
International Journal of the Physical Sciences Vol. 6(25), pp. 5906-5911, 23 October, 2011 
Available online at http://www.academicjournals.org/IJPS 
DOI: 10.5897/IJPS11.741 
ISSN 1992 - 1950 ©2011 Academic Journals 
 
 
 

Full Length Research Paper 

 

Suboptimal sparse channel estimation for multicarrier 
underwater acoustic communications 

 

Nina Wang1*, Guan Gui2,3, Zhi Zhang1 and Ping Zhang1 
 

1
Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and 

Telecommunications, Beijing, China. 
2
Department of Electrical Engineering, University of Electrical Science and Technology of China, Chengdu, China. 

3
Department of Electrical and Communication Engineering, Tohoku University, Sendai, Japan. 

 
Accepted 26 September, 2011 

 

Multipath channels often exhibit sparse structures in multicarrier underwater acoustic (MC-UWA) 
communication systems. Conventional linear channel estimators, such as least squares (LS) and 
minimum mean square error (MMSE) are considered as optimal solutions under the assumption of rich 
multipath. However, they often result in low spectral efficiency due to neglect of the sparsity in 
multipath channels. In this paper, we propose a novel sparse channel estimation method with 
compressive sensing. The proposed estimator has better estimation performance and low complexity 
when compared with the LS estimator. Simulations verified the proposed method with respect to the 
mean square error (MSE) and the computational complexity. 
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INTRODUCTION 
 
Underwater acoustic (UWA) communications have been 
extensively investigated in recent years, because of its 
wide applications on military, commerce and environment 
protection (Stojanovic, 1996). The UWA channel is a 
highly time-varying and complicated Doppler-effected 
multipath channel due to internal waves, platform and 
sea-surface motion (Eggen et al., 2000). The long delay 
spread leads to serious inter-symbol interference (ISI) 
(Kilfoyle and Baggeroer, 2000). The Doppler effects 
destroy the orthogonality of the subcarrier and lead to 
inter-carrier interference (ICI) for multicarrier UWA 
systems (Stojanovic and Preisig, 2000). Accurate 
channel state information (CSI) is indispensable on 
coherent receiving and channel equalization at the 
receiver, thus, channel estimation becomes a huge 
challenge under such execrable multicarrier underwater 
acoustic (MC-UWA) channel conditions. 

In recent years, numerous channel measurements 
have shown that the MC-UWA multipath channels tend to 
exhibit sparse structures. That means the majority  of  the  
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channel taps are either zero or below the noise floor (Li 
and Preisig, 2007; Stojanovic, 2008; Gui et al., 2011). 
However, the conventional training-based linear methods, 
such as least squares (LS), are incapable of exploiting 
the inherent sparsity of the MC-UWA multipath channels 
which lead to the overutilization of the limited resources, 
such as energy and bandwidth. In other word, exploiting 
the channel sparsity will improve the spectral and energy 
efficiency by using some effective channel estimation 
technique. Kang and Iltis (2008) proposed variants of 
matching pursuit (MP) algorithms (Mallat and Zhang, 
1993) for MC-UWA systems without a compressive 
sensing theoretical background. As the development of 
compressive sensing (CS) (Berger et al., 2010a,b) 
continues, some compressive estimators provide for 
sparse multipath MC-UWA systems using orthogonal 
matching pursuit (OMP) (Tropp and Gilbert, 2007) and 
basic pursuit (BP) algorithm (Candes et al., 2006) which 
outperform the traditional subspace algorithms (root-
MUSIC and ESPRIT) (Berger et al., 2010a,b). The 
performance of BP algorithm is theoretically guaranteed, 
while the OMP lacks (Taubock et al., 2010). Researchers 
have verified that BP has a slight edge over OMP but 
computationally complex (Berger et al., 2010a, b). 



