0.66 0.65 gbellmf 

 
 
 

Table 5. Networks specifications for cases 2-7 for all y's. 
 

Case no. 
No. of neurons in hidden and 
output layer of feed forward 

RBF spread 
coefficient 

GRNN spread 
coefficient 

ANFIS membership 
function 

2,3,5,6,7 3-1 0.85 0.5 gbellmf 

4 3-5-1 0.85 0.45 gbellmf 

 
 
 
Table 6. RMSE and R for training, testing and all data in cases of normalized and real (Case 1). 
 

Model 
RMSE_N 

train 

RMSE_N 

test 

RMSE_N 

all 

R 

train 

R 

test 

R 

all 

RMSE 

r_train 

RMSE 

r_test 

RMSE 

r_all 

FF_y4 0.106 0.111 0.107 0.971 0.979 0.981 0.106 0.111 0.107 

FF_y5 0.074 0.023 0.067 0.990 1.000 0.992 2.858 0.867 2.585 

FF_y6 0.060 0.096 0.069 0.990 0.971 0.992 2.450 3.880 2.795 

FF_y7 0.028 0.086 0.046 0.999 0.999 0.998 1.225 3.834 2.035 

FF_y8 0.017 0.017 0.017 1.000 1.000 1.000 0.612 0.644 0.619 

FF_y9 0.030 0.053 0.036 0.999 0.982 0.998 1.349 2.360 1.603 

RBF_y4 0.094 0.096 0.095 0.988 0.850 0.986 3.682 3.734 3.692 

RBF_y5 0.074 0.103 0.081 0.992 0.921 0.989 2.858 3.964 3.111 

RBF_y6 0.060 0.059 0.060 0.994 0.999 0.993 2.450 2.385 2.437 

RBF_y7 0.028 0.078 0.043 0.999 0.991 0.998 1.225 3.492 1.908 

RBF_y8 0.017 0.032 0.021 1.000 0.999 0.999 0.612 1.183 0.762 

RBF_y9 0.018 0.082 0.040 0.999 0.937 0.997 0.817 3.670 1.797 

GRNN_y4 0.098 0.014 0.088 0.988 0.977 0.988 3.823 0.531 3.428 

GRNN_y5 0.112 0.033 0.101 0.991 0.999 0.991 4.314 1.265 3.900 

GRNN_y6 0.095 0.118 0.100 0.997 0.916 0.992 3.844 4.793 4.052 

GRNN_y7 0.045 0.078 0.053 0.999 0.982 0.998 1.998 3.476 2.368 

GRNN_y8 0.060 0.074 0.063 0.999 0.971 0.998 2.237 2.737 2.345 

GRNN_y9 0.056 0.068 0.059 1.000 0.975 0.998 2.506 3.041 2.622 
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Table 6. Contd. 
 

ANFIS_y4 0.094 0.092 0.094 0.986 0.992 0.986 3.674 3.590 3.658 

ANFIS_y5 0.074 0.117 0.085 0.992 0.964 0.988 2.858 4.508 3.255 

ANFIS_y6 0.060 0.062 0.061 0.994 0.974 0.993 2.450 2.503 2.460 

ANFIS_y7 0.028 0.066 0.038 0.999 0.981 0.998 1.225 2.932 1.709 

ANFIS_y8 0.017 0.027 0.019 1.000 0.999 0.999 0.612 0.986 0.703 

ANFIS_y9 0.018 0.025 0.020 0.999 0.998 0.999 0.817 1.134 0.889 

 
 
 

Table 7. Committee machines weights by GA (Case 1). 

 

Model y1 y2 y3 y4 y5 y6 

FF 0.0121 1.0000 0.0768 0.0019 0.4402 0.1567 

RBF 0.5377 0.0000 0.3966 0.2612 0.0145 0.0400 

GRNN 0.0405 0.0000 0.0000 0.0034 0.0007 0.1210 

ANFIS 0.4097 0.0000 0.5266 0.7335 0.5447 0.6823 
 
 
 

Table 8. CM and its experts results (Case 1). 
 

