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Self- reported health status is the most commonly used measures of subjective and global measure of 
health because it is simple, economical and easy to administer. The objective of the study is to 
compare the performance of logistic regression models having multinomial response and identify the 
factors affecting health status of adolescents. Based on two stage sampling technique 2084 
adolescents were interviewed to study the health status of teenagers in Jimma zone. In this article, we 
reviewed the most important logistic regression model and common approaches used to verify 
goodness-of-fit, using software R. We performed formal as well as graphical analyses to compare 
ordinal logistic regression models using data sets of health status. The results obtained from both 
baseline category logit model and ordinal logistic regression showed that sex of adolescents, source of 
drinking water and educational status significantly affect health status of teenagers. It was also found 
that a cumulative logit model containing these predictors provided the best description of the dataset 
among baseline category logit model, adjacent category logit model and continuation ratio model. 
 
Key words: Adolescents’ health status, multinomial logistic regression and ordinal logistic regression models, 
model comparisons using Akakie information criteria (AIC), goodness of fit. 

 
 
INTRODUCTION 
 
“Self-assessed”, “self-reported” or “self-rated health” 
questions such as “How would you rate your current 
health status and would you say that it is very good, 
good, moderate/fair or poor/bad?” are among the most 
commonly  used   measure   of   subjective  evaluation  of 

health status. Past studies have found this type of 
question to be a useful global measure of health (Zimmer 
et al., 2000). 

The health status is usually classified as very good, 
good, moderate and poor/bad. When the researchers are
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interested in finding the determinants of self reported 
health status, usually two separate binary logistic 
regression models are required to develop by grouping 
the response variable into two categories. This task is 
tedious and cumbersome due to estimation and 
interpretation of more parameters. 

In many epidemiological and medical studies, ordinal 
logistic regression model is frequently used when the 
response variable is ordinal in nature. The study has 
made an effort to identify the predictors of health status of 
adolescents using an ordinal logistic regression model 
and multinomial logit model and selecting the appropriate 
models among them. 

The aim of the study is to compare the efficiency of 
multinomial logistic regression models and ordinal logistic 
regression models as well as identifying the significant 
predictors affecting self reported health status of 
adolescents. 
 
 
MATERIAL AND METHODS 
 
Baseline category logit (BCL) model 
 
Even if the response is ordinal, we do not necessarily have to take 
the ordering into account. One category is arbitrarily chosen as the 
reference category. If it is the first category, then the logits for the 
other categories are defined by, 
 

 
logit πj log

πj
π1

Xj
Tβj			for	j 2, 3, … , J

, 

πj π1	exp Xj
Tβj	

and 

π1
1

1 ∑ exp Xj
Tβj

J
j 2

 
 
Often, it is easier to interpret the effects of explanatory factors in 
terms of odds ratio than the parameters β. The odds ratio for 
exposure for response j (j = 2,…,J) relative to the reference 
category j=1 is, 

ORj
πjp πja⁄

π1p π1a⁄
 
, Where, πjp and πja denote the probabilities 

of response category j (j = 1, ..., J) according to whether exposure 
is present or absent, respectively.       
 
 
Cumulative link models (CLM) 
 
A cumulative link model is a model for an ordinal response variable, 
yi that can fall in j = 1. . . J, categories. Then yi follows a multinomial 
distribution with parameter πij, where πij denotes the probability 
that the ith observation falls in the jth response category. We define 
the cumulative probabilities as, 
 
 γij = P (yi < j|x) = πi1 + . . . + πij   
 

γij
exp θj Xi

Tβ	
1 exp θj Xi

Tβ	
 

 
 
Where θj is the cut points or intercept for each logit and β is vector  

 
 
 
 
of slopes for each logit. The CLM was originally proposed by 
Walker and Duncan (1967) and later called the proportional odds 
model by McCullagh (1980). The cumulative logits are also defined 
by Agresti (2002, 2007). 
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The odds ratio of the event y < j at x1 relative to the same event at 
x2 is 
 

OR
γj x1 1 γj x1

γj x2 1 γj x2

exp θj X1
Tβ	

exp θj X2
Tβ	

exp X1
T X2

T β
 

 
This is independent of j. Thus the cumulative odds ratio is 
proportional to the distance between x1 and x2 which made 
McCullagh (1980) to call the proportional odds model (POM). 
 
