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Large-scale image-based modeling is a challenging and important research topic, which has wide 
applications in various areas. Existed serial methods consume a significant amount of time for large 
problems. With the emergence of multi-core computers, it is possible to speed up the method using 
central processing unit (CPU) parallelism. In this paper, we present the design and implementation of 
multi-core large-scale image-based modeling that exploits hardware parallelism to efficiently solve the 
large-scale 3-D scene reconstruction problem. We explore the use of multi-core CPU to achieve high 
speedups for the whole problem. The speedup ratio can be close to the number of cores. Experimental 
results show that our method achieves the acceleration of the whole algorithm and also ensures the 
accuracy of the 3-D reconstruction.  
  
Key words: Large-scale image-based modeling, multi-core, central processing unit (CPU) parallelism, 3-D 
reconstruction, speedup ratio.   

 
 
INTRODUCTION 
 
Image-based modeling is a classic and hot issue in 
computer vision and image processing, and its goal is to 
create 3-D models from a collection of 2-D image 
measurements. Some methods (Lavoie et al., 2004; 
Wang et al., 2012) achieve the 3-D reconstruction with 
the help of structured light, but it is difficult for them to 
recover the textures of the scene. Another category of 
methods (Rander et al., 1997; Liu et al., 2011) depend on 
multi-camera arrays to obtain high quality 3-D models, 
but the costs of building multi-camera systems are very 
high. Recently, there has been a renewed interest in 
large-scale image-based modeling systems, especially 
those of which use the images captured by uncalibrated 
cameras, or collected from the Internet (Agarwal et al., 
2010; Snavely et al., 2006). The problem for this kind of 
methods is usually large-scale: with hundreds of or 
thousands of input images. Many methods adopt serial 
processing mode, which needs several days to 
reconstruct a 3-D model from several hundreds of images. 
With the rapid development of parallel computation 
resources, Agarwal et al.  (2009)  achieve  distributed 

computation running on a cluster of computers, and 
significantly shorten the running time. Since the hard disk 
space is local and not shared, they need to consider the 
problem of data distribution and communication. The 
emergence of multi-core computers motivates Wu et al. 
(2011) to propose a multi-core bundle adjustment 
algorithm (a key component of the problem) and achieve 
a 10x to 30x boost in speed over existing systems.  

In this paper, we present a multi-core implementation 
for the whole framework of large-scale image-based 
modeling, which significantly improves the computational 
efficiency without loss of reconstruction quality. We use 
central processing unit (CPU) parallelism to achieve high 
speedups over existing serial systems. The speedup ratio 
can be close to the number of cores.  
 
 
THE PROPOSED METHOD 
 

Pipeline of the large-scale image-based modeling 
 

As show in Figure  1,  the  large - scale  image - based  modeling 
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Figure 1. The pipeline of classic large-scale image-based modeling. 

 
 
 
method mainly contains three steps: feature detection, feature 
matching, and bundle adjustment. The input images are captured 
with uncalibrated cameras or collected from the Internet, and the 
number of images is usually large. In the first step, existed methods 
process the images one by one: extracting the EXIF tags, recording 
the focal length, and generating a shell script which processes the 

operations of converting file formats, detecting the features with 
scale-invariant feature transform (SIFT), and compressing the 
features in a serial manner. The second step uses the Approximate 
Nearest Neighbor (ANN) library (Arya et al., 1998) to match SIFT 
features, which costs about half of the whole processing time. 
Given a set of measured image feature locations and 
correspondences, the goal of the final step is to find 3-D point 
positions and camera parameters that minimize the reprojection 
error. The optimization problem is usually formulated as a 
non-linear least squares problem and solved by the 
Levenberg-Marquardt (LM) algorithm (Nocedal and Wright, 2006).  
 
  
Multi-core parallelized scheme 
 
In this section, we present our multi-core parallelized scheme for 
the three steps of the large-scale image-based modeling.  

 
 
Feature detection 
 
Although shell programming does not support multi-thread, there is 
still a way to parallelize the work by creating children processes in a 

multi-core environment. We first divide the input images into M  

lists that are saved in M  files, where M  is the number of 
available cores. Then, we generate a script of extracting the EXIF 
tags and recording the focal length for each list, and create a child 
process to complete the corresponding operation. The same is 
used for generating the shell script for feature detection.  
 
 
Feature matching 
 
We use message passing interface (MPI), instead of multi-thread, 
to parallelize this step in distributed environment. MPI does not 
share variables in the global scope but maintains independent code 
and data for each process. These processes communicate with 
each other by the respective data buffer. Therefore, the features 
generated in the first step are not shared by these processes, which 
must be read more than once. Fortunately, we find that reading 
these data does not cost too much time and the time of reading 
keys for all these processes is the same as reading these keys 

once. We adopt master-slave mode to achieve process 
collaboration. The main process is responsible for dividing tasks 

and then also participates in the calculation. Denote ( )f i  as the 

matching number for the image i . The amount of computation for 

the process j  that is assigned the task of matching the images 

from m  to n  is:  
 

( ) ( )
n

i m

F j f i


                                        (1) 

 

Hence, the main process divides the tasks so that the computation 
of each process is roughly equal, and then sends the image 
indexes to the corresponding process. Finally, the main process 
maintains the last task for its own computation.  
 

