International Journal of
Physical Sciences

  • Abbreviation: Int. J. Phys. Sci.
  • Language: English
  • ISSN: 1992-1950
  • DOI: 10.5897/IJPS
  • Start Year: 2006
  • Published Articles: 2529

Full Length Research Paper

Deriving an expression for electron-reflection-coefficient at metal-semiconductor-interface of dye-sensitized solar cells

Lurwan Garba
  • Lurwan Garba
  • Department of Physics, Faculty of Science, Northwest University, 3220 Kano, Nigeria.
  • Google Scholar


  •  Received: 09 July 2018
  •  Accepted: 16 September 2018
  •  Published: 30 October 2018

References

Akın S, Gülen M, Sayın S, Azak H, Yıldız HB, SönmezoÄŸlu S (2016). Modification of photoelectrode with thiol-functionalized Calix [4] arenes as interface energy barrier for high efficiency in dye-sensitized solar cells. Journal of Power Sources 307:796-805.
Crossref

 

Anta JA, Casanueva F, Oskam G (2006). A numerical model for charge transport and recombination in dye-sensitized solar cells. The Journal of Physical Chemistry B 110(11):5372-5378.
Crossref

 

Bisquert J, Cahen D, Hodes G, Rühle S, Zaban A (2004). Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells. The Journal of Physical Chemistry B 108(24):8106-8118.
Crossref

 

Bonomo M, Dini D, & Marrani AG (2016). Adsorption Behavior of I3–and I–Ions at a Nanoporous NiO/Acetonitrile Interface Studied by X-ray Photoelectron Spectroscopy. Langmuir 32(44):11540-11550.
Crossref

 

Calogero G, Bartolotta A, Di Marco G, Di Carlo A, Bonaccorso F (2015). Vegetable-based dye-sensitized solar cells. Chemical Society Reviews 44(10):3244-3294.
Crossref

 

Cameron PJ, Peter LM (2005). How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells? The Journal of Physical Chemistry B, 109(15):7392-7398.
Crossref

 

Cavallo C, Di Pascasio F, Latini A, Bonomo M, Dini D (2017). Nanostructured semiconductor materials for dye-sensitized solar cells. Journal of Nanomaterials.
Crossref

 

Cherepy NJ, Smestad GP, Grätzel M, Zhang JZ (1997). Ultrafast electron injection: implications for a photoelectrochemical cell utilizing an anthocyanin dye-sensitized TiO2 nanocrystalline electrode. The Journal of Physical Chemistry B 101(45):9342-9351.
Crossref

 

Dai S, Wang K, Weng J, Sui Y, Huang Y, Xiao S, Pan X (2005). Design of DSC panel with efficiency more than 6%. Solar Energy Materials and Solar Cells 85(3):447-455.
Crossref

 

Dong H, Wu Z, El-Shafei A, Xia B, Xi J, Ning S, Hou X (2015). Ag-encapsulated Au plasmonic nanorods for enhanced dye-sensitized solar cell performance. Journal of Materials Chemistry A 3(8):4659-4668.
Crossref

 

Ferber J, Stangl R, Luther J (1998). An electrical model of the dye-sensitized solar cell. Solar Energy Materials and Solar Cells 53(12):29-54.
Crossref

 

Franco G, Gehring J, Peter L, Ponomarev E, Uhlendorf I (1999). Frequency-resolved optical detection of photoinjected electrons in dye-sensitized nanocrystalline photovoltaic cells. The Journal of Physical Chemistry B 103(4):692-698.
Crossref

 

Gangotri P, Koli P (2017). Study of the enhancement on photogalvanics: solar energy conversion and storage in EDTA–safranine O–NaLS system. Sustainable Energy and Fuels 1(4):882-890.
Crossref

 

Gómez R, Salvador P (2005). Photovoltage dependence on film thickness and type of illumination in nanoporous thin film electrodes according to a simple diffusion model. Solar Energy Materials and Solar Cells 88(4):377-388.
Crossref

 

Govindaraj R, Pandian MS, Ramasamy P, Mukhopadhyay S (2014). Synthesis of titanium dioxide nanostructures and their effects on current-voltage (IV) performance in dye sensitized solar cells. International Journal Chemical Technology Research 6(13):5220-5225.