Model GD Overall RMSE Overall MAE 

FF 0.444 2.55 1.31 

RBF 0.000 2.47 1.12 

GRNN 0.000 3.20 2.45 

ANFIS 0.617 2.39 1.04 

average 0.530 2.65 1.48 

CM 0.594 2.15 0.96 
 
 

 
Table 9. Input and response variables and optimization criteria for every response (output) (Case 2). 

 

Input (Independent) variable Output(Dependent) variable Opt. criteria 

x1:  Rotational speed (rpm) y1:  Tensile strength (MPa) Maximize 

x2:  Welding speed (mm/min) y2:  Hardness (HV) Maximize 

x3:  Axial force (kN) y3:  Corrosion rate (mm/y) In range 

x4:  Shoulder diameter (mm)     

x5:  Pin diameter (mm)     

x6:  Tool hardness (HRc)     

 
 
 
experiments. These ANNs specifications are listed in 
Table 5. Consequently, the results of every model are 
according to Table 10. A committee machine was made 
with object to minimize overall RMSE and CM's weights 
are as Table 11. 

Table 12 shows CM and ANNs results and minimum 
and average of ANNs results. 
 
 
Case 3 
 
The   problem   is   to   optimize  the  yield of recombinant 

Oryza sativa non-symbiotic hemoglobin 1 in medium 
containing byproduct glycerol. The input and output 
variable are listed in Table 13. 

Different neural networks were made to model data of 
experiments. These ANNs specifications are listed in 
Table 5. After modeling, the results of every model are 
according to Table 14. 

A committee machine was made with object to 
minimize overall RMSE and CM's weights as shown in 
Table 15. 

Table 16 shows CM and ANNs results and minimum 
and average of ANNs results. 
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Table 10. RMSE and correlation coef. (R) for training, testing and all data in case of normalized (case 2). 
 

Model 
RMSE 
N_train 

RMSE 
N_test 

RMSE N_all R train R  test R  all 

FF_y1 0.109 0.227 0.140 0.976 0.665 0.956 

FF_y2 0.049 0.112 0.066 0.996 0.960 0.993 

FF_y3 0.219 0.226 0.220 0.928 0.848 0.916 

RBF_y1 0.031 0.109 0.055 0.998 0.923 0.993 

RBF_y2 0.016 0.072 0.035 1.000 0.958 0.998 

RBF_y3 0.147 0.232 0.167 0.969 0.652 0.953 

GRNN_y1 0.282 0.371 0.301 0.997 0.862 0.957 

GRNN_y2 0.328 0.455 0.356 0.999 0.862 0.949 

GRNN_y3 0.347 0.368 0.351 0.966 0.441 0.936 

ANFIS_y1 0.031 0.532 0.235 0.998 0.366 0.893 

ANFIS_y2 0.016 0.684 0.300 1.000 0.734 0.881 

ANFIS_y3 0.147 0.558 0.278 0.968 0.105 0.874 

 
 

 
Table 11. Committee machines weights by GA (Case 2). 
 

Model y1 y2 y3 

FF 0.0255 0.1943 0.2173 

RBF 0.9201 0.7616 0.6599 

GRNN 0.0127 0.0098 0.0051 

ANFIS 0.0418 0.0343 0.1177 

 
 

 
Table 12. CM and its experts results (case 2). 

 

Model GD Overall RMSE Overall MAE 

FF 0.998 2.78 1.79 

RBF 0.957 1.20 0.51 

GRNN 0.899 8.55 6.63 

ANFIS 0.977 7.01 2.31 

average 0.958 4.88 2.81 

CM 0.976 1.18 0.67 

 
 
 

Table 13. Input and response variables and optimization criteria for every response (output) (Case 3). 
 

