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In this study, we developed a new numerical finite difference method for solving various diffusion 
convection equations. The method involves reduction of the diffusion convection equations to a system 
of algebraic equations. By solving the system of algebraic equations we obtain the problem 
approximate solutions. The study of the numerical accuracy of the method has shown that the method 
provides similar results to the known explicit finite difference method for solving diffusion convection 
equations, but with fewer numbers of iterations. 
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INTRODUCTION 
 
In this study, we will deal with diffusion convection 
equations, where t  and x are the time and space 

coordinates respectively, and the quantities h and k are 

the mesh sizes in the space and time directions. 
We consider, 
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A special type of diffusion convection equation where  

0, UV  are constants, defined for bxa  and 

positive time with appropriate initial and boundary 

conditions, and  U   is  the  temperature  in  the  medium. 

We are interested in the development of numerical 
techniques for solving diffusion convection equations. 
Recently, there is a growing interest concerning 
continuous numerical methods of solution for Ordinary 
Differentials Equations (ODEs) (Adam and David, 2002; 
Awoyemi, 2002, 2003; Bao et al., 2003; Benner and 
Mena, 2004; Bensoussan et al., 2007; Motmans et al., 
2005; Brown, 1979; Chawla and Katti, 1979; Cook, 1974; 
Crandall, 1955; Crane and Klopfenstein, 1965; Crank and 
Nicolson, 1947; Dahlquist and Bjorck, 1974; Dehghan, 
2003; Dieci, 1992; Douglas, 1961; D’ Yakonov and Ye, 
1963; Eyaya, 2010; Fox, 1962; Penzl, 2000; Pierre, 2008; 
Richard and Albert, 1981; Richard et al., 2001; Saumaya 
et al., 2012; Yildiz and Subasi, 2001; Zheyin and Qiang, 
2012). We are interested in the  extension  of a  particular 
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continuous method to solve the diffusion convection 
equation. This is done based on the collocation and 
interpolation of the Partial Differential Equations (PDEs) 
directly over multi steps along lines but with reduction to 
a system of ODEs. 
 
 
THE SOLUTION METHOD 
 

We subdivide the interval bx 0  into N  equal 

subintervals by the grid points Nmmhxm ,...,0,   

where bNh  . We want to obtain an approximation of 

the form 
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Where 
rr

r txtxQ ),(  are canonical polynomials which 

are used as basic functions in the approximation, and 

ra are parameters to be determined. 

From the collocation equations 
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where jijijim ,1,,1 
  
 

 
We can generate the following equations from Equation 3 
as follows: 
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Writing Equation 4 as matrix in its augmented form, we 
have 
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We solve Equation 5 for the value of ka
 
by Gaussian 

elimination method to obtain 
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From Equation (2) we can generate 
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Putting the value of ka in Equation 6, we obtain 
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We take the first and second derivatives of Equation 7 
with respect to x  and obtain 
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From the collocation Equation 3 
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where jiandjin ,1,1 
 

We generate the following equations as follows: 
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Writing Equation 9 as matrix in its augmented form, we 
have 
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Solving Equation 10 for ka we obtain 
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but from Equation 2 we obtain 
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Putting the value of ka in Equation 11 
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Taking the first derivative of Equation 12 with respect to 
x , we obtain 
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Similarly, by interchanging the roles of tandx we can 

obtain an approximation of the form 
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Again, from the collocation equation 
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We have the following equations: 
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Writing Equation 16 as matrix in augmented form, we 
have 
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We solve Equation 17 for ka by using Gaussian 

elimination method 
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Again, from Equation 2 we obtain 
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Substituting the value of ka in Equation 18 we have 

 










 




i
k

jijikk

hx

UU
txxtaaxtU

2
...),(

,1,

10         (19) 

 
Taking the first derivative of Equation 19 with respect to 
t , we obtain 
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We collocate Equation (20) at
ixx  , Equations 8 and 13 

at 
jtt  ; and substituting the resulting equations into 

Equation 1, we obtain a scheme that solves diffusion 
convection equations numerically. 
 
