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Artificial bee colony is a population-based search algorithm that mimics a natural behavior of real honey 
bees to find rich food sources to obtain maximum quantity of nectar and share the information of food 
sources with other bees in the hive. This paper concerns primarily about how to use artificial bee colony 
to solve examination timetabling problems which it is known as a NP-hard problem. It deals with 
assigning exams to a limited number of timeslots while satisfying a set of constraints. This algorithm 
works based on three categories of bees, that is, employed, onlooker and scout bees that communicate 
with each other in sharing the information of the food sources. Our computational experiments indicate 
that the proposed approach produces promising results when tested on two set of instances that have 
been widely used in literature. 
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INTRODUCTION 
 
Scheduling problems are considered NP-hard problems 
(Lewis, 2008), such as education timetabling, 
transportation and sport timetabling problems. This paper 
is concerned with university examination timetabling 
problems.  

Building automated examination timetabling systems 
attract the attention of a lot of universities in order to utilize 
the available resources and save times while constructing 
timetables. Due to the complexity of examination 
timetabling problems, solving these problems using 
intelligent ways lead to find good enough solutions that are 
difficult to be generated manually. As a result, many 
conferences such as PATAT, MISTA and ICAPS are 
devoted in order to motivate researchers to find better 
approaches to solve these kinds of problems. A general 
timetabling problem consists of assigning a number of 
events (exams, courses, meetings, etc.) into a limited 
number of timeslots (periods of time) and location, whilst 
satisfying a given set of constraints. Hard constraints must  
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be respected in order to produce a feasible timetable, 
whilst the violation of soft constraints is needed to be 
minimized as much as possible (Burke et al., 1996). 
Interested readers can find more details about some 
approaches which have been employed for solving 
examination timetabling problem (Burke et al., 1996; 
Carter et al., 1996; Carter, 1986; Lewis, 2008; Qu et al., 
2009). 

Various approaches based on honey-bees swarm have 
been used to solve optimisation problems (Kang et al., 
2009; Karaboga and Basturk, 2007). Honey-bees algorithms 
are classified into three different groups (Baykasoglu et al., 
2007) that is, foraging behavior, marriage behavior and 
queen behavior. As a marriage behavior, the honey-bees 
mating optimisation algorithm has been applied to solve 
examination timetabling problems (Sabar et al., 2009). 

Artificial bee colony algorithm (ABC) is a population 
based algorithm that employed the natural metaphors 
based on the foraging behavior of honey-bees swarm. To 
our knowledge, the ABC algorithm has not been tested on 
the examination timetabling problem. This motivates us to 
investigate the performance of the foraging behavior of the 
ABC algorithm when tested on two sets of examination 
timetabling instances. 
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The rest of the paper is organised as follows. 
Subsequently, the study formally presents the examination 
timetabling problem and formulation, after which it outlines 
the original Artificial Bee Colony algorithm, proposed 
approach, experimental results and discussion. Finally, 
some brief concluding comments are given. 
 
 
PROBLEM DESCRIPTION AND FORMULATION 
 
In this paper, the problem description is separated into two parts as 
follows:  
 
(1) Problem 1: This problem is proposed by Carter et al. (1996), 
which consists of 13 benchmark datasets that are taken from a 
variety of educational institutions, which is known as an 
uncapacitated examination timetabling problem where a room 
capacity is not considered. 
(2) Problem 2: International timetabling competition (ITC, 2007) 
dataset which consists of three tracks. In this paper, we consider the 
first track that represents an exam timetabling model which includes 
a number of real world constraints.  
 
