International Journal of
Physical Sciences

  • Abbreviation: Int. J. Phys. Sci.
  • Language: English
  • ISSN: 1992-1950
  • DOI: 10.5897/IJPS
  • Start Year: 2006
  • Published Articles: 2528

Full Length Research Paper

Evaluation of PV performance prediction model in tropical environment in Senegal

Issa Faye
  • Issa Faye
  • LCPM, UFR-ST, Assane Seck University of Ziguinchor, Senegal, BP 523 Ziguinchor, Senegal.
  • Google Scholar
Ababacar Ndiaye
  • Ababacar Ndiaye
  • LCPM, UFR-ST, Assane Seck University of Ziguinchor, Senegal, BP 523 Ziguinchor, Senegal.
  • Google Scholar
Diouma Kobor
  • Diouma Kobor
  • LCPM, UFR-ST, Assane Seck University of Ziguinchor, Senegal, BP 523 Ziguinchor, Senegal.
  • Google Scholar
Moustapha Thiame
  • Moustapha Thiame
  • LCPM, UFR-ST, Assane Seck University of Ziguinchor, Senegal, BP 523 Ziguinchor, Senegal.
  • Google Scholar


  •  Received: 30 July 2019
  •  Accepted: 07 November 2019
  •  Published: 30 April 2021

References

Adamo F, Attivissimo F, Di Nisio A, Lanzolla AML, Spadavecchia M (2009). Parameters estimation for a model of photovoltaic panels. XIX IMEKO World Congress Fundamental Applied Metrology, Lisbon, Portugal, September, 6-11.

 

Almonacid F, Rus C, Pérez-Higueras P, Hontoria L (2011). Calculation of the energy provided by a PV generator. Comparative study: conventional methods vs. artificial neural networks. Energy 36(1):375-384.
Crossref

 

Azqhandi MA, Ghaedi M, Yousefi F, Jamshidi M (2017). Application of random forest, radial basis function neural networks and central composite design for modeling and/or optimization of the ultrasonic assisted adsorption of brilliant green on ZnS-NP-AC. Journal of colloid and interface science 505:278-292.
Crossref

 

Bastidas-Rodriguez JD, Ramos-Paja CA, Saavedra-Montes AJ (2013). Reconfiguration analysis of photovoltaic arrays based on parameters estimation. Simulation Modelling Practice and Theory 35:50-68.
Crossref

 

Campanelli MB, Hamadani BH (2018). Calibration of a single-diode performance model without a short-circuit temperature coefficient. Energy Science & Engineering 6(4):222-238.
Crossref

 

Castaner L, Silvestre S, Castaaner L (2002). Modelling photovoltaic systems using PSpice. Wiley Online Library.
Crossref

 

Ellabban O, Abu-Rub H, Blaabjerg F (2014). Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews 39:748-764.
Crossref

 

Evans DL (1981). Simplified method for predicting photovoltaic array output. Solar energy 27(6):555-560.
Crossref

 

Hajjaj C, Merrouni AA, Bouaichi A, Benhmida M, Ikken B, Sahnoun S, Zitouni H (2018). Evaluation of Different PV Prediction Models. Comparison and Experimental Validation with One-Year Measurements at Ground Level. International Conference on Electronic Engineering and Renewable Energy pp. 617-622. Springer.
Crossref

 

Hesse H, Schimpe M, Kucevic D, Jossen A (2017). Lithium-ion battery storage for the grid-A review of stationary battery storage system design tailored for applications in modern power grids. Energies 10(12):2107.
Crossref

 

Ismail MS, Moghavvemi M, Mahlia TMI (2013). Characterization of PV panel and global optimization of its model parameters using genetic algorithm. Energy Conversion and Management 73:10-25.
Crossref

 

Jakica N (2018). State-of-the-art review of solar design tools and methods for assessing daylighting and solar potential for building-integrated photovoltaics. Renewable and Sustainable Energy Reviews 81:1296-1328.
Crossref

 

Jones AD, Underwood CP (2002). A modelling method for building-integrated photovoltaic power supply. Building Services Engineering Research and Technology 23(3):167-177.
Crossref

 

