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This research note improves the optimization process of a manufacturing run time problem studied by 
Chiu et al. (2011) by presenting a direct proof of convexity of the long-run average cost function of such 
a problem. It can be used to replace Theorem 1 on conditional convexity given by Chiu et al. enhance 
quality of optimization process, and eliminate the computational efforts in verifying the conditional 
convexity. 
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INTRODUCTION 
 
Manufacturing run time problem considering random 
machine breakdown and/or scrap rate have been studied 
extensively (Groenevelt et al., 1992; Makis and Fung, 
1998; Law and Wee, 2006; Chiu et al., 2007; Lin et al., 
2008; Chen et al., 2010; Chiu et al., 2010; Cheng and 
Ting, 2010; Chiu and Ting, 2010; Pai and Ting, 2011; Ting 
et al., 2011). In a recent paper, Chiu et al. (2011) studied 
a manufacturing run time problem with defective rate and 
random machine breakdown. They derived the long-run 
average cost per unit time, and proposed a theorem on 
conditional convexity of the cost function in their 
optimization process. For the purpose of improving 
quality of their optimization process, we reexamine and 
present a direct proof of convexity of cost function for 
such a specific manufacturing run time problem. To ease 
readability, the following notation used in this note is the 
same as that in Chiu et al. (2011). 
 
P = production rate (items per unit time), 
λ = demand rate (items per unit time), 
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x = a random defective rate, x is a random variable with 
known probability density function, 
β = number of breakdowns per year, a random variable 
that follows the Poisson distribution, 
M = cost for repairing and restoring the machine, 
K = setup cost for each production run, 
C = production cost per item ($/item, inspection cost per 
item is included), 
Cs = disposal cost for each scrap item ($/item), 
H = holding cost per item per unit time ($/item/unit time), 
t = production time before a random breakdown occurs, 
t1 = the optimal production run time (that is, production 
uptime) to be determined, 
g = a constant time needed to repair and restore the 
machine. 
T = cycle length whether a machine breaks down or not, 
TCU(t1) = the total production-inventory costs per unit 
time whether a breakdown takes place or not, 
E[TCU(t1)] = the expected total inventory costs per unit 
time whether a breakdown takes place or not. 
 
Recall numerical expressions for E[TCU(t1)] and w(t1) as 
follows (from Equations (20) and (21) in Chiu et al. 
(2011), respectively). 



 
 
 
 

( )
[ ] ( )

[ ]
[ ] ( )

[ ]

( ) [ ] [ ]

1 1
1

1
1 1

2

1 1

1

1 1 1 1

   where 1 2

t t

t ts

t
K M

E TCU t C C E x δ
E x PP E x

δ h P E x PE x E x g

e e

e e

β β

β β

λβ λβ β β
λ λ

λ λ β

− −

− −

 
− − +     = + + + +       −  − − −         

  = − − + +        (1) 
 

1

1
1

2(1 )
( )

(1 )

t

t

K
w t

Pδ

e

e

β

β

λβ

β

−

−

 −
= + 

+                                             (2) 
 
 
MATERIALS AND METHODS 
 
Proof of convexity of the long-run cost function 
 
First, one obtains the first and second derivatives of E[TCU(t1)] as 
follows (from Equation (1)). 
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In Equation (4), because the mean time between breakdowns 1/β is 
exponentially distributed with density function f(t) = βe-βt1 and 
cumulative density function F(t) = 1-e-βt1; as β and t1 > 0, the first 
term of Equation (4) is greater than zero. This is 
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Therefore, for the second derivative of E[TCU(t1)] to be greater than 
zero, the second term of Equation (4) must be greater than zero. 
That is 
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As β and t1 > 0, 0 < e-βt1 < 1, so 1 < (1+ e-βt1) < 2, hence {2/(1+e -

βt1)} > 1; from Equation (7), one has 
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In Equation (8), let y = Kλ /P δ, one has 
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For deriving the optimal run time, one would set the first derivative 
of E[TCU(t1)] (Equation (3)) equal to zero (Hillier and Lieberman, 
2001;  Lin  et  al.,  2008;  Nahmias,  2009;  Ting  et  al.,  2011),  and  
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because the first term of Equation (3) is greater than zero, this 
implies 
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Substituting y = Kλ /P δ, one has 
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Incorporating Equations (9) and (13), one has 
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One verifies that βt1 + e-βt1 (refer to Equation (11)) is monotone with 
respect to t1 > 0 and w(t1) > t1 (Equation (14)). Condition of Equation 
(7) holds, hence the second derivative of the E[TCU(t1)] must be 
positive at the stationary point. That is 
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This concludes the proof of convexity of the long-run average cost 
function for such a specific production run time problem. 

 
 
NUMERICAL EXAMPLE AND VERIFICATION 

 
Here, the same example as in Chiu et al. (2011) was 
adopted to verify numerically the proposed proof. The 
following are values of related parameters in the 
example: 

 
P  = production rate, 10000 units per year, 
λ = annual demand rate 4000 units, 
x = defective rate which follows uniform distribution over 
the interval [0, 0.1], 
β = number of breakdown that follows a Poisson 
distribution with mean β = 0.5 times per year, 
M = repair cost $500 for each breakdown, 
K = setup cost $450 for each production run, 
C = $2 per item (inspection cost per item is included), 
Cs = $0.3 disposal cost for each scrap item, 
h = $0.6 per item per unit time, 
g = 0.018 years, a constant time needed to repair and 
restore the machine. 
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To demonstrate the second derivative of E[TCU(t1)] is 
greater than zero, one uses the resulting t1* = 0.3418 
(years) given by Chiu et al. (2011) to verify if Equation 
(14) holds. As a result, [w(t1*) = 0.3686] > [t1*=0.3418]. 
One finds that [w(t1*) - t1*] > 0, hence Equation (7) holds. 
With extra computational efforts, one can also show the 
following result from Equation (4): 
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Numerical verification is accomplished and the long-run 
average cost function E[TCU(t1)] is convex. 
 
 
RESULT AND CONCLUSIONS 
 
This research note improves the optimization process of 
a manufacturing run time problem studied by Chiu et al. 
(2011) by presenting a direct proof of convexity of the 
long-run average cost function of such a problem. For 
practitioners in the field who would like to adopt Chiu et 
al.’s solution procedure for solving the practical 
production run time problem, computational efforts in 
verifying conditional convexity (that  is, Theorem 1 and 
Table 1 in Chiu et al. (2011)) can now be totally 
eliminated. This proof can be used to replace Theorem 1 
given by Chiu et al. and enhance quality of the 
optimization process for such a realistic problem. 
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