 
Problem 1 
 
The problem description that is utilised in this paper is adapted from 
the description presented in Burke et al. (2004). Examination 
timetabling problems consist of these inputs as stated subsequently:  
 
(1) N is the number of exams 
(2) Ei is an exam, i ∈ {1,…,N} 
(3) T is the given number of available timeslots 
(4) M is the number of students 
(5) C = (cij)NxN is the conflict matrix where each element denoted by 
cij, i,j ∈{1,…,N} is the number of students taking exams i and j. 
(6) tk (1� tk �T) specifies the assigned timeslot for exam k (k 
∈{1,…,N}) 
 
We formulate an objective function which tries to space out students’ 
exams throughout the exam period (that is, considered as a soft 
constraint) (Expression (1)) that can then be formulated as the 
minimisation of:  
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Equation (2) presents the cost for an exam i which is given by the 
proximity value multiplied by the number of students in conflict. 
Equation (3) represents a proximity value between two exams 
(Carter et al., 1996). Equation (4) represents a clash-free 
requirement so that no student is asked to sit two exams at the 
same time. The clash-free requirement is considered to be a hard 
constraint.  
 
 
Problem 2 
 
The benchmark instances have been taken from the first track of the 
second International timetabling competition (ITC, 2007) (McCollum 
et al., 2010). Eight cases have been introduced. A set of hard and 
soft constraints are drawn from real world problems and are listed in 
Tables 1 and 2.  

A feasible timetable is one in which all examinations have been 
assigned to a period and room, and there is no violation of the hard 
constraints. The objective function is to minimise the violation of the 
soft constraints as given in Expression (5) (McCollum et al., 2010): 
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Each dataset has its own weight as shown in Table 3 (McCollum et 
al., 2010). 
 
 
ARTIFICIAL BEE COLONY ALGORITHM (ABC) 
 
Artificial bee colony algorithm (ABC) was introduced by Karaboga 
(2005) as a global optimization algorithm that simulates the foraging 
behavior of honey bees. The algorithm classifies bees into three 
groups as employed bees, onlooker bees and scouts bees. In this 
algorithm, employed bees fly around the search space to choose a 
food source and come back to a hive to share the food source 
information with onlooker bees. Based on this information, onlooker 
bees probabilistically choose their food sources. While, the 
employed bees whose food source has been abandoned become 
scout bees, and start to search a new food source randomly without 
any information. If the nectar amount of a new source is higher than 
the previous one in their memory, they memorize the new position 
and forget the previous one. ABC system combines local and global 
search methods, where the local search methods are carried out by 
employed and onlooker bees. While the global search methods are 
managed by onlooker bees and scout bees. The combination of the 
local and global search method is with an aim to attempt the balance 
between exploration and exploitation process. Figure 1 shows the 
pseudo code for the artificial bee colony algorithm proposed by 
Karaboga (2005).  

As shown in Figure 1, the position of the food source represents a 
possible solution and the nectar amount of the food source 
corresponds to the quality (fitness value) of the associated solution. 
The number of the employed bees is equal to the number of 
solutions in the population. At the first step, initial populations (food 
source positions) are generated based on a constructive heuristic 
algorithm. After the initialisation, the population is subjected to 
repeat the cycles of the search process of the employed, onlooker, 
and scout bees, respectively. An employed bee produces an 
adjustment on the food source position in her memory and discovers 
a new food source position. Provided that the nectar amount of the 
new one is higher than that of the previous source, the bee 
memorizes the new source position and forgets the old one. 
Otherwise she keeps the position of the one in her memory. After all  
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Table 1. Hard constraints. 
 

Hard constraints Explanation 
H1 There cannot be any students sitting for more than one exam at the same time. 
H2 The total number of students assigned to each room cannot exceed the room capacity. 
H3 The length of exams assigned to each timeslot should not violate the timeslot length. 
H4 Some sequences of exams have to be respected. e.g. Exam_A must be schedule after Exam_B. 
H5 Room related hard constraints must be satisfied e.g. Exam_A must be scheduled in Room 80. 

 
 
 

Table 2. Soft constraints. 
 

Soft 
constraints 

Mathematical 
symbol Explanation 

S1 C
R

S

2

 Two exams in a row: Minimise the number of consecutive exams in a row for a student.  