Input (Independent) variable Output(dependent) variable Opt. criteria 

x1: Tryptone. (g L
−1

) y1: Biomass (g L
−1

) Minimize 

x2: Yeast extract (g L
−1

) 
y2: Oryza sativa non-symbiotic 
hemoglobin1_ OsHb1 (g L

−1
) 

Maximize x3: Sodium chloride (g L
−1

) 

x4: Byproduct glycerol (g L
−1

) 

 
 
Case 4  
 
The problem is multiple response optimization of 
styrene–butadiene rubber (SBR) emulsion batch 
polymerization. The input and output variable are listed in 
Table 17. 

Different neural networks were made to model data of 
experiments. These ANNs specifications are listed in 
Table 5. After modeling, the results of every model are 
according to Table 18. A CM was made with object to 
minimize overall RMSE and CM's weights are as Table 
19. Table 20 shows CM and ANNs results  and  minimum
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Table 14. RMSE and correlation coefficient (R) for training, testing and all data in case of normalized (Case 3). 
 

Model RMSE N_train RMSE N_test RMSE N_all R train R test R all 

FF_y1 0.104 0.219 0.138 0.982 0.919 0.968 

FF_y2 0.112 0.218 0.143 0.981 0.642 0.968 

RBF_y1 0.015 0.202 0.096 1.000 0.964 0.985 

RBF_y2 0.002 0.238 0.112 1.000 0.854 0.981 

GRNN_y1 0.087 0.163 0.109 0.998 0.983 0.990 

GRNN_y2 0.125 0.304 0.181 0.999 0.813 0.969 

ANFIS_y1 0.015 0.210 0.100 1.000 0.852 0.984 

ANFIS_y2 0.002 0.230 0.108 1.000 0.944 0.982 

 
 
 

Table 15. Committee machines weights by GA (Case 3).  

 

Model y1 y2 

FF 0.1181 0.2043 

RBF 0.3471 0.3423 

GRNN 0.2336 0.0048 

ANFIS 0.3012 0.4486 
 
 
 

Table 16. CM and its Experts results (case 3). 
 

Model GD Overall RMSE Overall MAE 

FF 0.707 0.67 0.38 

RBF 0.694 0.47 0.18 

GRNN 0.582 0.56 0.42 

ANFIS 0.708 0.48 0.20 

Average 0.673 0.54 0.30 

CM 0.678 0.29 0.22 

 
 
 

Table 17. Input and response variables and optimization criteria for every response 

(output) (Case 4). 
 

Input (Independent) Variables Output (Dependent) Variables Opt. criteria 

Initiator (ml) Solid content of latex (wt%) Target 

Activator (ml) Mooney viscosity Target 

Chain transfer agent_CTA (ml) Polydispersity Target 
 
 
 

and average of ANNs results. 

 
 
Case 5 

 
Object of this case is to optimize process variables, 
electrolysis voltage and treatment time for the electro 
coagulation removal of hexavalent chromium (Cr(VI)). 
The input and output variable are listed in Table 21. 
Different neural networks were made to model data of 
experiments.   These   ANNs  specifications   are listed in  

 
Table 5. After modeling, the results of every model are 
according to Table 22. A committee machine was made 
with object to minimize overall RMSE and CM's weights 
are as Table 23. 

Table 24 shows CM and ANNs results and minimum 
and average of ANNs results. 
 
 

Case 6  
 

In   this   case  mechanical properties of laser-welded butt
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Table 18. RMSE and correlation coef.(R) for training, testing and all data in case of normalized (Case 4). 
 

