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Single objective optimization for maximizing total net benefit from farming is presented in this study. 
Differential evolution algorithm which is a family of evolutionary algorithm for fast optimization is 
employed for the model. The single objective optimization is used to find a better solution using the 
results of multi-objective optimization of crop planning where three objectives are considered. The 
objectives are to maximize both total net benefit and agricultural output while minimizing the total 
irrigation water used. The methodology adopted in this study is used to assist in choosing a solution 
when many non dominated solutions are presented by a multi-objective optimization. The other two 
objectives are used as constraints of the problem while maximizing the total net benefit only. The ten 
strategies of differential evolution are tested with this model. DE/rand/1/bin generated a maximum total 
net benefit of ZAR 1,330,000 after 1,207 iterations from a planting area of 771,000 m2 using 704694 m3 of 
irrigation water while multi-objective differential evolution algorithm (MDEA1) generated the total net 
benefit of ZAR 1,304,600. It is concluded that this methodology can be used to generate better results 
than using a multi-objective model only. It is also suggested that each objective can be solved 
separately to get better solutions than the ones generated by multi-objective models using the same 
procedure with suitable modifications. 
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INTRODUCTION 
 
Differential evolution (DE) has been applied to several 
engineering design problems both as single objective and 
multi-objective optimization techniques. In DE, all 
solutions have the same chance of being selected as 
parents without dependence on their fitness value. DE 
employs a greedy selection process. The better one of 
new solution and its parent wins the competition 
providing significant advantage of converging 
performance over genetic algorithms (GA). DE algorithm 
is a stochastic optimization method minimizing an 
objective function that can model the problem's objectives 
while incorporating constraints. The algorithm mainly has 
three advantages: Finding the true global minimum 
regardless of  the  initial  parameter  values,  fast  conver- 
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gence, and using a few control parameters (Storn and 
Price, 1997). Being simple, fast, easy to use, very easily 
adaptable for integer and discrete optimization, quite 
effective in nonlinear constraint optimization including 
penalty functions and useful for optimizing multi-modal 
search spaces are the other important features of DE.  

Differential evolution (DE) utilizes population size, NP 
as population of D dimensional parameter vectors for 
each generation (Vasan and Raju, 2007). It maintains two 
arrays, each of which holds a population of NP real 
valued vectors of dimension D. The primary array holds 
the current vector population while the secondary array 
accumulates vectors that are selected for the next 
generation. DE originally dealt with a single strategy 
(Storn and Price, 1997). Later on, 10 different strategies 
have been suggested by them. A set of control 
parameters that works out to be the best for a given 
problem may not work well when applied for a different 
problem. The best values of the control parameters to  be  
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Table 1. Formulation of the ten different strategies of differential evolution. 
 
Strategy Description Formulation 

1 DE/rand/1/bin 

 
2 DE/best/1/bin 

 
3 DE/best/2/bin 

 
4 DE/rand/2/bin 

 
5 DE/rand-to-best 

/1/bin  
6 DE/rand/1/exp 

 
7 DE/best/1/exp 

 
8 DE/best/2/exp 

 
9 DE/rand/2/exp 

 
10 DE/rand-to-best 

/1/exp  
 
 
 
used for each problem are determined by trial and error. 
The control parameters are NP, population size, CR, 
cross over constant and F, weighting factor used to 
control the amplification of the differential variation. It has 
been suggested that NP should be taken to be 10 times 
the number of parameters to be optimized, CR and F to 
be from 0.5 to 1.0 (Price and Storn, 2008). 
DE/rand/1/bin is the most widely used and the most 
successful strategy (Babu et al., 2005). The strategies 
are denoted by DE/x/y/z where DE represents differential 
evolution, x represents the individual being perturbed, y is 
the number of difference vectors used to perturb x and z 
is the crossover method used. Other strategies include 
DE/best/1exp, DE/rand/1/exp, DE/rand-to-best/1/exp, 
DE/best/2/exp, DE/rand/2/exp, DE/best/1/bin, DE/rand-to-
best/1/bin, DE/best/2/bin and DE/rand/2/bin. The 
descriptions of these DE strategies are given in Table 1. 
Several studies (Angira and Babu, 2005; Babu et al., 
2005; Deb et al., 2002; Madavan, 2002; Robic and Filipic, 
2005; Xue et al., 2003; Adeyemo and Otieno, 2010; 
Adeyemo and Otieno, 2009b) have extended DE to multi-
objective problems. All these algorithms produce non 
dominated solutions on the Pareto front. One solution will 