 
Adjacent Categories Model (ACL) 
 
Another general model for ordered categorical data is the adjacent 
category model. As before, we let πij be the probability that 
individual i falls into category j of the dependent variable, and we 
assume that the categories are ordered in the sequence j=1, ..., J. 
Now take any pair of categories that are adjacent, such as j and 
j+1. We can write a logit model for the contrast between these two 
categories as a function of explanatory variables: 
 

1 	
					 1, 2,… , 1

 
 
Here, πij is ith adolescence falls in jth health rate category, πi(j+1) is 
the probability of ith adolescent falls in (j+1)th health rate category. 
 
 
Continuation Ratio Model (CRM) 
 
Feinberg (1980) proposed an alternative method to the POM for the 
analysis of categorical data with ordered responses. The 
continuation ratio model can then be formulated as,  
 

log
P Y yj|x

P Y yj|x
θj Xi

Tβ						j 1, 2, … , J 1
 

 
And could essentially be viewed as a ratio of the two conditional 
probabilities, P(y= yj|x) and P(y >yj|x). The odds ratio for 
continuation ratio for the kth covariate xk can be obtained directly 
from its model. 
 

OR
P Y yj|xk 1 P Y yj|xk 1

P Y yj|xk 0 P Y yj|xk 0
exp β k xk 1 xk 0

 
 
 
The proportional odds assumption 
 
By  proceeding  with  the  model  given by (logit (γij) = θj + xiT β) the 
assumption of the covariate effects are invariant  to  the  cut  points, 



 

 
 
 
 
thus implying proportionality in the odds ratios. The proportional 
odds model can be considered as a series of J− 1 binary logits 
where the β’s are constrained across the models such that: β1 = 
β2= . . . = βJ−1 = β. 
 
 
Goodness of fit and deviance 
 
The goodness of fit or calibration of a model measures how well the 
model describes the response variable. Assessing goodness of fit 
involves investigating how close values predicted by the model with 

that of observed values. The goodness-of-fit 
2x  process evaluates 

predictors that are eliminated from the full model, or predictors that 
are added to a smaller model. The question in comparing models is 
whether the log-likelihood decreases or increases significantly with 
the addition or elimination of predictor(s) in the model.   

A more general measure called the deviance is defined for 
generalized linear models and contingency tables. The deviance is 
closely related to sums of squares for linear models (McCullagh and 
Nelder, 1989; Nelder and Wedderburn (1972).  The deviance is 
defined as minus twice the difference between the log-likelihoods of 
a full (or saturated) model and a reduced model: D = −2 (ℓreduced − 
ℓfull)  

The full model has a parameter for each observation and 
describes the data perfectly while the reduced model provides a 
more concise description of the data with fewer parameters. A 
special reduced model is the null model which describes no other 
structure in the data than what is implied by the design. The 
corresponding deviance is known as the null deviance and 
analogous to the total sums of squares for linear models. The null 
deviance therefore also denoted the total deviance. The residual 
deviance is a concept similar to residual sums of squares and 
simply defined as: Dresid = Dtotal – Dreduced. A difference in deviance 
between two nested models is identical to the likelihood ratio 
statistic for the comparison of these models. Thus, the deviance 
difference, just like the likelihood ratio statistic, asymptotically 
follows a χ2-distribution with degrees of freedom equal to the 
difference in the number of parameters in the two models.  
 
 
Model comparison with likelihood ratio tests 
 
Model selection includes the choice of the type of model and 
variable selection within a model type. In this framework, the 
parameters estimating method with numerical integration has the 
advantage of being based on likelihood statistics. Thus, models can 
be ordered according to likelihood-based measures, such as 
Akaike's information criterion or Schwarz's Bayesian criterion 
(which judges a model by how close its fitted values tend to be the 
true expected values, as summarized by a certain expected 
distance between the two). In selecting a model, we should not 
think that we have found the “correct” one. Any model is a simplifi-
cation of reality. However, a simple model that fits adequately has 
the advantages of model parsimony. If a model has relatively little 
bias, describing reality well, it provides good estimates of outcome 
probabilities and of odds ratios that describe effects of the 
predictors.  

