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For estimating a time-varying signal frequency, an alternative estimator with a finite memory structure is 
proposed. The proposed estimator is developed under a maximum likelihood criterion using only the 
most recent finite observations on the window. The proposed estimator is first represented in a batch 
form, and then in a recursive form for computational advantage. The proposed estimator is shown to 
have good inherent properties, such as unbiasedness and deadbeat. Finally, via computer simulation 
and comparison, the proposed approach is shown to outperform remarkably the variable forgetting 
factor (VFF) Kalman filtering approach.   
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INTRODUCTION 
 
The problem of estimating the time-varying frequency of a 
signal has been addressed in signal processing areas 
(Lim and Oppenheim, 1979; Wong and Jin, 1990; 
Boashash, 2003; Mack and Jain, 1983; Lee et al., 1999). 
Among them, the performance of the conventional 
Kalman filtering approach (Lim and Oppenheim, 1979) for 
estimating a time-varying signal frequency could be 
degraded since it has an infinite memory structure that 
uses all the past observations accomplished by equal 
weighting, and tends to accumulate during its 
implementation. Therefore, in the time-weighted-error 
(TWE) Kalman filtering (Mack and Jain, 1983) and the 
variable forgetting factor (VFF) Kalman filtering (Lee et al., 
1999), the forgetting factor was introduced to decrease 
the influence of the older observation by assigning less 
weight to older observations. However, in these existing 
approaches, the estimate of the signal frequency is not 
optimal since it is not a solution of the optimization 
problem. Moreover, strictly speaking, they still have 
infinite memory structures.  

Therefore, in this paper, an alternative estimator with a 
finite memory structure is proposed for estimating a 
time-varying signal frequency. The proposed estimator is 
developed under a maximum likelihood criterion using 
only the most recent finite observations on the window. 
The proposed estimator will be first represented in a batch 
form, then  in  a  recursive  form  for  computational 

advantage. It has been shown that the proposed 
estimator has good inherent properties such as 
unbiasedness and deadbeat, which cannot be obtained 
by the existing Kalman filtering based approaches (Lim 
and Oppenheim, 1979; Mack and Jain, 1983; Lee et al., 
1999). In addition, due to the finite memory structure, the 
proposed estimator can have inherent properties, such as 
a bounded input/bounded output (BIBO) stability and 
robustness against temporary modeling uncertainties and 
round-off errors according to Jazwinski (1968) and 
Bruckstein and Kailath (1985). Finally, through computer 
simulation and comparison, the proposed approach is 
shown to outperform remarkably the VFF Kalman filtering 
approach for the estimate of the signal frequency which 
varies relatively quickly. 
 
 
ESTIMATION OF TIME-VARYING SIGNAL FREQUENCY USING 
RECENT FINITE OBSERVATIONS 
 

The system for signal frequency estimation can be written by a 
discrete time-varying state-space model (Mack and Jain, 1983; Lee 
et al., 1999): 
 

iiiiiii vaHsaa      ,1                        (1) 
 

where 
n

i Ra  is the unknown parameter  vector,  i   is  a  



 
 
 
 

time-varying parameter transition matrix, and iH  is n-dimensional 

observation represented by ][ 21 niii sss   . The 

observation noise iv  are zero-mean white Gaussian with 

covariance iR . On the most recent window [ iiMi M ),( ], 

the finite number of observations in equation is expressed as 
follows: 
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that the noise term 1iV  is a zero-mean with covariance 1 i  

given by  )( 11 iiii RRRdiag
MM

  . 

A new estimator is developed for the current ia  under a 

maximum likelihood criterion and it is denoted by iâ , and has a 

finite memory structure that processes linearly the finite 

observations 1iS  of Equation 2 on [ iiM , ]. The noise term 

1iV  has the following multivariate Gaussian density function: 
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It has been noted that linear transformation on, and linear 
combinations of, Gaussian random processes are themselves 
Gaussian random processes. Thus, the multivariate Gaussian 

density function of 1iS  is derived from a shifted version of 

)( 1iVf  as follows: 
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called  the likelihood function. The maximum likelihood filter is 
obtained from maximizing the likelihood function. To maximize 

)|( 1 ii aSf   with respect to ia , equivalently, minimize, 
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Differentiating both sides of Equation 3 gives: 
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called the likelihood equation. Assume that },{ ii H  is 

observable and nM  , the estimate iâ  of the time-varying 

signal frequency is then given by the solution of Equation 4 as 
follows: 
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However, in the gain matrix 
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Equation 5, the inversion computation of matrices 1 i  and 
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T

i LL  is required. The dimension of these matrices 

becomes large as the window length M increases. In this case, 
the computation amount for the filter gain matrix increases. 
Therefore, for time varying systems, this computational load might 
be very burdensome since the filter gain must be computed, newly 

for every windows. Therefore, the estimate iâ  of Equation 5 with 

a batch form is represented in a recursive form on the window for 
computational advantage. Define, 
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then it can be represented in 
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with 0
Mi

. Note that 0
Mi

 should be satisfied to obtain 

the same 1
Mi

 in Equations 6 and 7. Using Equation 6, the 

estimate iâ in Equation 5 can be written as 
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subsidiary estimate defined by, 
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Then, the subsidiary estimate jiM ̂  can be represented in the 

recursive form on the window as follows: 
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Figure 1. A quickly varying test signal. 