 
ADVANTAGE OF THE NEW SCHEME OVER FINITE 
DIFFERENCE METHOD 
 
The new scheme requires fewer numbers of iterations 
than the finite difference method to achieve the same 
results. 
 
 
NUMERICAL EXAMPLES 
 
Here, we will test the numerical accuracy of the new 
method by using the scheme to solve two test examples. 
We compute an approximate solution of Problems (1) 
and (2) at each time level (Tables 1 and 2). To achieve 
this, we truncate the polynomials after second degree. 
 
 
SPECIFIC PROBLEM 
 
Example 1 

 
Here we use  the  scheme to  approximate the solution to 
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Table 1. Result of action of the scheme on Problem 1. 
 

x  

Exact 
solution 

),( txU  

Solution from New 

Method ),( txU  

Solution from Finite 
Difference Method 

),( txU  

Error from Finite 
Difference Method 

Error from New 
Method 

0 0 0 0 0 0 

0.25 0.380814721 0.380862804 0.380862804 4.8 × E-5 4.8 × E-5 

0.50 0.703723471 0.703742699 0.703742699 1.9 × E-5 1.9 × E-5 

0.75 0.919471568 0.919484148 0.919484148 1.3 × E-5 1.3 × E-5 

1.00 0.995167871 0.99524247 0.99524247 7.5 × E-5 7.5 × E-5 

1.25 0.919471568 0.919484148 0.919484148 1.3 × E-5 1.3 × E-5 

1.5 0.703723471 0.703742699 0.703742699 1.9 × E-5 1.9 × E-5 

1.75 0.380814721 0.380862804 0.380862804 4.8 × E-5 4.8 × E-5 

2.00 0 0 0 0 0 
 
 
 

Table 2. Results of action of the scheme on Problem 2. 
 

x  
Exact Solution 

 txU ,  

Solution from Finite 

Difference method  txU ,  

Solution from New 

Method   txU ,  

Error from finite 
difference Method 

Error from New 
Method 

0 0 0 0 0 0 

0.10 0.30806537 0.30807172 0.30807172 6.3 × E-6 6.3 × E-6 

0.20 0.585975167 0.58598723 0.58598723 1.20 × E-5 1.20 × E-5 

0.30 0.806525626 0.80654224 0.80654224 1.7 × E-5 1.7 × E-5 

0.40 0.948127737 0.948147264 0.948147264 2.0 × E-5 2.0 × E-5 

0.50 0.9969205 0.996941032 0.996941032 2.1 × E-5 2.1 × E-5 

0.60 0.948127737 0.948147264 0.948147264 2.0 × E-5 2.0 × E-5 

0.70 0.806525626 0.80654224 0.80654224 1.7 × E-5 1.7 × E-5 

0.80 0.585975167 0.58598723 0.58598723 1.20 × E-5 1.20 × E-5 

0.90 0.30806537 0.30807172 0.30807172 6.3 × E-6 6.3 × E-6 

1.00 0 0 0 0 0 
 
 
 

the diffusion convection equation (Table 1) 
 

200,2002
2

2















tx

x

U

x

U

t

U

 
 

  200,100,  xxxU
 

 

  200,0),20(,0  ttUtU
 

 
 
Example 2 
 
Here we use the scheme to approximate the solution to 
the diffusion convection equation (Table 2) 
 

200,2002
2

2















tx

x

U

x

U

t

U

 

  200,
2

0,  x
x

xU
 

 

  200,0),20(,0,0  ttUtU
 

 
 

Conclusion 
 
A numerical method which involves the discretization of 
the diffusion convection equations to a system of 
algebraic equations is formulated for solving diffusion 
convection problems. To check the accuracy of the 
numerical method, it is applied to solve two different test 
problems with known finite difference solutions. The 
overall numerical results obtained showed that the values 
obtained are the same with the results of the finite 
difference method. These confirmed the validity of the 
new numerical scheme and suggested that it is an 
interesting and viable numerical method. 
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