A general way to compare models is by means of the likelihood 
ratio statistic. If we consider two models, m0 and m1, where m0 is a 
sub-model of model m1, that is, m0 is simpler than m1 and m0 is 
nested in m1. The likelihood ratio statistic for the comparison of m0 
and m1 is LR = −2 (ℓ0 − ℓ1), where ℓ0 is the log-likelihood of m0 
and ℓ1 is the log-likelihood of m1. The likelihood ratio statistic 
measures the evidence in the data for the extra complexity in m1 
relative to m0.  The   likelihood   ratio   statistic   asymptotically   
follows a χ2 distribution with degrees of freedom equal to the 
difference in the number of parameter of m0 and m1. The likelihood   
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ratio test is generally more accurate than Wald tests. Cumulative 
link models can be compared by means of likelihood ratio tests with 
the anova method. Here, AIC is used for model selection and 

comparison. 
2ℓ 2  

, where 
ℓ

- the 
maximum log likelihood and p is the number of parameters. That is, 
a model having a smaller AIC value is the preferable model. 

 
 
RESULT AND DISCUSSION 
 
Results 
 
The data comprise 2084 adolescents aged 13-17 years 
who were interviewed to study the health of adolescents 
in South west Ethiopia, Jimma zone. The adolescents’ 
response was recorded on four ordinal scales (poor, 
moderate, good and very good). But counts for responses 
”poor” and “moderate” heath rate are amalgamated into 
one category “poor/moderate” due to sparse cell counts 
(poor, 1.1% and moderate, 5.6%). From the total of 2084 
adolescents, 81.2% had very good health status, 12.1% 
had good health status, and 6.7% had poor/moderate 
health status.  

The significant variables in BCL model (using R 
package: MASS, R function: stepAIC) are used to 
determine a model with the minimum possible AIC 
(Akakie information criteria). Accordingly, sex, source of 
water and educational status are the selected variables to 
yield the minimum possible AIC of all the combinations. 
So, we fit the BCL model which consists of the variables 
that yield the minimum AIC, as the lowest AIC is the 
better fit (Table 1). 

The maximum value of the log-likelihood function for 
the fitted model is -1241.5, giving the likelihood ratio chi-
squared statistic 2(-1241.4+1260.5) = 38.1. The statistic, 
which has 8 degrees of freedom (10 parameters in the 
fitted model minus 2 for the minimal model), is significant 
compared with the X2 (8) distribution (p-value < 0.0001), 
showing also the overall significance of the model. That 
means the null hypothesis of all slope parameter is zero 
is rejected (at least one coefficient of the parameter is 
different from zero). The AIC value is 2503 = (-2*(-
1241.5) +2*10) for the above BCL model.  

A difference in deviance between two nested models 
(Table 1) is identical to the likelihood ratio statistic for the 
comparison of these models (Holtbrugge and 
Schumacher, 1991). The deviance of the additive model 
which includes all covariates is 2467.8 and the deviance 
of the model which only includes the three predictors 
(that is, sex, source of water and education) is 2482.997. 
Therefore the likelihood ratio statistics which is 15.2= 
(2482.997-2467.8), asymptotically follows a χ2-distribution 
with degrees of freedom the difference in the number of 
parameters of the two models, 22-10 =12 (that is, X2(12)). 
Since the likelihood ratio statistics shows a p value of 
0.23, it implies that we fail to reject the null hypothesis, 
H0: βp = βc = βg= βw =0 (the  slope  coefficients  for  place,    
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Table 1. Base line category logit model. 
 