 
 
 

Then, the estimate iâ  of the time-varying signal frequency is 

obtained from the recursive form of Equation 8 on the window 

[ iiM , ] as follows: 

 

iiia ̂ˆ 1                                         (9)                   

 

where 0 i  is given by Equation 7. Note that the recursive 

form in Equation 9 does not require the inversion computation of 
large dimensional matrices unlike the batch form. It will be shown in 

the following theorem that the estimate iâ  of the time-varying 

signal frequency has an unbiasedness property when there are 
noises and a deadbeat property when there are no noises.  
 
 

Theorem 1  
 

The estimate iâ  of the time-varying signal frequency is unbiased 

for noisy systems and exact for noise-free systems.  
 
 
Proof  
 

When there are noises on the window [ iiM , ], since 1iV  is 

zero-mean in Equation 2, ][][ 11 iii aELSE   . Therefore, 

the following is true: 
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This completes the proof of the unbiasedness property. When there 

are no noises on the window [ iiM , ] as 

iiiiii aHsaa     ,1 , the observations 1iS  is 

determined by the current state ia  as iii aLS 11   . 

Therefore, the following is obtained directly from the proof of the 
unbiasedness property: 

 

ii aa ˆ  

 
This completes the proof of the deadbeat property.                                

Note that this deadbeat property indicates the finite convergence 
time and the fast estimation ability of the developed estimator. 
Above good inherent properties such as unbiasedness and 
deadbeat cannot be obtained by Kalman filtering approaches (Lim 
and Oppenheim, 1979; Mack and Jain, 1983; Lee et al., 1999). 
 
 
SIMULATION RESULTS  
 

As shown in the work of Lee et al. (1999) that the VFF 
Kalman filtering approach outperforms the conventional 
Kalman filtering approach of Mack and Jain (1983). 
Therefore, in this paper, the proposed approach was 
compared with the VFF Kalman filtering approach via 
computer simulations. In these simulations, the frequency 
varies with second order autoregression model which is 

updated at each sample. The transition matrix is Ii  . 

The test signal is assumed to vary relatively quickly as 
shown in Figure 1. To make a clearer comparison, Monte 
Carlo simulations of 50 runs are performed and each 
single simulation run lasts 800. The  noise  variance  is  
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Figure 2. The mean of root-squared estimation errors. 
 
 
 

taken as 
25.0iR and the window length is taken as 

20M . Figure 2 shows the mean of root-squared 

estimation errors of two approaches. For the estimate of 
the signal frequency which varies relatively quickly, the 
proposed approach outperforms remarkably the VFF 
Kalman filtering approach. This might result from the 
deadbeat property which means the finite convergence 
time and the fast estimation ability of the developed 
estimator. Therefore, it can be seen that, when the signal 
frequency corrupted by noises varies relatively quickly, 
the proposed approach gives a better estimate when 
compared with the existing Kalman filtering approaches 
(Mack and Jain, 1983; Lee et al., 1999).  
 
 
Conclusion 
 
This paper has proposed an alternative approach for 
estimating a time-varying signal frequency. The proposed 
estimator for time-varying signal frequency has been 
developed under a maximum likelihood criterion using 
only the most recent finite observations on the window. In 
the proposed approach, the estimate of the time-varying 
signal frequency has been represented in a batch form as 
well as recursive form for computational advantage. It has 
been shown that the estimate has good inherent 
properties such as unbiasedness, deadbeat and 
robustness. Via computer simulations, the proposed 
approach has been shown to give a better estimate when 
compared with the existing Kalman filtering approach 
when the signal frequency corrupted by noises varies 
relatively quickly. 

 
ACKNOWLEDGEMENT 
 
This research was supported by the Ministry of 
Knowledge Economy (MKE), Korea, under the 
Convergence Information Technology Research Center 
(CITRC) support program (NIPA-2012-H0401-12-1007) 
supervised by the National IT Industry Promotion Agency 
(NIPA). 
 
 
REFERENCES 
 
Boashash B (2003). Time-frequency signal analysis and processing: A 

comprehensive reference, Elsevier Science, Oxford.  
Bruckstein AM, Kailath T (1985). Recursive limited memory filtering and 

scattering theory, IEEE Trans. Inform. Theory, 31(3): 440-443. 
Jazwinski AH (1968). Limited memory optimal filtering, IEEE Trans. 

Automat. Contr., 13(5): 558-563. 
Lee SW, Lim JS, Baek SJ, and Sung KM (1999). Time-varying signal 

frequency estimation by VFF Kalman filtering. Signal Process., 77(3): 
343-347. 

Lim JS, Oppenheim A (1979). Enhancement and bandwidth 
compression of noisy speech. Proc. IEEE. 67(12): 1586-1604. 

Mack G, Jain V (1983). Speech parameter estimation by 
time-weighted-error Kalman filtering. IEEE Trans. Acoust. Speech 
Signal Process., 31(5): 1300-1303. 

Wong KM, Jin Q (1990). Estimation of the time-varying frequency of a 
signal: the Cramer-Rao bound and the application of Wigner 
distribution. IEEE Trans. Acoust. Speech Signal Process., 37(3): 
519-536.  

 
 
 
 
 
 
 
 


