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The matrix optics formalism is applied to show that a simple Gaussian equation is enough to relate 
object and image distances in an optical system consisting of an arbitrary number of thick lenses in 
cascade immersed in air. First, the case of a single thick lens was studied. Applying sequentially the 
optical matrixes corresponding to refraction and displacement of the optical ray, and imposing certain 
conditions on the behavior of the bunch of rays being refracted by the lens, there were found 
characteristic parameters such as focal distance, back and front focal points, and principal planes. 
Then the equation relating object and image distances is found, which, after a coordinate 
transformation, becomes the well-known Gaussian equation, usually used to describe the more 
idealized case of thin lens. Further, the formalism is extended to compound systems of two, three and N 
thick lenses in cascade. It is also found that a simple Gaussian equation is sufficient to relate object 
and image distances no matter the number of lenses. 
 
Key words: Matrix optics, thick lenses, back focal length, front focal length, principal planes, focus, multi-lenses 
system. 

 
 
INTRODUCTION 
 
The matrix optics formalism is a powerful tool that can be 
applied to the study of thick multi-lenses systems. It 
allows an intuitive approach in order to understand more 
deeply dispositive such as cameras, that may consist of 
several thick lenses in cascade. On the other hand, when 
the object-image equation for a single thick lens is 
deduced using matrix formalism, an expression that is 
complicated to deal with is obtained. However, through a 
coordinate transformation on the image and object 
distances, it is possible to obtain a very interesting result 
which simplifies the expression to a formula that is 
formally identical to the familiar expression used for thin 
lenses, that is, the Gaussian equation. In this  work,  such 

expression introducing optical parameters such as 
effective focal distance, front and back frontal length, and 
principal planes was fully derived. This is not a new 
result, as it has been pointed out in Hecht (2017), Jenkins 
and White (2001), and Born and Wolf (1999). 
Nevertheless, in this work this feature is demonstrated in 
a different way, by using the matrix formalism (not used 
in the references before mentioned for this specific 
result), which allows exploration of other situations. 
Further, this analysis was extended to a system formed 
by two thick lenses separated by a distance d which gave 
an interesting result that all optical parameters 
characterizing this system and the object-image  equation 
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are mathematically identical to the previously found 
expressions for a single thick lens. Furthermore, this 
analysis was extended to optical systems comprising 
three and N thick lenses, and formal identical results 
were once again found. Indeed, one of the more 
interesting results in this work is this generalization and, 
as a direct consequence, the possibility of expressing the 
relation between object and image distances for an 
arbitrary number of thick lenses in cascade just in a 
single equation. Actually, this general result is predicted 
by Feynman (2006) without demonstration. 
 
 
MATRIX OPTICS 
 
The optical matrices used for this study, that is, the 
refraction and displacement matrices, can be found in 
Hecht (2017). An important remark is that these matrixes 
are deduced for the paraxial approximation, making all 
our results to be valid in that case. In this paper, these 
results will be briefly derived and the interpretation and 
further application of these matrices to develop the 
expressions for spherical thick lenses will be shown. 
Also, the classical signal convention, which states that 
object distances to the left (right) of some reference 
interface will be positive (negative), whereas image 
distances placed to the right (left) of such interface will be 
positive (negative) was adopted. As for the curvature 
radios of surfaces, they will be positive (negative), if they 
were convex (concave). This convention is currently 
adopted in practically all specialized literature. 

Let us suppose that an optical ray that makes an angle 
α1 with respect to horizontal direction z (from here on, the 
optical axis of the system), is propagated in an optical 
medium with a refraction index n1. It then hits a spherical 
medium with refraction index n2 at a height y on the 
surface, measured from the optical axis, suffers refraction 
and, as a consequence, changes the angle with respect 
to the optical axes to α2 (Figure 1). 

In Figure 1, ‘R’ denotes the radium of the sphere. The 
equation that completely describes refraction is: 
 

                      (1) 
 
Note that in Equation 1, if ‘R’ tends to infinity, then the 
equation reduces to Snell’s law (in paraxial form), as 
expected. 
We can express Equation 1 in a matrix form, by defining 
the vector (nα, y): 
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Applying the usual operation of matrix product, the  result  
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Figure 1. Refraction of an optical ray in a spherical surface. 
 