 

Bundle adjustment 
 

In this step, we use the computation interface provided by the PBA 
method (Wu et al., 2011). The reconstruction accuracy of the PBA 
method is less than that of the original serial method (Snavely et al., 
2006), which will affect the initialization and further the final 
reconstruction. Therefore, for some important initialization, we use 
the original bundle adjustment method (Snavely et al., 2006), and 

then adopt the PBA method to speed up.  

 
 
RESULTS 
 

We evaluate the performances of the proposed method 
on three datasets: Rilievo (93 pictures) captured with a 
Samsung digital camera, NotreDame1 (103 pictures) and 
NotreDame2 (204 pictures) provided by Noah Snavely 
(Snavely et al., 2006). All the experiments are individually 
performed on two workstations: one with three-core 
CPUs clocked at 3.2 GHz and 4 GB RAM running a 
32-bit Ubuntu operating system, and the other with 
eight-core CPUs clocked at 0.8 GHz and 16 GB RAM 
running a 64-bit OpenSUSE operating system (Figure 2).  

Table 1 gives the quantitative evaluation of the 
proposed method for the three datasets, compared with a 
serial method (Snavely et al., 2006). The speedup ratio is 

s pS t t  , which is the ratio of serial time st  over 

parallel time pt . This is an intuitive evaluation of how 

much is accelerated. The efficiency is E S n  , where 

n  is the number of threads or processes. The cost is 

p sC t n t E    . The degree of contribution  of  the  
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Figure 2. 3-D point clouds of (a) Rilievo and (b) NotreDame1 reconstructed by our method. 

 
 
 

Table 1. Quantitative evaluation of the proposed method for three datasets.   

 

Dataset Step 
Serial 

time 

Parallel 

time 
Cores 

Speedup 

ratio 
Efficiency (%) Cost 

Proportion 
(%) 

Degree of 
contribution 

R 

FD 5m22s 1m56s 3 2.78 92.53 5m48s 17.09 1.12 

FM 9m44s 3m27s 3 2.82 94.04 10m21s 31.00 1.25 

BA 16m18s 1m58s 3 8.29 276.27 5m54s 51.91 1.84 

All 31m18s 7m7s 3 4.33 131.24 23m51s   

          

N1 

FD 40m20s 9m1s 5 4.58 91.68 45m5s 26.68 1.26 

FM 1h21m47s 21m27s 5 3.81 76.25 1h47m15s 54.10 1.66 

BA 29m3s 6m28s 5 4.49 89.85 32m20s 19.22 1.18 

All 2h40m43s 35m33s 5 4.52 90.42 2h57m45s   

          

N2 

FD 1h23m2s 19m17s 5 4.31 86.12 1h36m25s 14.93 1.13 

FM 6h32m44s 1h32m4s 5 4.27 85.32 7h40m20s 70.92 2.19 

BA 1h20m22s 52m5s 5 1.54 30.86 4h50m25s 14.45 1.05 

All 8h36m31s 2h41m28s 5 3.20 63.98 13h27m20s   
 

R, Rilievo; N1, NotreDame1; N2, NotreDame2; FD, feature detection; FM, feature matching; BA, bundle adjustment. 

 
 
 

step i  is 
1

1 (1 1)i ii q s
Q

  
 , where iq  is the proportion of 

the computation of the step i  in the whole system, and 

is  is the speedup ratio of the step i . The more the 

degree of contribution is, the larger the played 
acceleration role is.  

As shown in Table 1, for feature detection  step,  the 
speedup ratio is close to the number of cores due to the 

small computation of serial component, which complies 
with Amdahl’s law. The same is used for feature 
matching step. For Rilievo dataset in the bundle 
adjustment step, the speedup ratio is larger than the 
number of cores, and the execution efficiency is even 
equal to 276.27%. This is because our approach is not 
simply the parallelization of the original program, but 
replacing its part with other parallelized process, which 
does not meet the condition of Amdahl’s law.  The  total 



 
 
 
 
execution time of each dataset is less than the sum of 
phased execution times, since the separate 
implementation of each step requires some additional 
overhead such as process creation. It can be seen that 
the proportion of the feature matching step increases with 
the expansion of the scale of the problem. The high 
degree of parallelism in the feature matching step has an 
important role to improve the execution efficiency of the 
whole system. Figure 1 gives the 3-D point clouds of 
Rilievo and NotreDame1 reconstructed by our method. 
The left-top corner of each subfigure shows one of the 
input images. It can be observed that our method 
maintains high quality of reconstruction when speeding 
up the algorithm.  
  
 
Conclusion 
 
In this paper, we present multi-core solutions to the 
problem of large-scale image-based modeling that run on 
currently available CPUs. These systems deliver a 
significant boost in speed over existing serial systems 
while maintaining the high quality of 3-D reconstruction. 
In the future, we would like to further improve the 
parallelism of various steps, especially for bundle 
adjustment, and at the same time ensure the high 
accuracy of 3-D reconstruction.  
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