 Base line category logit model 

 
Predictors 
 

log (π2/ π1) 
Good vs.  poor/moderate health status 

log (π3/ π1) 
Very good vs.  poor/moderate  health status 

Estimate (SE) OR (95%  CI) Estimate (SE) OR (95%  CI) 

Intercepts (β0j) -0.01(0.41)  1.14(0.33)  

     

Sex      
Female Ref 1  1 

male -0.18(0.21) 0.84(0.55, 1.28) 0.41(0.18) 1.5 (1.06 , 2.13) 

     
Source of water      
Unprotected  Ref 1  1 

Tap or Protected   0.38(0.28) 1.46 (0.85 ,2.51) 0.55(0.22) 1.74 (1.12 ,2.70) 
     
Educational status     

 No schooling  Ref 1  1 

 Primary school  0.44(0.37) 1.56 (0.75 , 3.23) 0.81(0.30) 2.26(1.25  ,4.07) 
Secondary or more 0.10(0.47) 1.11 (0.44 , 2.78) 0.33 (0.38) 1.39 (0.66 ,2.93) 

 

SE=standard error of the estimate, OR=odds ratio and CI= confidence interval. 
 
 
 
cooking place, workload and garbage disposal are zero). 
Therefore, the model which only includes the three 
predictors (that is; sex, source of water and education) is 
better than the model which includes all covariates. 
Likewise when we compare the BCL model of Tables 1 
and Table 2, we are obtaining the likelihood ratio of 3.97 
with 2 degrees of freedom having p value of 0.14. This 
also implies that the model which consists of the three 
predictors is better than the model having additional one 
predictor (Table 1). Besides, it has minimum AIC; it 
implies that the model including only the three predictors 
is the parsimonious model for the BCL model.  

When we check the proportional assumption of CLM, 
after obtaining the possible combinations of covariates 
which reduce the AIC value, the score test for the 
proportional odds assumption is 4.3 which follows a χ2-
distribution with degrees of freedom 4= (4 *(3-2)), that is 
X2(4)= 9.49, having p values of 0.37. It implies that the 
proportional odds assumption is satisfied. And the 
likelihood ratio tests for ACL model and CRM for checking 
the proportional odds assumption are 6.27 and 4.4 
having p values of 0.18 and 0.36 respectively. Therefore, 
there is no evidence against the proportional odds 
assumption. Hence, the proportional assumption holds 
for both models, so, we do not need to fit the non 
proportional odds model. 

The second column of estimates in Table 2, for 
example, gives the log-odds of responding  in  category 1 
(“poor/moderate”) versus other categories (“good” and 
“very good”), the log-odds of responding in categories 1 
and 2 (“poor/moderate” and ”good”) versus category 3 

(“very good”). The estimate of ACL model gives the log-
odds of responding in category 1 (“poor/moderate”) 
versus category 2 (“good”) and category 2 (“good”) 
versus category 3 (“very good”). The estimate of CRM 
gives the log odds of adolescents fall in one category of 
health status given the other better health status 
categories. Since the sign of the coefficients for a 
predictor is the same for all ordinal logistic regression 
models (Table 2), they have similar interpretations. For 
instance, the estimate of sex is -0.51, -0.31 and -0.49 for 
POM, ACL and CRM respectively. So the odd ratios of 
male adolescents for all models are less than one, 
implying that males have slightly better health than 
females. 

The log-likelihood function for the CLM is -1243.6, 
giving the likelihood ratio chi-squared statistic 2*(-
1243.6+1260.515) = 33.9. The statistic, which has 4 
degrees of freedom (6 parameters in the fitted model 
minus 2 for the minimal model), is significant compared 
with the X2 (4) distribution (p-value < 0.0001), showing 
the overall significance of the model. That means at least 
one coefficient of the parameter is different from zero. For 
ACL model and CRM, the likelihood ratios are 31.76 and 
33.68 with X2(4) respectively (p value <0.0001 for the two 
models), showing also the overall significance of the 
models. The likelihood ratio statistics of POM for the two 
nested models; that is, for fitted model on Tables 1 and 2 
is 1.58, which asymptotically follows a χ2-distribution with 
degree of freedom 7 - 6 = 1 (that is, X2(1)). Since the 
likelihood ratio statistics shows a p value of 0.21, it 
implies that we fail to reject the null hypothesis of Ho: βw  
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Table  2. Ordinal logistic regression models for selected predictors. 
 