have to be chosen for system implementation. No 
solution is said to be better than the other on the Pareto 
front if all the objectives are considered. To choose a 
good solution from the set of non dominated solutions, 
more knowledge of the problem is needed. We propose 
to use a single objective model formulation of the 
problem where each objective is solved separately while 
the others are taken to be constraints. The bound 
constraints are chosen based on the results of the multi-
objective formulation. By reducing the search range for 
the algorithm, the results of the optimization are better 
and the algorithm runs faster. We propose single 
objective differential evolution algorithm to solve the 
multi-objective crop planning model presented by 
Adeyemo and Otieno (2010). The results generated by 
the multi-objective crop planning are used to set the 
bound constraints of our model. The multi-objective 
optimization produced solutions that are equally good 
called non-dominated solutions having ranges of results 
for each objective presented. The bound constraints are 
selected within the limits of non-dominated results 
presented by them.  

Evolutionary  algorithms  (EAs)  as  robust  optimization 
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techniques have the ability to find multiple Pareto optimal 
solutions in one single simulation run because of their 
population-approach. They are general purpose 
stochastic search methods simulating natural selection 
and biological evolution (Salman et al., 2007). They 
maintain a population of potential (or candidate) solutions 
to a problem. They are biologically-inspired optimization 
algorithms, imitating the process of natural evolution, and 
are becoming important optimization tool for several real 
world applications. They use a set of solutions called 
population to converge to the optimal solution. They are 
less susceptible to problem dependent characteristics, 
such as the shape of the Pareto front (convex, concave 
or even discontinuous), and the mathematical properties 
of the search space, whereas these issues are of 
concerns for mathematical programming techniques for 
mathematical tractability (Angira and Babu, 2005). 

Several studies have used evolutionary algorithms for 
optimization problems with success. Angira and Babu 
(2005) applied differential evolution to the optimization of 
non-linear function. Babu and Angira (2006) used it to 
solve optimization of non-linear chemical processes. In 
the area of water resources management, Vasan and 
Raju (2007) demonstrate the applicability of DE to a case 
study of Mahi Bajaj Sagar Project in India. They 
employed the ten strategies of DE to asses the ability of 
DE for solving higher dimensional problems as an 
alternative methodology for irrigation planning. They 
compared their results with the ones generated by linear 
programming (LP). They suggested that DE/rand-to-
best/1/bin strategy is the best strategy giving maximum 
benefits taking minimum CPU time. The results they got 
from the ten strategies of DE are comparable to those of 
LP. They varied the DE parameters to determine the 
combination of the parameters that would generate the 
best result. The parameters considered are population 
size, crossover constant and weighting factor. A similar 
study by Adeyemo and Otieno (2009c) found 
DE/rand/1/bin with values of population size, crossover 
constant and scaling factor of 160, 0.95 and 0.5 
respectively as the strategy that obtains the best solution 
most efficiently. 

Another approach used by Reddy and Kumar (2007) is 
called multi-objective differential evolution (MODE). They 
proposed MODE for the simultaneous evolution of 
optimal cropping pattern and operation policies for a 
multicrop irrigation reservoir system. They used their 
approach to achieve robust performance by handling 
interdependent relationships among the decision 
variables of the model. Their model results suggest that 
changes in the hydrologic conditions over a season have 
considerable impact on the cropping pattern and net 
benefit from the irrigation system. Chang and Chang 
(2009) applied NSGA-II to examine the operations of a 
multi-reservoir system in Taiwan. They developed a daily 
operational simulation model to guide the releases of 
reservoir system and then to calculate the shortage indices 
(SI) of both reservoirs over a long-term simulation period.  