 
 

 
 
Figure 2. Propagation of an optical ray in an optical medium. 
 
 
 
corresponding to the n2α2 component reproduces 
Equation 1. The other term, y2 = y1, simply describes that 
no change in height was verified to the point of refraction. 

Now we describe the change of height, that is, in ‘y’ 
coordinate of the optical ray, as it propagates in an 
optical medium (Figure 2). 

It is easy to see that, as the ray propagates a distance 
d measured over the optical axis in the medium with 
refraction index n1, the changes in y coordinate is given 
by: 
 

112 tanαdyy += .                (3) 
 
As we work with the paraxial approximation, that is, α1 << 
1, so, tanα1 ~ α1, Equation 3 becomes: 
 

112 αdyy += .                (4) 
 
Now, we can write Equation 4 in matrix form as: 
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Performing the product, the expression that corresponds 
to the element ‘y2’, reproduces Equation 4, while the 
result corresponding to the component n2α2 reproduces 
the Snell law, in paraxial form, at the interface between 
the two medium.  
 
 
THICK LENSES IN AIR, FOCAL POINTS AND 
PRINCIPAL PLANES 
 
The vantage of the matrix formalism is that it can be 
applied to several optical mediums in cascade by simply 
multiplying the matrixes corresponding to each element. 
Now, it will be applied to a spherical thick lens immersed 
in air, which consist in two refractive spherical surfaces of 
radios R1 and R2, separated by a distance d over the 
optical axis, which is the thickness of the lens, as shown 
in Figure 3. 

In Figure 3, V1 and V2 are vertices points, localized at 
the intersections of the spherical surfaces of radio R1 and 
R2, with the optical axis, respectively. Also, it can be seen 
that an optical ray making an α1 angle with respect to the 
optical axis is refracted by the first surface, at a height y1, 
which propagates inside the lens (a distance d measured 
over the optical axis) and is then refracted by the second 
surface, leaving the lens with an angle of α2 at a height y2 
with respect to the optical axis. In order to mathematically 
describe the journey of the optical ray through the lens, it 
can be written as: 
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          (6) 
 
As the lens is immersed in air, the indexes of refraction 
that multiply the angles in the vector components are 
both equal to one. Also, the elements corresponding to 
file 1 column 2 in both of the refraction matrixes in 
Equation 6 can be easily understood by looking to the 
general form of this element in Equation 2, where its 
numerator could be described in words as: “(minus) index 
of refraction to the right of the interface minus the index 
of refraction to the left of the interface (over R)”. Then, 
the first interface (with radius ‘R1’) is surrounded by air 
(index nar=1) to the left and glass (of index n) to the right. 
The same applies to the second surface (with radius ‘R2’). 

A convenient way to look at Equation 6 is from right to 
left: first, we have the input ray, hitting the lens with angle 
α1 at a height y1, it is refracted by the first surface, with 
radio R1, then the ray is displaced a horizontal distance d, 
inside the lens, which has a refraction index n, and finally 
it is refracted by the second refractive surface, with radius 
R2, and this gave the resultant optical ray leaving the 
lens, characterized by α2 and y2. Recalling that matrix 
product is not commutative, the correct order of the 
matrixes   is  fundamental  in  order  to  achieve  the  right  

 
 
 
 

 
 
Figure 3. Thick lens. 

 
 
 
result. 

Performing the usual operation of matrix product, 
Equation 6 results: 
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Note that, if d = 0, that is, when the thick lens becomes a 
thin lens, the element a12 in the matrix characterizing the 
lens, becomes equal to minus the inverse of the focal 
distance for a thin lens. From here on, this term will be 
written as -1/f (parameter f for thick lens will be analyzed 
later on). 

Now, the back focal length, zb, that is, the distance, 
measured from V2, to which a thick lens focalizes a bunch 
of optical ray incident parallel to the optical axis, will be 
deduced (Figure 4). 

Equivalently, it may be though as a plane wave front 
(being the wave fronts perpendicular to the optical rays) 
that is incident in the length, and, after refraction, the lens 
produced a convergent spherical wave, whose center is 
at back focal point. Some of these fronts are shown in 
Figure 4. 