 
 
 
Predictors 

                                              Ordinal logistic regression model 

Proportional odds model Adjacent  category  logit model Continuation ratio model 

Estimate 
(SE) 

OR 
(95% CI) 

P-value
Estimate 

(SE) 
OR 

(95% CI) 
P -

value 
Estimate 

(SE) 
OR 

(95% CI) 
P -

value 

Intercept1 (θ1) 
-1.62 
(0.24) 

  
0.081 
(0.18) 

  
-1.68 
(0.23) 

  

          

Intercept2 (θ2) 
-0.43 
(0.24) 

  
-1.18 

(0.169) 
  

-0.93 
( 0.22) 

  

          

Sex          
Female Ref 1   1   1  

Male 
-0.51 
(0.11) 

0.6  
(0.48,0.75) 

< 0.001 
-0.31 
(0.08) 

0.73 
(0.63,0.86) 

< 
0.001 

-0.49 
(0.11) 

0.61 
(0.49,0.76)

<0.00
1 

          

Source of  water          

Unprotected  Ref 1   1   1  

Tap or 
Protected   

-0.35 
(0.15) 

0.71 
(0.52,0.95) 

0.025 
-0.25 

(0.103) 
0.78 

(0.63,0.95) 
0.013 

-0.32 
( 0.15) 

0.73 
(0.55,0.97)

0.028 

          

Educational status         
 No schooling  Ref 1   1   1  

 Primary school 
-0.57 
(0.21) 

0.56 
(0.37, 0.86) 

0.008 
-0.40 
(0.14) 

0.67 
(0.51,0.88) 

0.004 
-0.54 
(0.20) 

0.58 
(0.40,0.87)

0.007 

Secondary 
(more) 

-0.28 
(0.27) 

0.75 
(0.45, 
1.27) 

0.290 
-0.18 
(0.18) 

0.83 
(0.59,1.18) 

0.297 
-0.27 

( 0.25) 
0.77 

(0.47,1.25)
0.290 

          

Score test 4.2564 6.27 4.389 

Df. 4 4 4 
p-value 0.3724 0.18 0.356 

AIC 2499.171 2501.265 2499.35 
 

SE=standard error of the estimate, OR=odds ratio and CI= confidence interval. 
 
 
 
=0, (the coefficient of workload). Therefore a model which 
excludes this variable is preferable than a model which 
includes it. Likewise, the likelihood ratio statistics of the 
two nested models for ACL model and CRM are 0.57 and 
1.68 respectively, which follows a χ2-distribution with 
each degree of freedom 7 - 6 = 1 (that is, X2(1)). The 
likelihood ratio statistics shows a p value of 0.45 and 
0.20; it implies just as the POM, we fail to reject the null 
hypothesis of Ho: βw =0 for ACL model and CRM. 
Generally, a model which is fitted using the three 
predictors (that is, sex, source of water and education) is 
better than a model which is fitted using the four univaritly 
significant predictors or a model which includes all 
predictors for CLM, ACL model and CRM respectively. 
Having the maximum likelihood value for each model, it is 
possible to have their AIC value. Accordingly, the AIC 
value of POM is 2499.2, the AIC of ACL model is 2501.3 
and the AIC of CRM is 2499.4. 

Comparison of models  
 
We used the likelihood ratio test to compare nested 
models, whereas AIC is used to compare the non-nested 
models. We compared all models using statistical criteria 
of log likelihood, goodness of fit and AIC. But choice of 
model should depend less on goodness of fit. 

The ACL model corresponds to a BCL model. One can 
fit ACL by fitting the equivalent BCL model. But the 
construction of the ACL model recognizes the ordering of 
Y categories. To benefit from this model parsimony 
requires appropriate specification of the linear predictor. 
Since explanatory variable has similar effect for each 
logit, advantages accrue from having a single parameter 
instead   of   2= (3-1) parameters describing that effect. 
When used with this proportional odds form, ACL model 
fits well. Besides it has minimum AIC value as compared 
with BCL model. 
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Figure 1. Proportional assumption of CLM. 