 

Grätzel M (2005). Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic chemistry 44(20):6841-6851.
Crossref

 

Hagfeldt A, Didriksson B, Palmqvist T, Lindström H, Södergren S, Rensmo H, Lindquist SE (1994). Verification of high efficiencies for the Grätzel-cell. A 7% efficient solar cell based on dye-sensitized colloidal TiO 2 films. Solar Energy Materials and Solar Cells 31(4):481-488.
Crossref

 

Imoto K, Takahashi K, Yamaguchi T, Komura T, Nakamura J, Murata K (2003). High-performance carbon counter electrode for dye-sensitized solar cells. Solar Energy Materials and Solar Cells 79(4):459-469.
Crossref

 

Knödler R, Sopka J, Harbach F, Grünling H (1993). Photoelectrochemical cells based on dye sensitized colloidal TiO2 layers. Solar energy materials and solar cells 30(3):277-281.
Crossref

 

Koli P (2017). Surfactant and natural sunlight enhanced Photogalvanic effect of Sudan I dye. Arabian Journal of Chemistry 10(8):1077-1083
Crossref

 

Kuzmych O (2014). Development and characterization of dye-and semiconductor sensitized solar cells based on structurally organized titanium dioxide. (PhD), University of Warsaw.

 

Li J, Wu N (2015). Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catalysis Science and Technology 5(3):1360-1384.
Crossref

 

Lim SP, Pandikumar A, Huang NM, Lim HN (2014). Enhanced photovoltaic performance of [email protected] titania plasmonic photoanode in dye-sensitized solar cells. RSC Advances 4(72):38111-38118.
Crossref

 

Mao X, Zhou R, Zhang S, Ding L, Wan L, Qin S, Miao S (2016). High efficiency dye-sensitized solar cells constructed with composites of TiO 2 and the hot-bubbling synthesized ultra-small SnO 2 nanocrystals. Scientific Reports 6:19390.
Crossref

 

Ni M, Leung MK, Leung DY, Sumathy K (2006). Theoretical modeling of TiO 2/TCO interfacial effect on dye-sensitized solar cell performance. Solar energy materials and solar cells, 90(13):2000-2009.
Crossref

 

O'Regan B, Schwartz DT, Zakeeruddin SM, Grätzel M (2000). Electrodeposited Nanocomposite n–p Heterojunctions for Solid‐State Dye‐Sensitized Photovoltaics. Advanced Materials 12(17):1263-1267
Crossref

 

O'regan B, Grfitzeli M (1991). A low-cost, high-efficiency solar cell based on dye-sensitized. Nature 353(6346):737-740.
Crossref

 

Papageorgiou N, Grätzel M, Infelta P (1996). On the relevance of mass transport in thin layer nanocrystalline photoelectrochemical solar cells. Solar Energy Materials and Solar Cells 44(4):405-438.
Crossref

 

Pettersson H, Gruszecki T (2001). Long-term stability of low-power dye-sensitised solar cells prepared by industrial methods. Solar Energy Materials and Solar Cells 70(2):203-212.
Crossref

 

Samanchandra AR, Tharanga D, Sewvandi GA (2017). Fabrication of dye sensitized solar cells using locally available sensitizers. Paper presented at the Engineering Research Conference (MERCon), 2017 Moratuwa.
Crossref

 

Sawhney N, Raghav A, Satapathi S (2017). Utilization of naturally occurring dyes as sensitizers in dye sensitized solar cells. IEEE Journal of Photovoltaics 7(2):539-544.
Crossref

 

Smestad G (1994). Testing of dye sensitized TiO 2 solar cells II: Theoretical voltage output and photoluminescence efficiencies. Solar energy materials and solar cells 32(3):273-288.
Crossref

 

Soedergren S, Hagfeld A, Olsson J, Lindquist SE (1994). Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectro-chemical cells. The Journal of Physical Chemistry 98(21):5552-5556.
Crossref

 

Wei M, Fan Z, Sheng M (2014). Dye-sensitized solar cells: Atomic scale investigation of interface structure and dynamics. Chinese Physics B 23(8):086801.
Crossref