 
 
 
 
They used NSGA-II to minimize the SI values through 
identification of optimal joint operating strategies. Their 
results indicate that NSGA-II provides a promising 
approach.  

A combination of genetic algorithm (GA) and discrete 
differential dynamic programming approach called GA-
DDDP was used by Tospornsampan et al. (2005) to 
optimize the operation of the multiple reservoir system. 
The model by Karamouz et al. (2009) includes a GA 
based optimization model linked with a reservoir water 
quality simulation model. The objective function of the 
optimization model is based on the Nash bargaining 
theory to maximize reliability of supplying the 
downstream demands with acceptable quality, 
maintaining a high reservoir storage level, and preventing 
quality degradation of the reservoir. Many other studies 
apply evolutionary algorithm to water resources 
management and find the algorithms efficient (Janga and 
Nagesh, 2007a; Karterakis et al., 2007; Madavan, 2002; 
Azamathulla et al., 2008). 
 
 
METHODOLOGY 
 
The objective of this paper is to use differential evolution algorithm 
to solve crop planning problem using single objective model 
formulation. The model was solved by Adeyemo and Otieno (2010) 
using multi-objective techniques. We use the results got by them to 
reformulate the model by maximizing one objective and using the 
other two objectives as constraints. The three objectives of the crop 
planning problem are minimization of irrigation water, maximization 
of total net income and maximization of total agricultural output. 
They used multi-objective differential evolution algorithm (MDEA) 
developed by Adeyemo and Otieno (2009b). They developed three 
other strategies of MDEA and compared the results generated by 
the four algorithms (MDEA1, MDEA2, MDEA3 and MDEA4). From 
the analysis of their results, we found that the MDEA1 generated 
the maximum total net income of ZAR 1,304,600 with maximum 
total agricultural output of 467 tons using 702,290 m3 of water and 
corresponding maximum planting areas of 513,470, 551,660, 
50,000 and 52,145 m2 for maize, groundnut, Lucerne and Pecan 
nuts respectively and maximum total planting area of 752,210 m2. 
With these results, we formulated our model within these ranges to 
generate more profit for the farmers. For example, we chose the 
search range for total agricultural output to be 98 to 467 tons, the 
planting areas for maize, groundnut, Lucerne and Pecan nuts to be 
50,000 to 513,470, 50,000 to 551,660, 50,000 to 51,000, and 
50,000 to 52,145 respectively. This reduced the search range for 
our results and the algorithm ran faster resulting in better results. 
The search ranges used by Adeyemo and Otieno (2010) are wider. 
The total agricultural output was set to be maximized without any 
maximum limit. The minimum planting areas for maize, groundnut, 
Lucerne and Pecan nuts are set to be 50,000 m2 while the 
maximum planting areas are set to be 500,500; 255,000; 255,000 
and 505,000 respectively. 

The model is presented below: 
 
 
Objective function: Maximization of total net income 
 
The total net income for the farmer is maximized.    

Maximize TNI  = 
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Where: 
 
TNI - total net income for the farmer planting the 4 crops in the 
whole year. 
TIi - total income of ith crop in South African Rand (ZAR) per annum 
EXP - total expenses on the whole farm which are the overhead 
costs, household expenses and fixed liabilities per annum (ZAR) 
Cw - cost of water per m3 = 8.77 cents. 
 
To calculate the total income (ZAR/m2) from each crop, the selling 
price (ZAR/ton) and yield (ton/ha) of crop are multiplied and divided 
by 10 000. The selling price and yield of the crops are taken from 
Agriculture (2008). 
 