   

S2 C
D

S

2

 

Two exams in a day: Student should not be assigned to sit more than two exams in a day. 
Of course, this constraint only becomes important when there are more than two 
examination periods in the same day.  

   

S3 C
PS

S  Periods spread: All students should have a fair distribution of exams over their timetable. 

   

S4 C
NMD

S

2

 
Mixed durations: The numbers of exams with different durations that are scheduled into the 
same room has to be minimised as much as possible.  

   

S5 C
FL

 

Larger examinations appearing later in the timetable: Minimise the number of examinations 
of large class size that appear later in the examination timetable (to facilitate the 
assessment process). 

   

S6 C
P

 
Period penalty: Some periods have an associated penalty, minimise the number of exams 
scheduled in penalised periods. 

   

S7 C
R

 
Room penalty: Some rooms have an associated penalty, minimise the number of exams 
scheduled in penalised rooms. 

 
 
 

Table 3. The associate weight of ITC2007 collection of examination datasets. 
 

Data sets w D2

 w R2

 w PS

 w NMD

 w FL

 w P

 w R

 
Exam_1 5 7 5 10 100 30 5 
Exam_2 5 15 1 25 250 30 5 
Exam_3 10 15 4 20 200 20 10 
Exam_4 5 9 2 10 50 10 5 
Exam_5 15 40 5 0 250 30 10 
Exam_6 5 20 20 25 25 30 15 
Exam_7 5 25 10 15 250 30 10 
Exam_8 0 150 15 25 250 30 5 

 
 
 
the employed bees complete the search process, they share the 
information about the position of the food sources with the onlooker 
bees at the dance area. Each onlooker assesses the nectar 
information that is taken from all employed bees and then chooses a 

food source depending on the nectar amounts of sources. As in the 
case of the employed bee, she produces a modification on the food 
source position in her memory, and checks its nectar amount. The 
abandoned food sources are determined, and new food sources are  
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Initial food sources are produced for all employed bees 
REPEAT 
Each employed bee flies to a food source in her memory 
and determines a neighbour source, then evaluates its 
nectar amount and dances in the hive. 
Each onlooker watches the dance of employed bees and 
chooses one of their sources depending on the dances, 
and then goes to that source. After choosing a neighbour 
around that, she evaluates its nectar amount. 
Abandoned food sources are determined and replaced with 
the new food sources discovered by scouts. 
The best food source found so far is registered. 
UNTIL (requirements are met)  

 
Figure 1. Original artificial bee colony search algorithm. 

 
 
 
randomly produced to replace the abandoned ones by scout bees. 
 
 
The algorithm: Artificial bee colony search algorithm 
 
Construction heuristic 
 
In this paper, we employ the graph colouring approach (that is, 
largest degree heuristic) to generate the initial solution, where 
examinations with the largest number of conflicts are scheduled first. 
For more details about graph colouring applications to timetabling 
can be seen in Burke et al. (1996). 
 
 
Improvement algorithm 
 
Figure 2 illustrates the pseudo-code that represents our approach. 
The algorithm starts with feasible initial solutions which are 
generated by a largest degree heuristic, in the constructive phase. 

The employed bees work on random solutions and apply a 
random neighborhood structure on each solution. The solutions are 
arranged based on the penalty cost function, then the probability for 
each solution is determined. Onlooker bees work on the highest 
probability solution, and enhance it by applying a random 
neighborhood structure in order to reduce the violation of the soft 
constraints. Finally, scout bees determine the abandoned food 
sources and replace them with a new food source by performing 
several moves. 
 
 
Neighborhood structure 
 
In this paper, ten neighborhood structures have been employed in 
order to enhance the performance of searching algorithms. These 
neighborhood structures are presented as follows (Abdullah et al., 
2007):  
 
Nbs 1: Select two exams at random and swap timeslots. 
Nbs 2: Choose a single exam at random and move to a new 
random feasible timeslots. 
Nbs 3: Select two timeslots at random and simply swap all the 
exams in one timeslot with all the exams in the other timeslot. 