 
 
 
 

Low computational complexity is crucial since the MC-
UWA channels have to be estimated real time. In this 
paper, we introduce a compressive channel estimation 
method with compressive sampling matching pursuit 
(CoSaMP) (Needell and Tropp, 2009) for sparse 
multipath MC-UWA channels. The proposed method 
allows an even faster implementation than OMP. 
Simulations show that the running time is only less than a 
quarter of that of OMP, while the estimation performance 
is only slightly poorer than BP. Therefore, the CoSaMP 
algorithm combines the high performance of accuracy 
and the low computational complexity for MC-UWA 
systems. 

The rest of the paper is organized as follows. 
Subsequently, this study gives an overview of 
compressive sensing and introduces the system model 
adopted, after which it gives a detailed description of the 
proposed approach. This is followed by a comparison of 
the performance of the CoSaMP sparse channel 
estimation with the traditional methods. Finally, the study 
is concluded. 

 

 
COMPRESSIVE SENSING AND SYSTEM MODEL 

 

Overview of compressive sensing 

 

Compressive sensing theory aims to recover high 
dimension sparse signals with considerably fewer linear 

measurements. Consider that a signal N∈h � can be 

represented in a basis { }
1

N

k k =
ψ  with the 

coefficients ( , )
k k k

h h = h ψ . The relationship can be 

expressed as: 
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=Ψ ψ ψ ψL  is a N N× full-rank matrix; 
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N
h h h=h L  is a 1N ×  coefficient vector. Obviously, 

h  and h  are two different forms of the same signal. In 
certain cases, h  can be a finite length discrete time 

signal, while h  is the corresponding frequency-domain 
expression in a limited bandwidth and the matrix Ψ  is the 
discrete Fourier transform (DFT) matrix. If the coefficient 
vector h  is S − sparse, then, there are at most S  

( S N� ) non-zero coefficients and h  is compressible. 

If h  is compressible in an orthogonal basis Ψ , then the 
real application of compressive sensing is to recover the 

signal h  from ( )M M N�  measurements which can be 

acquired by linear transformation. That is: 
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where y  is a 1M ×  measurement vector; X  is a M N×  

measurement matrix which is uncorrelated with Ψ ; 
=Z XΨ  is a M N×  matrix; log( / )M cL N S≥ , c  is a 

constant introduced in Baraniuk (2007) work. As the 

number of the entities in signal h  is more than that of the 

equations set, the solution of h  is not unique. Certain 
criteria must be met in order to get the optimal solution. 

One way to solve this problem is to consider 
0

l  norm 

minimization which aims to find the sparsest solution in 
the feasible solution set: 
 

0

ˆ arg min   s.t.  ,= = =h h Zh XΨh y                               (3) 

 

where ĥ  is the estimation vector of h . 
0

h is 
0

l norm 

which counts the number of non-zero taps of h  and y ,Ψ  

and X  are known. However, Equation 3 is non-
deterministic polynomial (NP) hard problem and 
computationally infeasible. It is then natural to consider 

1
l norm minimization (Donoho, 2006). In this context, 
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where the 
1
l norm is defined as 

1 1

N

ii
h

=
=∑h . In case of 

the measurement vector contamination with noise, 

,= + = + = +y Xh n XΨh n Zh n some error tolerance 

0ε ≥ is allowed. 

 

1 2

ˆ arg min   s.t.  .ε= − ≤h h XΨh y                               (5) 

 
This is also known as basic pursuit (BP) algorithm. It has 
been proved that reliable recovery of a sparse signal still 
depends on the matrix Z which should be designed to 
satisfy the restricted isometry property (RIP) (Candes, 
2008). While it is a complicated issue to identify whether 
the matrix Z  satisfies the RIP, an alternative method by 
constructing a suitable measurement matrix X  is 
adopted. As shown by the study of Baraniuk (2007), if the 
measurement matrix X  is uncorrelated to the basis, Ψ  
obeys the RIP with high probability, such as random 
Gaussian, Bernoulli and partial Fourier matrices. Also, it 
is observed that the matrix Z  satisfies the RIP with high 
probability. 
 