TIi (ZAR/m2) =  [Pricei (ZAR/ton) * Yieldi (ton/ha)] /10 000             (3) 
 
 
Constraint 1: Total planting area 
 
In maximizing both the total net income and total agricultural output, 
the farm size can not exceed the total farm area of 771 000 m2. 
Therefore, the sum of all the planting areas for the 4 crops should 
be less than or equal to the total planting area. 
 

TPA = �
=

≤
n

i
iA

1

771000                                                           (4)

       
Where TPA is the total planting area in m2. 
 
 
Constraint 2: Total irrigation water 
 
The total irrigation water used on the farm in the whole year can not 
exceed the allocation of 704,694 m3 per annum in the area. 
 

704694≤TIW                                                           (5) 
 
 
Constraint 3: Monthly irrigation water 
 
The monthly irrigation water use on the farm can not exceed the 
total monthly water release to the farm. The water is supplied to the 
farm for 5½ days a week. The water supply for one hour is 150 m2. 
Therefore, the total monthly release is: 
 
(150 m3/h * 24 h * 5.5 days * 52 weeks)/12 months = 85,800 
m3/month 
 
Therefore, the total crop water requirements for the 4 crops in any 
month of the year should not exceed 85 800 m3/month. 
 

85800≤tIRD ; (t = 1, 2, --- 12)                          (6)  

 
Where, IRDt is the irrigation demand in month t. 
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Constraint 4: Minimum and maximum planting areas 
 
Based on the minimum and maximum planting areas generated by 
Adeyemo and Otieno (2010), minimum and maximum planting 
areas are chosen to reduce the search range for the algorithm. This 
will enable the algorithm to generate more quality results in a short 
time. 
 

51347050000 1 ≤≤ A
                (7) 

 

55166050000 2 ≤≤ A
                (8) 

 

5100050000 3 ≤≤ A
                (9) 

 

5214550000 4 ≤≤ A
              (10) 

 
Where A1, A2, A3 and A4 are the planting areas for maize, 
groundnut, Lucerne and Pecan nuts respectively. 
 
 
Constraint 5: Maximum total output 
 
From the results of Adeyemo and Otieno (2010), the maximum total 
agricultural output is 467 tons. We want our search to be limited to 
a maximum of 467 tons. 
 

467≤TAP
               (11)

 

 
 
RESULTS AND DISCUSSION 
 
The results in this study are generated by single objective 
formulation after multi-objective non dominated results of 
Adeyemo and Otieno (2010) to the maximizations of both 
the total agricultural output and total net benefit while 
minimizing the total irrigation water. The objective of this 
paper is to help a farmer who desires to maximize his 
total net benefit while satisfying other objectives and 
constraints. The other objectives are treated as 
constraints. A farmer is faced with the problem of 
choosing a desired solution from many non-dominated 
solutions presented to him even if his main objective is 
just one of the three objectives. In practice, the decision 
maker ultimately has to select one solution from this set 
for system implementation (Deb, 2001). The use of single 
objective after multi-objective to find the ultimate solution 
can improve our results and help a decision maker in 
finally selecting the best solution. 

The ten strategies of differential evolution are tested 
with this model. The results generated by the ten 
strategies are comparable and better than the ones by 
Adeyemo and Otieno (2010). In Table 2, DE/rand/1/bin 
generated the highest total net benefit of ZAR 1,330,000 
of all the ten strategies. The total net benefit generated 
by MDEA1 (multi-objective) is ZAR 1,304,600 which is 
less than the one generated by DE/rand/1/bin (single 
objective). This shows that single objective model 
formulation can be  used  to  find  a  better  solution  after  
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Table 2. The total net benefit, total planting areas, total irrigation water, total agricultural outputs and the corresponding planting areas for the 
four crops for the ten strategies of differential evolution 
 
DE  
strategies 

No of 
Iterations 

Total net 
benefit (ZAR) 