Now, the expression to find the height y, over the 
optical axis, of an optical ray that has travelled a 
horizontal distance z after leaving the lens will be written. 
In order to mathematically describe the whole process, 
the displacement matrix in air must be used in addition to 
the thick lens matrix in the following way: 
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Again,  it  is  convenient  to read  Equation  8 from right to  
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Figure 4. Finding back focal length for a thick lens. 

 
 
 
left, that is, an input ray (α1 y1) is refracted by the lens, 
and then propagates an horizontal distance z. Performing 
the product of the matrixes, Equation 8 becomes: 
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Now, the expression for y: 
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Noting that in our particular case α1=0, we seek for that 
value of z that makes y null for all values of y1 (Figure 4). 
This is by definition, the back focal point, zb: 
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Note that, if d=0, zb=f, that is, the same result for thin 
lenses, as expected (and in this particular case, of 
course, the focal distance became the familiar expression 
for thin lenses). 

A consideration of signal must be mentioned here. 
Back focal length is obviously an image point, and the 
corresponding signal convention should be applied, that 
is, if the result is positive, it should be localized to the 
right of V2, as schematically shown in Figure 4, where a 
positive value of zb is assumed. If negative, it should be 
localized to the left of V2. 

Now, we can deduce the front focal length, zf, that is 
the distance  measured  from  V1  on  the  optical  axis,  in  
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Figure 5. Finding front focal length for a thick lens. 
 
 
 
which an object point (or a source of spherical divergent 
wave fronts), must be located in order that a thick lens 
produce a bunch of parallel rays after refraction 
(corresponding to plane wave fronts). The situation is 
shown in Figure 5. 

Now we write the expression to find (α2,y2): 
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Note the order in the matrixes product in Equation 12, 
indicating that a ray with height y and angle α1 is 
propagated at a certain distance z, before it hits the 
length. Performing the product indicated in Equation 12: 
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Now, we analyze the term corresponding to α2 from 
Equation 13: 
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We must impose the conditions y = 0, and α2 = 0, which 
are compatible with an object point over the optical axis 
producing, via the thick lens, an “image at infinity” (or a 
bunch of parallel rays), as indicated in Figure 5. As a 
consequence, the term between parentheses in Equation 
14 should be equal to zero, for any value of α1. The 
particular  value  of z that makes this condition be fulfilled  
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Figure 6. Finding f meaning for a thick lens. 

 
 
 
is the zf: 
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If we set d = 0, that is, a thin lens, Equation 15 reduces, 
as expected, to the expression for thin lenses. 

Front focal point is an object point and, if positive, 
should be located to the left of V1 (as indicated in Figure 
5, where that case was supposed). If it has negative 
signal, of course, it should be localized to the right of V1. 

We can now investigate the significance of f for thick 
lenses. In Figure 6, we see the front focal point for a 
given thick lens, and a generic optical ray, with α1 angle, 
entering the length at y1 and leaving the lens at y2, with 
α2 = 0 (definition of zf). We now project back the output 
ray until it intersects the projection of input ray. Doing this 
for every possible α1 angle of those optical rays departing 
from zf being refracted by the thick lens, we obtain a 
plane, perpendicular to the optical axis, at a distance x 
from zf. This plane is called principal plane. In order to 
find the distance x, we observe that we can express the 
angle α1, in the paraxial approximation as: 
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Then we express x as: 
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To find y2 we write from Equation 7: 
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Again, we must write the expression for α1 in the paraxial 
approximation: 
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And obtain: 
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Now, using Equation 20 we can rewrite Equation 17 as: 
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Writing explicitly the expression for zf, Equation 21 
becomes: 
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From Equation 22, and with a little algebra, it is easy to 
find that: 
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In this way, we observed that the distance from zf to the 
principal plane is given by f. We can also generate 
another plane, using the concept of back focal point in a 
totally symmetric way, and it can be found that the 
distance between this second plane and zb is also f 
(Figure 7). 