 
System model 

 
In this paper, we consider the MC-UWA system in form of 
OFDM structure and estimate the channel for every 
OFDM symbol. Assume that there are N  subcarriers. 

The modulated data stream is splited into the parallel 
streams by serial-to-parallel conversion. The new parallel 

signals ( ,0 1iX i N≤ ≤ − ) are transformed from frequency
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Figure 1. An example of sparse multipath UWA channel model 
sample. Channel length is 30 with 3 nonzero taps. 

 
 
 
domain to time domain via N − point inverse discrete 

Fourier Transform (IDFT). The last CP
L samples of the 

IDFT output are appended as cyclic prefix to form one 
OFDM symbol to avoid intersymbol interference (ISI). 
After the parallel-to-serial conversion, the serial data 
stream is passed through the frequency selective fading 
channel with the channel impulse response: 
 

1

0

( ) ( ),
L

l l

l

n h nδ τ
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=

= −∑h                        (6) 

 

where lh  is the complex amplitude gain; lτ is the delay 

in the thl  multipath and L  is the number of multipath. 

For sparse multipath model, only very few elements of lh  

is non-zero as shown in Figure 1. 
At the receiver, after the serial-to-parallel conversion 

and cyclic prefix (CP) removal, the new parallel data 
streams transform to the frequency domain signals 

( ,0 1iY i N≤ ≤ − ) by N − point discrete Fourier transform 

(DFT). The OFDM system can be expressed as: 
 

,    0 1,i i i iY X H n i N= + ≤ ≤ −                         (7) 

 

where iH  is the element of 

N 0 1 1
DFT ( ) [ , , ]NH H H −= =H h L ; in  is the additive white 

Gaussian noise (AWGN), with zero mean and variance 
2

n
δ . 

Considering all the subcarriers, then Equation 7 can be  

written as the matrix form: 
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COMPRESSIVE CHANNEL ESTIMATION 
 
In the MC-UWA systems, sparse channels are probed by 
sending known data (pilots) on the pilot subcarriers. 

Assume that the number of pilot subcarriers is 
p

N  and 

the matrix for selected pilot subcarriers is ( )
P

N N×S . We 

can write Equation 8 as: 
 

,
P P P P P P P P

=Y = X H + n = X W h + n Z h + n                  (11) 
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P
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Table 1. Sparse channel estimation with CoSaMP algorithm. 
 

Input: P
Y , P

Z , K . 

Output: channel estimator ˆ
CoSaMP

h . 

Initialize: The initial index set of non-zero taps: 0
Ω = ∅ . 

The residual: 
0

P
=r Y . 

The iteration index: 1i = . 

Repeat  

Channel identification: 
* 1i

i P

−
=S Z r , supp( ,2 ).

i

i

i
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S
S  

Update the channel dominant taps: 
1 .

i
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Channel estimation with LS: 
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Until stopping criterion is true 
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is the index set of the maximum 2K  channel coefficients in

i
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i
Ω . 
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Ω
h is a vector consisted of the elements in the index set 

iΩ  of 
i

h . 

 
 
 
Conventional linear estimator with LS 
 
The LS channel estimation method is widely adopted, 
because it is easy to implement. As Equation 11 shows, 
the estimated channel impulse response can be obtained 
from: 
 
ˆ .

p p p p p p PLS

H H -1 H H
h = (W ) WX X W X Y                                     (12) 

 
Equation 12 shows that the LS algorithm does not utilize 
the channel sparsity of MC-UWA systems. Referring to 
the recent research of Bajwa et al. (2010), an increase in 
the number of degrees of freedom (DoF) available for 
communication can lead to significant gains in the rate 
and reliability, that is, if the sparsity is utilized effectively, 
we can improve the spectral efficiency and estimation 
accuracy greatly for practical MC-UWA systems. 
 
 
Sparse channel estimation with CoSaMP 
 
Here, we apply the compressive sensing to sparse 
channel estimation with CoSaMP algorithm in the MC-
UWA communication systems. 