 
Initialisation: 
Initialize the initial population and Evaluate fitness; 
Calculate the initial cost function value, f(Sol);  
Set best solution, Solbest � Sol;  
Set maximum number of iteration, NumOfIte; 
Set the population size;  
//where population size = OnlookerBee = EmployeedBee; 
iteration � 0; 
Improvement: 
do while (iteration < NumOfIte) 
   for i=1: EmployeedBee 
Select a random solution and apply random  
    neighborhood structure;                             
 Sort the solutions in ascending order based on the  
         Penalty cost; 
     Determine the probability for each solution, based         
         on the following formula : 

          
i

i
i fit

fit
p
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−
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=

1
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    end for 
 
    for i=1: OnlookerBee 
      Sol*  � select the solution who has the higher  
            probability; 
      Sol** �  Apply a random Nbs on Sol*; 
      if (Sol** < Solbest) 
         Solbest=Sol**; 
      end if 
    end for 
    Scoutbee determines the abandoned food source  
       and replace it with the new food source. 
    iteration++   
 
   end do                          

 
 

 
Figure 2. The pseudo code for the artificial bee colony 
search algorithm. 

 
 
 
Nbs 4: Select 3 exams randomly and swap the timeslots 
between them feasibly. 
Nbs 5: Select 4 exams randomly and swap the timeslots 
between them feasibly. 
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Table 4. Uncapacitated examination timetabling datasets. 
 
Datasets Number of timeslots Number of examinations Number of students Conflict density 
car92 32 543 18419 0.14 
car91 35 682 16925 0.13 
ear83 I 24 190 1125 0.27 
hec92 I 18 81 2823 0.42 
kfu93 20 461 5349 0.06 
lse91 18 381 2726 0.06 
pur93 I 42 2419 30032 0.03 
rye92 23 486 11483 0.07 
sta83 I 13 139 611 0.14 
tre92 23 261 4360 0.18 
uta92 I 35 622 21267 0.13 
ute92 10 184 2750 0.08 
yor83 I 21 181 941 0.29 

 
 
 

Table 5. ITC2007 Examination datasets. 
 

Dataset D1 D2 D3 D4 D5 D6 D7 CD 
Exam_1 7891 7833 607 54 7 12 0 5.05 
Exam_2 12743 12484 870 40 49 12 2 1.17 
Exam_3 16439 16365 934 36 48 170 15 2.62 
Exam_4 5045 4421 273 21 1 40 0 15.0 
Exam_5 9253 8719 1018 42 3 27 0 0.87 
Exam_6 7909 7909 242 16 8 23 0 6.16 
Exam_7 14676 13795 1096 80 15 28 0 1.93 
Exam_8 7718 7718 598 80 8 20 1 4.55 

 
 
 
Nbs 6: Take two timeslots at random, say ti and tj (where j>i) 
where timeslots are ordered t1,t2,t3,…,tp. Take all exams that in ti and 
allocate them to tj, then allocate those that were in tj-1 to tj-2 and so 
on until we allocate those that were tj+1 to ti and terminate the 
process. 
Nbs 7: Move the highest penalty exams from a random 10% 
selection of the exams to a random feasible timeslots. 
Nbs 8: Carry out the same process as in Nbs 7 but with 20% of 
the exams. 
Nbs 9: Move the highest penalty exams from a random 10% 
selection of the exams to a new feasible timeslots which can 
generate the lowest penalty cost. 
Nbs 10: Carry out the same process as in Nbs 9 but with 20% of the 
exams. 
 