Kow KW, Wong YW, Rajkumar RK, Rajkumar RK (2016). A review on performance of artificial intelligence and conventional method in mitigating PV grid-tied related power quality events. Renewable and Sustainable Energy Reviews 56:334-346.
Crossref

 

Malvoni M, Leggieri A, Maggiotto G, Congedo PM, De Giorgi MG (2017). Long term performance, losses and efficiency analysis of a 960 kWP photovoltaic system in the Mediterranean climate. Energy conversion and management 145:169-181.
Crossref

 

Moslehi S, Reddy TA, Katipamula S (2018). Evaluation of data-driven models for predicting solar photovoltaics power output. Energy, 142:1057-1065.
Crossref

 

Muhsen DH, Khatib T, Nagi F (2017). A review of photovoltaic water pumping system designing methods, control strategies and field performance. Renewable and Sustainable Energy Reviews 68:70-86.
Crossref

 

Nishioka K, Hatayama T, Uraoka Y, Fuyuki T, Hagihara R, Watanabe M (2003). Field-test analysis of PV system output characteristics focusing on module temperature. Solar Energy Materials and Solar Cells 75(3?4):665-671.
Crossref

 

Oliva D, Ewees AA, Aziz MAE, Hassanien AE, Peréz-Cisneros M (2017). A Chaotic Improved Artificial Bee Colony for Parameter Estimation of Photovoltaic Cells. Energies 10(7):865. 
Crossref

 

Panwar NL, Kaushik SC, Kothari S (2011). Role of renewable energy sources in environmental protection: a review. Renewable and Sustainable Energy Reviews 15(3):1513-1524.
Crossref

 

Pierro M, Bucci F, De Felice M, Maggioni E, Perotto A, Spada F, Cornaro C (2017). Deterministic and stochastic approaches for day-ahead solar power forecasting. Journal of Solar Energy Engineering 139(2):021010.
Crossref

 

Quintana MA, King DL, McMahon TJ, Osterwald CR (2002). Commonly observed degradation in field-aged photovoltaic modules. Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002:1436-1439. IEEE.

 

Raza MQ, Nadarajah M, Ekanayake C (2016). On recent advances in PV output power forecast. Solar Energy 136:125-144.
Crossref

 

Rosell JI, Ibáñez M (2006). Modelling power output in photovoltaic modules for outdoor operating conditions. Energy Conversion and Management 47(15):2424?2430. 
Crossref

 

Roy PKS (2018). Design of a Cost Effective Battery-Supercapacitor Hybrid Energy Storage System For Hourly Dispatching Solar PV Power (PhD Thesis). Western Carolina University.

 

Ryu KH, Sung MG, Kim B, Heo S, Chang YK, Lee JH (2018). A mathematical model of intracellular behavior of microalgae for predicting growth and intracellular components syntheses under nutrient replete and deplete conditions. Biotechnology and bioengineering 115(10):2441-2455.
Crossref

 

Scioletti MS, Newman AM, Goodman JK, Zolan AJ, Leyffer S (2017). Optimal design and dispatch of a system of diesel generators, photovoltaics and batteries for remote locations. Optimization and Engineering 18(3):755-792.
Crossref

 

Sundaram S, Babu JSC (2015). Performance evaluation and validation of 5 MWp grid connected solar photovoltaic plant in South India. Energy conversion and management 100:429-439.
Crossref

 

Voyant C, Notton G, Kalogirou S, Nivet ML, Paoli C, Motte F, Fouilloy A (2017). Machine learning methods for solar radiation forecasting: A review. Renewable Energy 105:569-582.
Crossref

 

Wang X, Huang B, Chen T (2007). Data-driven predictive control for solid oxide fuel cells. Journal of Process Control 17(2):103-114.
Crossref

 

Yadav AK, Chandel SS (2017). Identification of relevant input variables for prediction of 1-minute time-step photovoltaic module power using Artificial Neural Network and Multiple Linear Regression Models. Renewable and Sustainable Energy Reviews 77:955-969.
Crossref

 

Zhao Y, Ye L, Wang W, Sun H, Ju Y, Tang Y (2018). Data-driven correction approach to refine power curve of wind farm under wind curtailment. IEEE Transactions on Sustainable Energy 9(1):95-105.
Crossref