These two planes are called first principal plane (1PP), 
and second principal plane (2PP), and they can be seen 
in Figure 8. 
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Figure 7. Focus and second principal plane for a thick lens. 

 
 
 
It should be noted that the principal planes are seldom 
inside the lens, as shown in Figure 8. Depending on the 
specific lens data, they could be outside the lens. 

For reasons that will be subsequently presented, it is 
convenient to localize the 1PP and 2PP with respect to 
the V1 and V2 vertices points, respectively; we call these 
distances h1 and h2 (Figure 8): 
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From the Equation 24, it can be seen that distance h1 
obeys the following signal convention: if positive, it is 
located to the right of V1, but if negative, to the left of V1. 
For h2 (Equation 25), the signal convention for images 
with respect to V2 holds, that is, if positive, h2 must be 
located to the right of V2 and if negative, to the left of V2. 
 
 
THICK LENS IN AIR AND IMAGE CONDITION 
 
Now, the image condition for a thick lens in air will be 
deduced. We consider an object, with height ho to a 
distance so from V1. An image will be formed by the thick 
lens at  distance  si,  measured  with  respect  to  V2,  and  
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Figure 8. Principal planes for thick lenses. 

 
 
 

 
 
Figure 9. Image condition for a thick lens. 
 
 
 
height hi. The situation is visualized in Figure 9. 

We see then that optical rays from object points will 
propagate a distance so over the optical axis; it will then 
be refracted by the thick lens and propagate a distance si, 
to the corresponding image point. In mathematical terms, 
we can write: 
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Where the matrix A represent the thick lens, being its 
elements: 
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Performing the operation indicated in Equation 26, we 
arrive at: 
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In order to mathematically find the image condition, we 
can consider an object point, for example, the one at the 
top of the object. This point is a front of spherical 
divergent waves (some of which are shown in Figure 9, 
perpendicular to the optical rays). The lens, in order to 
form an image, should convert this divergent wave front 
into a convergent one, whose convergence point is the 
image point corresponding to the object point at the top of 
the object. Then, we write, from Equation 31, the 
expression corresponding to hi: 
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It is easy to see that the height of a specific image point 
(for example the one corresponding to the top), should 
not depend on the angle α0. In this way, the image 
condition is: 
 

0=
∂
∂

o

ih
α                                                                 (33) 

 
Applying Equation 33 in Equation 32 
 
( ) 022211211 =+++ ooi saasaas                                 (34) 

 
We explore Equation 34 when d=0, that is, a thin lens. In 
that case, the matrix elements become: a11 = 1, a12 = -1/f, 
where f is now reduced to  the  focal  distance  for  a  thin  

 
 
 
 
lens, a21=0 e a22=1. With these values for the matrix 
elements, it is trivial to see that Equation 34 becomes the 
well-known Gaussian formula for thin lenses. 

We rewrite Equation 34 as: 
 

022211211 =+++ oioi saassaas
.                             (35) 

 
Now, we seek for new coordinates, s´i and s´o, that allows 
to write Equation (35) in a simpler way. We can write: 
 

oss oo += ´
.                                                             (36) 

 
iss ii += ´

.                                                            (37) 
 
Introducing Equations 36 and 37 in Equation 35, and 
rearranging in a convenient way: 
 

0)´(´´)´( 112221122212121211 =++++++++ iaoaaoiaaiasssaoaas oioi

                                                                       (38) 
 
From Equation 38, it is easy to see that, in order to obtain 
an expression that looks like the Gaussian formula for 
thin lens, the following conditions should be imposed: 
 

11211 =+ oaa                                                                (39) 
 

12212 =+ aia                                                                (40) 
 

011222112 =+++ iaoaaoia                                        (41) 
 
Solutions to Equations 39 and 40 give: 
 

12

111
a

ao −
=

.                                                           (42) 
 

12

221
a

ai −
=

.                                                          (43) 
 
Equations 42 and 43 make Equation 41 to be fulfilled 
(this demonstration requires a certain amount of algebra, 
and it is shown in the Appendix). As a consequence, we 
were able to find new object and image distances that 
allow us to write Equation 35 in a familiar way. Replacing 
the corresponding elements of the lens matrix in 
Equations 42 and 43, we obtain: 
 

( )
2

1
nR
dnfo −=

                                            (44) 



 
 
 
 

 

 
 
Figure 10. Principal planes and image condition for a thick lens. 