Note: For Problem 2, the neighborhood structures employed are 
Nbs 1, Nbs 2 and Nbs 3 with an aim to reduce the time taken in 
generating the candidate solutions (note that for the ITC2007 
datasets, the algorithm is run for 600 s as imposed during the 
examination timetabling competition). 
 
 
Benchmark dataset specification 
 
Problem 1: Uncapacitated datasets 
 
Table 4 shows the dataset’s specification of the uncapacitated 

examination timetabling problems, which is available at 
(http://www.cs.nott.ac.uk/~rxq/data.htm). 
 
 
Problem 2: Competition datasets (ITC2007) 
 
For competition datasets (ITC2007), the total number of datasets are 
twelve, however, only eight datasets are available at: 
(http://www.cs.qub.ac.uk/itc2007/Login/SecretPage.php). The 
competition is described in detail (McCollum et al., 2010). Table 5, 
shows the ITC2007 examination datasets which have been used in 
this paper. 
 
Note: 
 
D1: Number of students. 
D2: Number of actual students in the datasets.  
D3: Number of exams.  
D4: Number of timeslots  
D5: Number of rooms.  
D6: Period hard constraints.  
D7: Room hard constraints.  
CD: Conflict density. 
 
 
SIMULATION RESULTS 
 

ABC algorithm has been developed using Java sun micro
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Table 6. Parameters setting. 
 
Parameter Value 
Iteration 500 
population size 50 
Scout Bee 1 

 
 
 

Table 7. Results comparison on uncapacitated problems. 
 
Instance Our approach Best known Authors for best known 
car91 5.86 4.50 Yang and Petrovic (2004) 
car92 4.92 3.98 Yang and Petrovic (2004) 
ear83 I 38.34 29.3 Caramia et al. (2001) 
hec92 I 11.51 9.2 Caramia et al. (2001) 
kfu93 16.04 13.0 Burke et al. (2010) 
lse91 12.42 9.6 Caramia et al. (2001) 
pur93 I 7.6 3.7 Caramia et al. (2001) 
rye92 10.73 6.8 Caramia et al. (2001) 
sta83 I 158.01 156.9 Burke et al. (2010) 
tre92 9.58 7.9 Burke et al. (2010) 
uta92 I 3.99 3.14 Yang and Petrovic (2004) 
ute92 27.80 24.8 Burke et al. (2010) 
yor83 I 41.44 34.9 Burke et al. (2010) 

 
 
 
system. The parameter settings used in this work are 
shown in Table 6. 
 
 
Problem 1 
 

Table 7 provides the comparison of our results with the 
best known results in the literature. We also include other 
population-based approaches here for the comparison 
purpose. The purpose here is to compare the 
performance among the population-based approaches in 
solving the same problem. The comparison between ABC 
result and the best known results shows that even if we 
are unable to beat any of the best known results in the 
literature, we are still able to produce promising solutions. 

Figure 3 shows the behavior of the algorithm over three 
datasets that is, hec92I, sta83I and kfu93. The x-axis 
represents the number of iterations, while the y-axis 
represents the penalty cost. These graphs show how our 
algorithm explores the search space in which we believe 
that the way the algorithm behaves has a correlation with 
the complexity of the datasets (represented by the conflict 
density value). Note that the details of the conflict density 
values can be found in Qu et al. (2009). The higher 
conflict density signifies that more exams are conflicting 
with each other. The conflict density value for hec92I is 
0.42, sta83I is 0.14 and kfu93 is 0.06. The behavior of the 

algorithm works similar at the beginning of the iterations 
where the improvement of the solution can easily be 
obtained. Later it becomes steady and hard to be 
improved. However, for the kfu93 dataset (where the 
conflict density value is lower compared to hec92I and 
sta83I datasets), the algorithm is able to slowly improve 
the quality of the solution until it get stuck in the local 
optimum when the number of iteration almost reaches the 
maximum number of iteration used in this experiment. 
 
 
Problem 2  
 
Table 8 shows the comparison of our results with some 
other available results in the literature. The best results 
are presented in bold. 