Model RMSE N_train RMSE N_test RMSE N_all R train R test R all 

FF_y1 0.103 0.238 0.141 0.988 0.923 0.976 

FF_y2 0.255 0.288 0.262 0.908 0.830 0.893 

FF_y3 0.181 0.369 0.231 0.936 0.776 0.897 

RBF_y1 0.000 0.286 0.128 1.000 0.670 0.983 

RBF_y2 0.000 0.307 0.137 1.000 0.675 0.973 

RBF_y3 0.000 0.556 0.249 1.000 0.219 0.878 

GRNN_y1 0.203 0.114 0.189 0.957 0.990 0.958 

GRNN_y2 0.396 0.196 0.365 0.899 0.496 0.886 

GRNN_y3 0.379 0.376 0.378 0.766 0.344 0.707 

ANFIS_y1 0.000 0.320 0.143 1.000 0.974 0.979 

ANFIS_y2 0.007 0.407 0.182 1.000 0.334 0.952 

ANFIS_y3 0.005 0.845 0.378 1.000 0.285 0.772 

 
 
 

Table 19. Committee machines weights by GA (Case 4). 

 

Model y1 y2 y3 

FF 0.0078 0.0773 0.0188 

RBF 0.9678 0.3608 0.8409 

GRNN 0.0034 0.0197 0.0003 

ANFIS 0.0210 0.5423 0.1400 

 
 

Table 20. CM and its experts results (Case 4). 
 

Model GD Overall RMSE Overall MAE 

FF 0.985 10.54 4.74 

RBF 1.000 5.54 1.25 

GRNN 0.905 14.70 7.28 

ANFIS 0.997 7.34 1.82 

Average 0.972 9.53 3.77 

CM 0.976 4.22 1.38 

 
 

 
Table 21. Input and response variables and optimization criteria for every response (output) (Case 5). 

 

Input (Independent) variable Output (Dependent) variable Opt. criteria 

x1: Voltage(V) y1: Reduction efficiency (%) Maximize 

x2: Time (min) y2: Energy consumption (Wh) Minimize 

 
 
 
joints made of AISI304 were investigated to obtain good 
welded joints. The input and output variable are listed in 
Table 25. 

Different neural networks were made to model data of 
experiments. These ANNs specifications are listed in 
Table 5. After modeling, the results of every model are 
according to Table 26. 

A committee machine was made with object to mini-
mize overall RMSE and CM's weights are as Table 27. 

Table 28 shows CM and ANNs results and minimum 
and average of ANNs results. 
 
 
Case 7 
 
Problem is to optimize multiple characteristics in CNC 
turning of AISI P-20 tool steel using liquid nitrogen as a 
coolant. The input and output variable are listed  in  Table
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Table 22. RMSE and correlation coef.(R) for training and testing and all data in case of normalized (Case 5). 
 

Model RMSE N_train RMSE N_test RMSE N_all R train R test Ro all 

FF_y1 0.046 0.080 0.055 0.997 0.997 0.997 

FF_y2 0.017 0.016 0.017 1.000 1.000 1.000 

RBF_y1 0.038 0.086 0.053 0.998 0.995 0.997 

RBF_y2 0.002 0.037 0.018 1.000 0.991 1.000 

GRNN_y1 0.164 0.141 0.159 0.995 0.998 0.994 

GRNN_y2 0.159 0.132 0.153 0.997 0.998 0.996 

ANFIS_y1 0.046 0.375 0.185 0.998 0.990 0.966 

ANFIS_y2 0.016 0.011 0.015 1.000 0.995 1.000 

 
 

 
Table 23. Committee machines weights by GA (Case 5). 

 

Model y1 y2 

FF 0.4771 0.3008 

RBF 0.4771 0.1156 

GRNN 0.0003 0.0139 

ANFIS 0.0455 0.5696 

 
 

Table 24. CM and its experts results (Case 5). 
 

Model GD Overall RMSE Overall MAE 

FF 0.876 0.46 0.28 

RBF 0.853 0.45 0.24 

GRNN 0.828 2.38 1.69 

ANFIS 0.861 1.34 0.48 

Average 0.854 1.16 0.67 

CM 0.863 0.44 0.27 

 
 
 
Table 25. Input and response variables and optimization criteria for every response (output) (Case 6). 
 