 
 
 

( )
1

1
nR
dnfi −−=

.                                            (45) 
 
These expressions are closely related to Equations 24 
and 25, that is, the distances of the principal planes to 
their respective vertices points. As the distances so and si 
are measured with respect to the vertices, this means 
that, in order to obtain a simpler lens equation, we must 
measure the object and image distances with respect to 
the 1PP and 2PP respectively, as shown in Figure 10. 

As a consequence, we can replace the thick lens by the 
principal planes, and write the Gauss equation: 
 

fss io

1
´
1

´
1

=+
.                                            (46) 

 
s´O follows the signal convention for objects; if positive 
(negative), it is located at the left (right) of 1PP, while s´i 
follows the signal convention for images; if positive 
(negative), it is located at the right (left) of 2PP. 

Of course, if we make d=0, that is, a thin lens, the two 
principal planes coalesce into one, and in that case, so = 
s´o and si = s´i. 
 
 
TWO THICK LENSES SYSTEMS 
 
The formalism developed in the last sections can be 
generalized to a two lenses system. 

Let us suppose a system of two thick lenses, 
characterized by matrixes A and B, and separated by a 
distance d. The lens A has refraction index na, thickness 
da, radius R1a, and R2a  whereas  for  the  lens  B, index nb,  
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thickness db, radius R1b, and R2b. Matrix elements for 
each lens are the same as in Equations 27 to 30, with the 
specific parameters for each lens: 
 

a

a

a

a

R
d

n
na

2
11

11 −
+=

  .                                           (47) 
 

( ) ( )










 −
+








−−−=−=

aaa

aa

aa
a

a RRn
dn

RR
n

f
a

21

2

21
12

11111

          (48) 
 

a

a

n
da =21

.                                                         (49) 
 

( )
a

a

a

a

R
d

n
na

1
22

11 −
−=

.                                 (50) 
 

( )
b

b

b

b

R
d

n
nb

2
11

11 −
+=

.                                 (51) 
 

( ) ( )










 −
+








−−−=−=

bbb

bb

bb
b

b RRn
dn

RR
n

f
b

21

2

21
12

11111

.    (52) 
 

b

b

n
db =21

                                                         (53) 
 

( )
b

b

b

b

R
d

n
nb

1
22

11 −
−=

                                (54) 
 
The system is shown in Figure 11. Note that we have 
now four vertices points, V1a, V2a, V1b, and V2b. 

We write for the matrix of the two lenses system: 
 

























=

2221

1211

2221

1211

1
01

aa
aa

dbb
bb

M ab

.              (55) 
 
Where the elements aij and bij are specified in the 
Equations 47 to 54.  

The resultant matrix has elements: 
 

( )211112111111 adababM ab ++=
.                          (56) 

 
( )221212121112 adababM ab ++=

.                        (57) 

ho

hiso
d

V2V1

R1 R2

n

si

s´o s´i

1PP 2PP
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Figure 11. Two thick lenses separated a distance ‘d’. 

 
 
 

( )211122112121 adababM ab ++=
.                     (58) 

 
( )221222122122 adababM ab ++=

.                     (59) 
 
It may be illustrative to develop the element Mab12 of the 
compound system using the matrix elements explicitly 
(Equations 47 to 54). As already seen for one single lens, 
the element “1-2” is related to the focal distance. After a 
little algebra, Equation 57 becomes: 
 

( ) ( )
abb

bb

baa

aa

baba
ab fRn

dn
fRn
dn

ff
d

ff
M

21
12

1111 −
−

−
++−−=

   (60) 
 
It will be shown that this expression corresponds to the 
negative of the inverse of the focal distance for the two 
thick lenses, separated by a distance d. Here, it is 
referred to as focal distance, fab. Meanwhile, it is easy to 
see that, making da= db = 0, that is, two thin lenses, 
Equation 60 reduces to the well-known expression of the 
(negative of the inverse) focal distance for two thin lenses 
separated by a distance d (where fa and fb, of course, are 
reduced to the expressions of focal distances for thin 
lenses). 