We can see that the results obtained by the ABC 
algorithm are far behind the best known results. However, 
it is managed to produce feasible solutions for ITC2007 
datasets. 

Figure 4 shows the behaviour of the algorithm when 
applied on Problem 2 where the conflict density for 
Exam_3 is equal to 2.62. Again, the x-axis represents the 
number of iterations, while the y-axis represents the 
penalty cost. The ABC algorithm is unable to find better 
results for ITC 2007 datasets compare with the best known  



�

�

� �

4270          Int. J. Phys. Sci. 
 
 
 

�

�

�

�
�

�

�

(a)  

P
en

al
ty

 c
os

t 
P

en
al

ty
 c

os
t 

(b)  

Iterations 

Iterations 

Iterations 

(c) 

P
en

al
ty

 c
os

t 

 
 
Figure 3. Convergence graph for (a) hec92I, (b) sta83I and (c) kfu93. 

 
 
 
results in the literature. This is due to the algorithm that 
slowly improved the quality of the solution until the 
termination condition is met (which is set to 600 s). From 
Figure 4 we can see that the improvement of Exam_3 

stopped when the computational time is equal to 600 s, 
where at that point the number of iteration is equal to 117. 
We believe that if we prolong the search until the number 
of iteration is equal to 500 (as in the experiment applied to 
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Table 8. Results comparison on ITC2007 datasets. 
 

Datasets Muller (2009) Atsuta et al. (2007) Pillay (2007) Gogos et al. (2010) Gogos et al. (2009) Our approach 
Exam_1 4370 8006 12035 4775 4699 6582 
Exam_2 400 3470 3074 385 385 1517 
Exam_3 10049 18622 15917 8996 8500 11912 
Exam_4 18141 22559 23582 16204 14879 19657 
Exam_5 2988 4714 6860 2929 2795 17659 
Exam_6 26950 29155 32250 25740 25410 26905 
Exam_7 4213 10473 17666 4087 3884 6840 
Exam_8 7861 14317 16184 7777 7440 11464 
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Figure 4. Convergence graph for Exam_3. 

 
 
 
uncapacitated problem), the ABC algorithm still has a 
chance to further improve the quality of the solution. 
 
 
DISCUSSION  
 

The primary aim of this paper is to find good enough 
feasible solutions for examination timetabling problems by 
applying the artificial bee colony (ABC) algorithm. 
Through the results obtained, it is concluded that our 
preliminary results are comparable with the result 
obtained by previous empirical researcher. As a future 
work we would like to enhance the performance the ABC 
algorithm by applying different selection strategies in 
selecting onlooker bees from the population. Also a 
suitable mechanism to choose the neighborhood structure 
based on the solution state will be explored. This is 
subject to our future work. 
 
 
REFERENCES 
 
Abdullah S, Burke EK, McCollum B (2007). Using a Randomised 

Iterative Improvement Algorithm with Composite Neighbourhood 
Structures for the University Course Timetabling Problem. In 
Proceedings of MIC05: The 6th Metaheuristic International 
Conference, Vienna, Austria, In Metaheuristics - Progress in Complex 
Systems Optimization, Computer Science Interfaces Book Series, 
Springer Operations Research, ISBN-13:978-0-387-71919-1, 39: 
153-169. 

Atsuta M, Nonobe N, Ibaraki T (2007). ITC2007 Track 1: An Approach 
using general CSP solver.  www.cs.qub.ac.uk/itc2007. 

Baykasoglu A, Ozbakir L, Tapkan P (2007). Artificial bee colony 
algorithm and its application to generalized assignment problem. In 
Swarm Intelligence: Focus on Ant and Particle Swarm Optimization, 
TSC. Felix and KT. Mano j, Eds. Itech Education and Publishing, 
Vienna, Austria, 113–143. 