 
 
 
Usually, the fit of both CLM and CRM is similar for many 
data sets. Here also the fit of the two models is almost 
similar. When we see the AIC values of the two models, 
the AIC of CLM is slightly smaller than that of CRM, has 
also slightly higher goodness of fit (p=0.79) than CRM 
(p=0.78) and proportionality is satisfied in better way than 
other models as its p value is the largest of all. Besides 
this, the CRM, is not invariant under an amalgamation of 
adjacent categories; for this reason, CRM is suitable in 
circumstances where the individual categories of the 
response are intrinsically of interest. So, CLM is better 
than CRM for this data set. 

When we see the best model among the selected 
models, CLM fits well for this data set. It is also better 
than ACL model since it has minimum AIC value and 
goodness of fit for CLM has larger p value (0.79) than 
ACL model (0.65). Therefore, POM is the parsimonious 
model. Because, it satisfies the proportional assumption, 
has less number of parameters as compared with BCL 
model, shows model adequacy, has better goodness of fit 
and has smaller value of AIC as compared with the other 
models.  

Generally, ordinal logistic regression model is better 
than nominal logistic regression model for this data set.  

The final appropriate model is CLM that has two logits 
in which each logit is only different with their cut point 
values because of the fulfillment of the proportional odds 
assumption for this data set. The effects of the 
explanatory variables are the same across the three logit 
functions: logit (γij) = θj - 0.51 sexmale - 0.35 swatertap - 
0.57educprimary - 0.28 educsecondary ; Where, sexmale = male 

adolescences, swatertap = tap or protected source of 
water, educprimary = primary education  educsecondary 
=secondary education;  i = 1, 2. . . 2084 and j = 1, 2 
(Figure 1). 
 
 
DISCUSSION 
 
The POM and CRM are the most widely used in 
epidemiological and biomedical applications (Ananth and 
Kleinbaum, 1997) while other models for analysis of 
ordinal outcomes have received less attention. This is 
because both models may be interpreted in terms of odds 
ratios (familiar to epidemiologists), basic underlying 
assumption of each model—equality of β’s and statistical 
models may be plausible biologically. Armstrong and 
Sloan (1989) reported that usually both CLM and CRM 
are similar for many data sets. Here also the fit of the two 
models is almost similar in this study. 

The POM can be viewed as a model nested with the 
unconstrained PPOM, and according to the deviance, the 
unconstrained partial proportion odds model is better 
than POM as it has a smallest p value (p<0.05) and the 
proportionality assumption is violated (Ananth and 
Kleinbaum,1997; Peterson and Harrell, 1990). But in this 
study POM is the selected model as the assumption is 
satisfied and had minimum AIC. Usually BCL models are 
better than ordinal logistic regression models when the 
proportional odds assumption is violated; in such cases 
BCL model can be treated as an alternative model for 
ordinal logistic regression model. 



 

 
 
 
 

According to this study, CLM was found to be the better 
model than other models as it had minimum AIC, 
satisfied the proportional assumption and had better 
goodness of fit. Besides AIC, an intuitive choice between 
CLM and CRM can also be based on the goals of 
statistical analysis.  

This finding is consistent with the results of other 
studies. For example; educational attainment was signifi-
cantly associated with self-rated health, in the expected 
directions and females were slightly more likely than 
males to report fair or poor self-rated health (Veenstra, 
2011).  
 
 
Conclusion 
 
Ordinal logistic regression models were better than 
nominal logistic regression model. Among ordinal logistic 
regression models the CLM or proportional odds model 
was an improved fit as compared to the rest models for 
any combination of variables in the data set. We also 
found that sex, source of drinking water and educational 
status of the adolescents had a significant effect on their 
health as they were the possible combinations to yield 
the minimum AIC in the CLM. Being literate and using of 
tap or protected water had a positive contribution for a 
better health status of teenagers but high workload which 
was univariatly significant had a deteriorate impact on 
state of health and boys were less likely than females to 
report a deteriorate state of health. 
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