The CoSaMP algorithm is an iterative reconstruction 
algorithm which is an effective method. In contrast with 
the aforementioned LS algorithm, the CoSaMP algorithm 
needs the priori information of channel sparsity K . The 
accurate channel estimator is obtained by refining the 
support set in each iteration until the halting criteria 

2
3

2
{ : 4 | 10 }

i
i i K

−
≥ − ≤h h is satisfied. The CoSaMP 

algorithm can be described as shown in Table 1 with the 
channel model in Equation 11. 
 
 
SIMULATIONS 
 
Here, in order to evaluate the channel estimation 
performance of the proposed CoSaMP algorithm, we 
adopt mean square error (MSE) to quantize the channel 
estimation error. The MSE performances of LS, BP and 
OMP will also be evaluated as references. The MSE is 
expressed as: 
 

2

2
1

1 ˆMSE= ,
m

m

Μ

=

−
Μ
∑ h h                                                   (13) 

 
where Μ  is the number of Monte Carlo simulation runs. 

Assume that the system parameters are stable within 
an OFDM block. The parameters are as shown in Table 
2. 
 
 
Comparisons of the MSE performance 
 
The parameters for the MC-UWA systems are as shown 
in Table 2. We compare the MSE performance of 
different channel estimators under signal-to-noise ratio 
(SNR) from 0 to 30  dB.  As  shown  in  Equation  13,  the  
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Table 2. The common system parameters. 
 

Linear channel estimation LS algorithm 

Compressive channel estimation BP, OMP and CoSaMP (proposed) 

The number of subcarriers N = 1024 

The number of pilot subcarriers Np = 32 

Channel length L = 30 

Channel sparsity K = 5 

Non-zero taps Random Gaussian independent variable 

SNR (dB) 0~30 

M (trials) 1000 
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Figure 2. MSE performances of LS, BP, OMP and CoSaMP with SNR 
from 0 to 30 dB 

 
 
 
smaller the MSE is, the better the channel estimator 
performs. The comparisons between LS, BP, OMP and 
CoSaMP algorithms are as shown in Figure 2. Clearly, 
the sparse channel estimators achieve better MSE 
performance than the conventional LS algorithm. 
Therefore, the sparse channel estimators can achieve the 
same MSE performance by using fewer pilots. In other 
words, the sparse channel estimators provide higher 
spectral efficiency. The proposed CoSaMP algorithm 
outperforms OMP, but is slightly worse than BP. 
 
 
Comparison of the computational complexity 
 
To study the computational complexity of the proposed 
method, we evaluate the CPU running time in seconds to 
compare the computational complexity of the different 
channel estimation methods in for SNR = 15 dB. It is 

worth mentioning that the CPU running time is not the 
exact measure of the computational complexity, while it 
can provide the rough estimation. Our simulations were 
performed under the condition of MATLAB 7.1 using 2.8 
GHz Inter Core 2 processor with 1.96 G of memory. As 
shown in Table 3, the computational complexity of sparse 
channel estimators is higher than the conventional LS 
algorithm. The CPU time of CoSaMP is very lose to LS 
and is about three times to that of LS. However, BP and 
OMP are much more complex than CoSaMP; meaning 
that the proposed CoSaMP algorithm is also efficient. 
 
 
Conclusions 
 
In this paper, we propose a compressive channel 
estimator with CoSaMP algorithm for sparse multipath 
MC-UWA  systems. Both theory  analysis  and   computer
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Table 3. Comparison of the computational complexity of LS, BP, OMP and CoSaMP. 
 

Methods LS BP OMP CoSaMP 

CPU time (s) 0.0156 0.5266 0.2344 0.0469 

Ratio to LS 1 34 15 3 

 
 
 
simulations confirm the proposed method and offer a 
good compromise between high spectral efficiency, good 
practical performance guarantee and low computational 
complexity. However, experiments are under the 
assumption that the channel sparsity is known. In further 
projects, we will consider more sophisticated CoSaMP 
channel estimation algorithm to sense the channel 
feature. 
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