Burke EK, Bykov Y, Newall JP, Petrovic S (2004). A time-predefined local 
search approach to exam timetabling problem. IIE Trans., 36(6): 
509-528. 

Burke EK, Eckersley A, McCollum B, Petrovic S, Qu R (2010). Hybrid 
Variable Neighbourhood Approaches to Exam Timetabling. Eur. J. 
Oper. Res., 206: 46-53. 

Burke EK, Elliman DG, Ford PH, Weare RF (1996). Examination 
Timetabling in British Universities – A Survey. In EK.Burke and P.Ross 
(eds.), The Practice and Theory of Automated Timetabling: Selected 
Papers from the 1st International Conference, pp 76-90. Lect. Notes 
Comput. Sci., p. 1153. Springer. 

Caramia M, Dell’Olmo P, Italiano GF (2001). New algorithms for 
examination timetabling. Algorithms Engineering 4th International 
Workshop, Proceedings WAE 2001, Saarbrücken, Germany, Springer 
Lect. Notes Comput. Sci., 1982: 230-241. 

Carter MW (1986). A survey of practical applications of examination 
timetabling algorithms. J. Oper. Res., 34(2): 193-202. 

Carter MW, Laporte G, Lee SY (1996). Examination Timetabling: 
Algorithmic Strategies and Applications. J. Oper. Res., 47: 373-383. 

Gogos C, Alefragis P, Housos E (2010). An improved multi-staged 
algorithmic process for the solution of the examination timetabling 
problem, Annals of Operations Research. DOI: 
10.1007/s10479-010-0712-3. 

Gogos C, Goulas G, Alefragis P, Housos E (2009). Pursuit of Better 
Results for the Examination Timetabling Problem Using Grid 
Resources, CI-Sched '09. IEEE Symposium Computat. Intell. 
Scheduling, pp. 48-53. 



�

�

� �

4272          Int. J. Phys. Sci. 
 
 
 
Kang F, Li J, Xu Q (2009). Structural inverse analysis by hybrid simplex 

artificial bee colony algorithms, Comput. Struct., 87: 861-870. 
Karaboga D (2005). An idea based on honey bee swarm for numerical 

optimization. Technical Report TR06, Erciyes University, Engineering 
Faculty, Computer Engineering Department. 

Karaboga D, Basturk B (2007). A powerful and efficient algorithm for 
numerical function optimization: artificial bee colony (ABC) algorithm, 
J. Glob. Optim., 39: 459-471.  

Lewis R (2008). A survey of metaheuristic-based techniques for 
university timetabling problems. OR Spectrum, 30(1): 167-190. 

McCollum B, Schaerf A, Paechter B, McMullan P, Lewis R, Parkes AJ, 
Gaspero L, Qu R, Burke EK (2010). Setting the research agenda in 
automated timetabling: the second international timetabling 
competition. INFORMS. J. Comput., 22: 120-130. 

Muller T (2009). ITC2007 Solver Description: A Hybrid Approach. Ann. 
Oper. Res., 172(1): 429-446. 

Pillay A (2007). Developmental approach to the examination timetabling 
problem. www.cs.qub.ac.uk/itc2007. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Qu R, Burke EK, McCollum B, Merlot LTG (2009). A survey of search 

methodologies and automated system development for examination 
timetabling. J. Scheduling, 12: 55-89.  

Sabar NR, Ayob M, Kendall G (2009). Solving examination timetabling  
problems using honey-bee mating optimization (ETP-HBMO). In: 
Proceedings of the 4th Multidisciplinary International Scheduling 
Conference: Theory and Applications (MISTA 2009), 10–12 Aug 2009, 
Dublin, Ireland, pp. 399-408. 

Yang Y, Petrovic S (2004). A novel similarity measure for heuristic 
selection in examination timetabling, Lecture Notes Comput. Sci., 
3616: 334-353. 2005 Practice and Theory of Automated Timetabling 
V. 