Input (Independent) variable Output (Dependent) variables Opt. criteria 

x1: Laser power (kW) y1: Average tensile strength (Mpa) Maximize 

x2: Welding speed (cm/min) y2: Average impact strength (J) Maximize 

x3: Focus position (mm) y3: Joint cost (h/m) In range 

 
 

Table 26. RMSE and correlation coeffient (R) for training, testing and all data in case of normalized (Case 6). 

 

Model RMSE N_train RMSE N_test RMSE N_all R train R test R all 

FF_y1 0.152 0.155 0.153 0.963 0.856 0.959 

FF_y2 0.082 0.057 0.078 0.985 0.985 0.985 

FF_y3 0.002 0.001 0.002 1.000 1.000 1.000 

RBF_y1 0.137 0.173 0.145 0.972 0.423 0.964 

RBF_y2 0.071 0.081 0.073 0.988 0.995 0.987 

RBF_y3 0.000 0.178 0.079 1.000 1.000 0.989 

GRNN_y1 0.225 0.188 0.218 0.977 0.683 0.960 

GRNN_y2 0.158 0.052 0.143 0.983 0.959 0.981 

GRNN_y3 0.122 0.147 0.127 0.998 1.000 0.993 
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Table 26. Contd. 
 

ANFIS_y1 0.159 0.507 0.267 0.964 0.446 0.888 

ANFIS_y2 0.043 0.395 0.181 0.996 0.759 0.931 

ANFIS_y3 0.000 0.112 0.050 1.000 0.963 0.994 

 
 
 

Table 27. Committee machines weights by GA (case 6) 

 

Model y1 y2 y3 

FF 0.3641 0.3283 0.9943 

RBF 0.5876 0.6451 0.0001 

GRNN 0.0325 0.024 0.0027 

ANFIS 0.0158 0.0027 0.0029 

 
 

Table 28. CM and its experts results (Case 6). 

 

Model GD Overall RMSE Overall MAE 

FF 0.932 7.20 2.89 

RBF 1.000 6.84 1.95 

GRNN 0.903 10.29 4.57 

ANFIS 0.951 12.62 4.66 

Average 0.947 9.24 3.52 

CM 0.917 6.78 2.33 

 
 
 

Table 29. Input and response variables and optimization criteria for every response (output) (Case 7). 
 

Input (Independent) variable Output (Dependent) variable Opt. criteria 

Cutting speed (m/min) Surface roughness (_m) Minimize 

Feed (mm/rev) Tool life (min) Maximize 

Depth of cut (mm) Cutting force (N) Minimize 

Nose radius (mm) Power consumption (W) Minimize 

 
 
 
29. Different neural networks were made to model data of 
experiments. These ANNs specifications are listed in 
Table 5. After modeling, the results of every model are 
according to Table 30. 

A committee machine was made with object to 
minimize overall RMSE and CM's weights are as Table 
31. Table 32 shows CM and ANNs results and minimum 
and average of ANNs results. 

Tables 33, 34 and 35 show comparison of the results 
between CM and average magnitudes of ANNs. Table 33 
represents committee machine increases average global 
desirability about 0.1% or 0.001 corresponding to 
average GD of four neural networks. Consequently, there 
is a negligible change in global desirability due to the CM 
application. 

Table   34  represents  committee  machine  decreases  

average overall RMSE about 54% corresponding to 
average overall RMSE of four neural networks. Table 35 
represents committee machine decreases average 
overall MAE about 49% corresponding to average overall 
MAE of four neural networks. Consequently, there is a 
decreasing about 50% in errors due to the CM application 
and this will yield a model with higher accuracy. Thus, 
using committee machine in multiple response 
optimization will cause a noticeable loss in errors, but this 
application does not have considerable change in global 
desirability. 
 
 
Conclusion  
 
There are different artificial neural networks (ANNs) for
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Table 30. RMSE and correlation coefficient (R) for training, testing and all data in case of normalized (Case 7). 
 