Total 
planting 

areas 

Total 
irrigation 

water 

Total 
Agricultural 

output 

Planting areas 
Maize Groundnut Lucerne Peacan nut 

MDEA1  1304600 725123 702000 316.26 73463 551660 50000 50000 
DE/rand/1/exp 768 1179700 747870 703190 379.87 229410 417980 50086 50394 
DE/best/1/exp 2656 1224600 699580 704160 308.49 97060 478290 50000 74226 
DE/best/2/exp 1657 935730 674870 702790 363.13 309940 199110 50000 115820 
DE/rand/2/exp 1375 1168600 681020 704400 301.25 91661 449780 61756 77828 
DE/rand-to-
best/1/exp 

1907 900040 676250 703030 373.15 309940 199110 69996 97202 

DE/rand/1/bin 1207 1330000 724640 704694 307.85 50000 574640 50000 50000 
DE/best/1/bin 3400 1224600 699580 704160 308.49 97060 478290 50000 74226 
DE/best/2/bin 2980 935130 711610 703506 258.49 67500 478290 50000 115820 
DE/rand/2/bin 4328 936130 582629 702136 313.13 50000 376504 61756 94369 
DE/rand-to-
best/1/bin 

3651 870060 675448 702360 303.15 309740 198910 69796 97002 
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Figure 1. Different planting areas for the four generated by the ten ten strategies of different evolution.  
 
 
using a multi-objective model formulation. The results of 
DE/rand/1/bin are better than those of MDEA1. The total 
planting area is 724,640 m2 which is less than 725,123 
m2 generated by MDEA1. This shows that a higher total 
net benefit can be generated using less total planting 
areas with DE/rand/1/bin. Also, 307.85 tons was 
generated by DE/rand/1/bin against 316.26 tons 
generated by MDEA1. The planting areas for Lucerne 
and Peacan nut are the same for the two algorithms. The 

planting areas for groundnut are 574,640 m2 for 
DE/rand/1/bin and 551,660 m2 for MDEA1. The planting 
areas for maize are 73,463 m2 for MDEA1 and 50,000 m2 
for DE/rand/1/bin. Therefore, the planting area generated 
for maize by MDEA1 is more than that generated by 
DE/rand/1/bin but less than that of groundnut. 

In Figure 1, different planting areas for the four crops 
generated by the ten strategies of differential evolution 
are presented. In seven out of ten strategies, the planting  
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Figure 2. Number iterations before convergence for the ten strategies of differential evolution. 

 
 
areas for groundnut are more than the other crops. Maize 
has the highest planting areas in three out of the ten 
strategies. Maize follows groundnut in the planting areas 
in five out the ten strategies. The results are in 
agreement with those of Adeyemo and Otieno (2010). 

As reported by Grove (2006), peacan nut can not be 
planted in the highest planting areas because of water 
shortage. Peacan nut could have increased the expected 
net value if planted in more areas but it requires more 
irrigation water. Peacan nut is planted in more areas than 
Lucerne in eight strategies and has the same planting 
area with Lucern in the remaining two strategies. 
In Figure 2, DE/rand/1/exp converged after 768 iterations 
which is the lowest of all the strategies. It is the strategy 
that converged faster than the others. DE/rand/1/bin 
converged after 1,207 iterations and generated the 
highest total net benefit. Strategies with binomial 
crossover method converge slower than strategies with 
exponential crossover as reported by Adeyemo and 
Otieno (2009c). DE/rand/2/bin which converged after 
4,328 iterations is the strategy with the highest number of 
iterations. In Figure 2 and Table 2, we can conclude that 
the number of iterations before convergence has no 
correlation with the quality of results generated by the DE 
strategies. This confirms the study of Otieno and 
Adeyemo (2009b). 