We can determine the back focal length for this system, 
proceeding in an analogous way as we did for the single 
thick lens (Equation 8), that is, 
 

























=









1

1

2221

12112

1
01

yMM
MM

zy abab

abab αα

                (61) 
 
Performing the product of matrixes in Equation 61 and 
writing the expression for y: 

 
 
 
 

( ) ( ) 1221212111 yMzMMzMy abababab +++= α
    (62) 

 
As we already know, for back focal point, α1=0, and we 
must compute the value of z that makes y null for all 
values of y1: 
 

12

22

ab

ab
b M

Mz −=
                                                      (63) 

 
Writing Mab12 as -1/fab, so:  
 

22ababb Mfz =
                                                      (64) 

 
Now, we take a look at the expression for zb of the single 
thick lens (Equation 11). It may be written, in term of the 
matrix element of the lens, as zb = fa22. 

Also, we can find the front focal length for the 
compound system of thick lenses, using a reasoning 
analogous to that used in Equations 12 to 15, the result 
is: 
 

11ababf Mfz =
                                                      (65) 

 
Once more, we observe that the expression is formally 
identical to the corresponding front focal length for a 
single thick lens (Equation 15), that may be written using 
the matrix element as zf = fa11. 

The next logical step is to find the principal planes for 
the two thick lens system and find the relation with the 
focal distance, fab (Figure 12). 

In Figure 12, we find the 1PP for the two thick lens 
system using, as before, the property of front focal point, 
zf, and projecting back the y2 coordinate. Thereafter, we 
write for the angle α1 (in the paraxial approximation): 
 

fz
y

x
y 12

1 ≅≅α
.                                           (66) 

 
Then, we can write for x: 
 

fz
y
yx

1

2=
.                                                        (67) 

 
which is, of course, formally the same equation obtained 
when the single thick lens was studied. Now, in order to 
obtain an expression for y2 in our two thick lenses 
systems, we write: 
 

















=









1

1

2221

1211

2

2

yMM
MM

y abab

abab αα

                            (68) 
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Figure 12. Finding principal planes for two thick lenses 
separated a distance ‘d’. 

 
 
 
Note that this expression allows us to obtain the height 
and angle, α2 and y2, of a ray leaving the compound 
system at the last surface (R2b), as a function of the 
corresponding parameters α1 and y1 of a ray hitting the 
systems at the first surface (R1a). 
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From Equation 68, we obtain for y2: 
 

1221212 yMMy abab += α
                                  (69) 

 
Substituting α1 from Equation 66 in Equation 69: 
 

122
1

212 yM
z
yMy ab

f
ab +=

                          (70) 
 
from which it is trivial to obtain: 
 

22
21

1

2
ab

f

ab M
z

M
y
y

+=
                                 (71) 

 
Now we can substitute Equation 71 in Equation 67 and 
obtain (remember that zf = fabMab11): 
 

221121 abababab MMfMx +=
                          (72) 

 
Our next task is to demonstrate that x = fab. It is a long 
algebra but also, one of the principal points of this work, 
so it will be developed here. We write Equation 72 
explicitly as a function of the matrix elements: 

( ) ( ) ( )]][[ 221222122121111211112111221121 adababadababfadababx ab +++++++=                                          (73) 
 
Doing some basic algebra, Equation 73 can be written as: 
 

( )
]

[

222221121222211212212112

1221111222221111221212121211221112211111212211221121

ababdabababab
abdababababdababdbaababfabdababx ab

+++
+++++++++=

                                 (74) 
 
We see, in Equation 74, that the term within the 
parentheses, multiplying the a11db22 factor, is the Mab12 

matrix element (Equation 57), which is equal to -1/ fab. 
We write then: 

 

)( 2222211212222112122121121221111222221111221112211111212211221121 ababdabababababdabababb
f
daababfabdababx

ab

ab +++++−+++=
                       (75) 

 
In Equation 75, it is possible now to cancel the second and fifth terms. Doing this and after a rearrangement, we obtain: 
 

( ) ( )][]1[ 221212222112212112222211112122121212111121 adabbaababababfabdababfabx abab +++++++=                                         (76) 
 