Model RMSE N_train RMSE N_test RMSE N_all R train R test R all 

FF_y1 0.035 0.088 0.050 0.998 0.938 0.995 

FF_y2 0.013 0.019 0.014 1.000 1.000 1.000 

FF_y3 0.028 0.057 0.036 0.998 0.994 0.997 

FF_y4 0.014 0.040 0.022 1.000 0.997 0.999 

RBF_y1 0.020 0.160 0.074 0.999 0.323 0.989 

RBF_y2 0.004 0.253 0.113 1.000 0.830 0.982 

RBF_y3 0.006 0.143 0.064 1.000 0.534 0.991 

RBF_y4 0.000 0.104 0.046 1.000 0.898 0.995 

GRNN_y1 0.027 0.092 0.047 0.999 0.143 0.996 

GRNN_y2 0.043 0.130 0.070 0.998 0.853 0.993 

GRNN_y3 0.036 0.090 0.051 0.998 0.658 0.995 

GRNN_y4 0.020 0.099 0.048 0.999 0.978 0.994 

ANFIS_y1 0.010 0.073 0.034 1.000 0.979 0.998 

ANFIS_y2 0.004 0.032 0.015 1.000 0.994 1.000 

ANFIS_y3 0.005 0.050 0.023 1.000 0.996 0.999 

ANFIS_y4 0.006 0.028 0.014 1.000 0.976 1.000 
 
 
 

Table 31. Committee machines weights by GA (Case 7). 

 

Model y1 y2 y3 y4 

FF 0.2381 0.5818 0.162 0.2977 

RBF 0.0763 0.0147 0.12 0.0386 

GRNN 0.1223 0.0715 0.1362 0.1443 

ANFIS 0.5633 0.3321 0.5817 0.5194 
 
 
 

Table 32. CM and its experts results (Case 7). 
 

Model GD Overall RMSE Overall MAE 

FF 0.904 6.19 2.59 

RBF 0.905 13.26 2.61 

GRNN 0.901 13.53 3.54 

ANFIS 0.907 3.93 1.07 

Average 0.904 9.23 2.45 

CM 0.888 3.83 1.62 
 
 
 

Table 33. Global desirability comparison. 

 

Model Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 

Average GD of 4 models 0.530 0.958 0.673 0.972 0.854 0.947 0.904 

GD of committee machine 0.59 0.976 0.678 0.976 0.863 0.929 0.888 

  
 

1.9% 0.8% 0.4% 1.0% -1.9% -1.8% 

Average Global Desirability (Cases 2-7) 0.1% 
  

 
 
 

modeling of multiple response optimization (MRO) 
problems. Committee machine is a collection of several 
experts or elements such as ANNs. Mathematically it is 
proved   every   committee  machine yields smaller errors  

than the average of all the experts. Current study, has 
considered four different ANNs and one committee 
machine to model seven different cases in MRO.  In 
addition, genetic algorithm is applied to find committee
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Table 34. RMSE comparison. 
 

Model Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 

Average RMSE of 4 models 2.65 4.88 0.54 9.53 1.16 9.24 9.23 

RMSE of Committee machine 2.16 1.18 0.29 4.22 0.44 6.78 3.83 

  -19% -76% -47% -56% -62% -27% -59% 

Average Overall RMSE (Cases 2-7) -54% 
 
 
 

Table 35. MAE comparison. 
 

Model Case1 Case2 Case3 Case4 Case5 Case6 Case7 

Average MAE of 4 models 1.48 2.81 0.30 3.77 0.67 3.52 2.45 

MAE of committee machine 0.94 0.67 0.22 1.38 0.27 2.33 1.62 

  -37% -76% -27% -64% -60% -34% -34% 

Average Overall MAE (Cases 2-7) -49% 
 
 
 

machine weights and independent variables with 
maximum desirability. The results show the final 
responses of committee machine have the error about 
50% in comparison with average error of ANNs, but 
committee machine have same global desirability with 
average global desirability of ANNs. 
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