The increase in the total net benefit generated has no 
correlation with total area, total volume and total output 
as shown in Figure 3. DE/rand/1/bin with the highest total 
net benefit of ZAR 1,330,000 has the corresponding  total 

area, total volume and total output of 724,640 m2, 
704,694 m3 and 307.85 tons respectively. Conversely, 
DE/ran-to-best/1/exp with the total net benefit of ZAR 
900,040 has the corresponding total area, total volume 
and total output of 676,250 m2, 703,030 m2 and 373.15 
tons respectively.  

The best results from all the strategies considering a 
single objective of maximizing total net benefit from 
farming within the limit of land and water availabilities 
was generated by DE/rand/1/bin. The solution was 
generated after considering the limit of solutions 
generated by the multi-objective model formulation 
solved by MDEA1 by Adeyemo and Otieno (2010). The 
solution by DE/rand/1/bin cannot utilize all the available 
land because of shortage of water as previously reported 
by Grove (2006) and Adeyemo and Otieno (2010). We 
recommend that other water sources should be made 
available to farmers in the study area. From the results 
generated, strategies with binomial crossover have more 
quality results than strategies with exponential crossover 
method as reported in the literatures (Adeyemo and 
Otieno, 2010, 2009c, d, a; Raju and Vasan, 2004; Reddy 
and Kumar, 2007). Some of the strategies with expo-
nential crossover method have premature convergence 
hence their inability to generate quality results. 
 
 
Conclusion 
 
The use of single objective optimization model to  choose  
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Figure 3. Total net benefit , total volume generated by the ten strategies of differential evolution. 

 
 
 
a viable and the best solution from a set of non 
dominated solutions generated by multi-objective 
optimization   model   is   demonstrated    in    this    study  
considering one of the objectives and using the others as 
constraints. The single objective optimization model was 
solved using novel differential evolution algorithm which a 
family of evolutionary algorithms. The multi-objective 
differential evolution algorithm (MDEA) developed by 
Adeyemo and Otieno (2009b) based on differential 
evolution algorithm was used as a multi-objective 
algorithm in this study. The crop planning problem 
presented in this study was studied by Adeyemo and 
Otieno (2010) using multi-objective model. This study 
maximizes the total net benefit while considering the 
other two objectives of minimizing irrigation water and 
maximizing total output as constraints. The other 
constraints used were taken from previous studies. The 
bound constraints were chosen from the limits of the 
results presented by Adeyemo and Otieno (2010). From 
the results generated in this study, groundnut is the most 
profitable of the four crops planted. The total net benefit 
of ZAR 1,330,000 was generated by DE/rand/1/bin which 
is higher than ZAR 1,304,600 generated by MDEA1. 
Land is also efficiently utilized with DE/rand/1/bin using 
724,640 m2 while MDEA1 uses 725,123 m2. The total net 
benefit generated by the ten strategies of DE ranges from 
ZAR 870,060 by DE/rand-to-best/1/bin to ZAR1,330,000 
by DE/rand/1/bin. The total area ranges from 582,629 m2 
generated by DE/ran/2/bin to 747,870 m2 generated by 

DE/rand/1/exp. The total volume of irrigation water 
ranges from 702,136 m3 (DE/rand/2/bin) to 704,694 
(DE/rand/1/bin). Finally, the total agricultural output 
ranges from 258.49 tons  (DE/best/2/bin)  to  379.87  tons  
(DE/rand/1/exp). 

The planting areas for maize, groundnut, Lucerne and 
peacan nuts range from 50,000 to 309,940 m2, 198,910 
to 574,640 m2, 50000 to 69,996 m2 and 50,000 to 
115,820 m2 respectively. We conclude that single 
objective differential evolution algorithm can be used to 
complement multi-objective differential evolution 
algorithm to generate better results in crop planning and 
water resources management problem generally. It can 
also be used to choose one solution out of many non 
dominated solutions generated by a multi-objective 
algorithm using the results of multi-objective algorithm to 
set the bound constraints. This will reduce the search 
range resulting in less number of iterations with more 
quality results. 
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