We can express the factors between parenthesis in the second and sixth terms using the fact that:
 
-1/fab=b11a12 +b12(da12+ a22), then: 
 

)]1([)]1(1[ 121122211221211222221111212222121121 ab
f

baababababfabab
f

fabx
ab

ab

ab

ab −−++++−−+=
                                          (77) 
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After that, it can be obtained: 
 

22211211222211112211211212212112 baabfababfaabbfaabbfx abababab −+−=    (78)                                                                       
 
And, finally: 
 

( )( )2211211222111221 bbbbaaaafx ab −−=                     (79) 
 
Now, the elements aij and bij must be explicitly replaced in 
Equation 79, using Equations 47 to 54. Working with the 
first factor: 
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22111221 
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n
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n
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daaaa

         (80) 
 
After a simple algebra, it is obtained: 
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
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+−−=−

aa
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2

21

22111221

11111

                                                                               (81) 
 
The term between parentheses in Equation 81 is equal to 
1/fa (Equation 48), so: 
 

122111221 −=− aaaa                                              (82) 
 
Obviously, b21b12 - b11b22 = -1 also. With this, Equation 79 
can be finally written as: 
 

abfx =
                                                        (83) 

 
With this demonstration, it has been shown that the 
interpretation of fab as the focal distance of the two thick 
lenses systems is correct, and totally analogous to the 
case of one single thick lens. We can now write the 
expression for focal distance of two thick lenses 
separated by a distance d as: 
 

( ) ( )
abb

bb

baa

aa

babaab fRn
dn

fRn
dn

ff
d

fff 21

11111 −
−

−
++−−=−

    (84) 
 
The principal plane found and shown in Figure 12 is the 
first principal plane. Of course, the second principal plane 
is easily found and is verified that its distance to the back 
focal point, zb, is also fab. 

The next steps now are, in close analogy with the 
single thick lens case, to find the distances of the 1PP 
and 2PP, h1 and h2, which will be measured with respect 
to the outermost vertices points of the system, that is, V1a 
and V2b respectively, and also determine the image 
condition. 

In order to  find  the  distances  of  the  principal  planes  

 
 
 
 
with respect to the outermost vertices points, we write: 
 

( )111 1 ababfab Mfzfh −=−=
.                        (85) 

 

( )1222 −=−= abababb Mffzh
.                    (86) 

 
Where Equations 64 and 65 were used to express front 
and back focal distances for the two thick lens system. As 
before, h1 and h2 follow the signal convention for object 
and images, respectively. 

To find image condition, we measure the object 
distance, so, with respect to V1a and image distance, si, 
with respect to V2b (Figure 13). 

Writing the matrix equation for the object-two thick 
lenses system-image: 
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        (87) 
 
We see that Equation 87 is formally identical to Equation 
26, thus, it is verified that the image condition is:   
 

022212111 =+++ aboaboiababi MsMssMMs
       (88) 

 
which is formally identical to Equation 35; therefore, we 
can now follow the same steps of Equations 36 to 45, to 
the extent of writing the image condition for the two thick 
lenses system in the simple form of a Gaussian equation. 
To achieve this, of course, object and image distances 
must be measured with respect to the principal planes. 
With this condition, a complicated system as shown in 
Figure 13 is reduced to the one shown in Figure 14. 

Furthermore, that system is described analytically by: 
 

abio fss
1

´
1

´
1

=+
.                                            (89) 

 
 
THREE AND N THICK LENSES, IMAGE CONDITION 
 
The expressions for three, four and N thick lenses 
systems follow the same general structure. Consider a 
three thick lenses system, A, B, and C, being the a, b 
lenses identical to the system seen in the last section, 
and C lens is located to a distance dbc to the right of B 
lens. The c lens, of course has matrix elements 
mathematically identical to those represented in the 
Equations 47 to 50, and characterized with usual 
parameters, refraction index nc, thickness dc, radius R1c, 
and R2c. The matrix for this system is: 



 
 
 
 

 
 
Figure 13. Image condition for two thick lenses. Principal planes 
are located respect to outermost vertices points, V1a and V2b. 
 
 
 

 
 
Figure 14. Object and Image coordinates for two thick lenses with 
respect to the principal planes. 
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            (90) 
 
And the matrix elements: 
 

( )
( )
( )
( )221222122122

211122112121

221212121112

211112111111

ababbcababc

ababbcababc

ababbcababc

ababbcababc

MMdcMcM
MMdcMcM
MMdcMcM
MMdcMcM

++=
++=
++=
++=

                  (91) 
 
All the characteristics parameters for this system,  as  the  
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front focal point, back focal point, etcs, can be obtained 
from these elements, using the expressions already seen 
for the two thick lenses system, and substituting the 
corresponding matrix element to the three lenses system. 
Of course, the focal distance is associated to the Mabc12 
element as usual. A closer look at Equation 91 allows us 
to write them in a compact form: 
 

( )jabjabbcijabiijabc MMdcMcM 2,1,21,1, ++=
           (92) 

 
Where ij represents the index of the matrix. 

Finally, we can write the expression for the matrix 
elements of a system of N thick lenses: 
 

( )jnabjnabnnijnabiijnab MMdnMnM 2,1...1,1...121,1...1,... −−−− ++=
                                                                                 (93) 
 
Where nij represents the matrix elements corresponding 
to the last thick lens of the system (that is, the last on the 
right), and dn-1n, the distance between this last lens and 
the one immediately at left, N-1. Of course, the other 
distances are contained in the Mab…n-1,ij matrix. 

As before, we can use the matrix elements of Equation 
93 and the general expressions already derived, to find 
any parameter of interest of an optical system formed by 
N thick lenses. Also, we can determine the two principal 
planes for this system and find image distances with a 
simple Gaussian equation (Equation 89), keeping in mind 
that the focal distance is always related to the Mab..n,12 
element and the object and image distances should be 
measured with respect to the 1PP and 2PP, respectively. 
 
 
CONCLUSIONS 
 
In this work, thick lenses immersed in air using the matrix 
formalism in the paraxial approximation have been 
studied and their characteristic parameters, such as focal 
distance, back and front focal points, principal planes and 
object-image equation has been determined. A simple 
Gaussian equation, identical to the one used for the 
idealized case of thin lenses is found to relate the object 
and image distances, when these are measured with 
respect to the principal planes. Also, the analysis has 
been extended to two thick lenses separated by a 
distance d. Also, an expression for the focal distance of 
this system, and the back and front focal points and 
principal planes has been determined. It was settled that 
the mathematical expressions determining these 
parameters are formally identical to the corresponding to 
the single thick lens, as a function of the matrix elements 
characterizing both systems. Also in the case of the two 
thick lenses, as soon as the principal planes were 
determined, it was found that a simple Gaussian equation 
relates the object and image distances measured with 
respect  to  the  principal  planes.  Finally,  extending  this  
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analysis to three and N thick lenses systems, analogous 
results was found. 

It is interesting to observe that all well-known 
expressions relating thin lenses systems can be deduced 
from the more realistic formulas derived in this work, 
simply by making the parameter da of the lens equal to 
zero, which is, passing from a thick to a thin lens. 

This result is of particular interest given that in an 
optical system with an arbitrary number of lenses, allow 
us to find a single pair of principal planes associated to 
that system, and determine image distances (given the 
object distances) by resolving a simple Gaussian 
equation. This last result that was mentioned by 
Feynman (2006) in his lectures book, although well 
known to all specialists in the field, had not been formally 
derived in the basic or intermediate optic literature to the 
best of the researcher’s knowledge. 
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APPENDIX 
 
Our task here is to demonstrate that the following identity is true: 
 

011222112 =+++ iaoaaoia .                                     (A1) 
 
Where o and i are given by Equations 42 and 43. Substituting then those Equations in Equation (A1) we have:  
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a
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After the basic algebra and further simplifications, Equation (A2) is reduced to: 
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=−+
a
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a                                                 (A3) 

 
Substituting the expressions for the matrix elements aij, Equation (A3) becomes: 
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After the usual algebra: 
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Clearly, the term between brackets in Equation (A5) is -1/fa, and the identity is verified. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


