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The current work investigates entropy generation around an inclined backward-facing step under 
bleeding conditions using suction/blowing. The entropy generation is due to heat transfer and fluid flow 
in forced convection laminar flow in a duct with inclined step. The set of governing equations 
containing conservations of mass, momentum and energy are solved numerically to calculate the 
velocity and temperature profiles inside the flow domain. Because of the complex flow geometry, 
conformal mapping is used to generate an orthogonal grid by means of the Schwarz-Christoffel 
transformation. The governing equations are transformed into the computational domain and the 
discretized forms of the governing equations are obtained by the control volume method. In the 
numerical computations, the SIMPLE algorithm is used for the pressure-velocity coupling. Numerical 
expressions, in terms of entropy generation number (Ns), Bejan number (Be) and Nusselt number (Nu) 
are derived in dimensionless forms using velocity and temperature profiles. The effects of step inclined 
angle and bleed coefficient on the entropy generation number, Nusselt number, Bejan number and 
friction coefficient are presented. 
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INTRODUCTION 
 
The optimization and improvement of thermal systems 
has recently been a topic of great interest due to the 
relations with the problems of energy conversion, 
material processing and environmental effects. One of 
the primary objectives in the design of any energy system 
is to conserve the useful energy applied to take place in a 
certain process. The irreversibilities associated within the 
process components destroy the useful energy and 
causes to decrease the system performance. The optimal 
second law design criteria depend on the minimization of 
entropy generation encountered in fluid and heat transfer 
processes. 

Recently, entropy generation analysis has been 
extensively applied in many fluid flows with heat transfer 
in   different   geometries.   Heat   transfer   and    viscous 
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dissipation are the only sources of entropy generation in 
force convection fluid flow. Separation flows 
accompanied with heat transfer are frequently 
encountered in several engineering application, such as 
heat exchangers, gas turbine, combustion chamber and 
ducts used in industrial applications. These types of flow 
are intrinsically irreversible because of viscous 
dissipation, separation, reattachment and recirculation. 
The flow over backward-facing step (BFS) has the most 
features of separated flows. There are many studies in 
which the BFS flows were analyzed from a fluid 
mechanics or a heat transfer perspective. Although, the 
geometry of BFS flow is very simple, but the heat transfer 
and fluid flow over this type of step contain most of 
complexities. Consequently, it has been used in the 
benchmark investigations. In the benchmark problem, a 
steady state two-dimensional mixed convection laminar 
flow in a vertical channel with a BFS was solved 
numerically. By now, more than ten papers were 
contributed in which the benchmark problem  was  solved 



 
 
 
 
numerically by different methods [Blackwell and Armaly, 
1993]. 

A review of research on laminar mixed convection flow 
over forward- and backward-facing steps was done by 
Mulaweh [2003]. Armaly et al. [1983] analyzed laminar, 
transition, and turbulent isothermal flows over a BFS 
experimentally. Flow over a BFS with force convection 
heat transfer was conducted by other investigators by 
different numerical techniques [Vradis et al., 1992; 
Pepper et al., 1992; Vradis and Van Nostrand, 1992; Tylli 
et al., 2002; Brakely et al., 2002].  

In all of the above works, the step was considered to be 
vertical to the bottom and top walls. It is obvious that 
there are many engineering applications in which the 
forward- or backward-facing step is inclined. In a recent 
study, the first author studied the turbulent forced 
convection flow adjacent to inclined forward step in a duct 
[Gandjalikhan et al., 2009]. In that study, the Navier-
Stokes and energy equations were solved in the 
computational domain by CFD method using conformal 
mapping technique based on the Schwarz-Christoffel 
transformation. By this method, the effect of step inclined 
angle on flow and temperature distributions was 
determined. 

Investigation of entropy generation in the flow over BFS 
has many engineering applications, such as computation 
of irreversibility and energy loss in separated regions 
encountered for flow over gas turbine blades where both 
viscous effect and heat transfer are present. There are a 
few studies in which the analysis of entropy generation 
due to forced convective flow over a BFS has been 
conducted [Abu Nada, 2005, 2006]. 

On the other hand, the problems of fluid flow in ducts 
and channels with permeable walls have received much 
attention from investigators due to increasing use of 
suction and injection in modern technology. A particularly 
relevant example is that of turbine blades of the modern 
aircraft engines, which are currently cooled by the 
passage of relatively cool air tapped from the 
compressor, either through hollow blades or through 
span wise holes drilled in solid blades. The technique of 
transpiration cooling was demonstrated as early as the 
late 1948’s [Duwez and  Mheeler, 1948], and interest has 
recently been focused upon transpiration-cooled turbine 
blades. There are several studies in which the fluid flows 
through ducts and channels with bleeding were studied 
[Mehta and Jain, 1962; Erdogan and Imrak, 2005]. 
Recently, investigation of entropy generation in a flow 
over a right angle BFS under bleeding condition was 
done by Abu-Nada [2009]. In that work, the set of 
governing equations were solved by the finite volume 
method and the distributions of entropy generation 
number on solid surfaces at different conditions were 
calculated. Moreover, the effects of bleed coefficient for 
both blowing and suction on the entropy generation 
number and Bejan number were presented. Although 
there are some studies about entropy generation in many 
process   components   such   as    BFS  flow,  but  a  careful 

Nassab  et  al.        89 
 
 
 
inspection of the literature shows that the entropy 
generation in forced convection flow over inclined BFS 
under bleeding is still not studied. Therefore, the present 
research deals with the investigation of entropy 
generation in a forced convection flow adjacent to 
inclined BFS in a duct with bleeding effect. Toward this 
end, the set of governing equations consists of 
conservation of mass, momentum and energy are solved 
by CFD method. Because of the complex flow geometry, 
conformal mapping is used to generate an orthogonal 
grid and the set of governing equations are transformed 
to the computational domain by numerical integration of 
the Schwarz-Christoffel transformation. Discretized forms 
of the governing equations are obtained by integrating 
over each control volume in the computational domain 
and the SIMPLE algorithm is used for pressure-velocity 
coupling. From the numerical results, the effects of two 
important factors, those are step angle and bleeding 
coefficient on the distributions of entropy generation 
number, Nusselt number, Bejan number and friction 
coefficient are studied. 
 
 
THEORY 
 
To find the entropy generation for the convection flow 
shown in Figure 1, the fluid velocity and temperature 
distributions inside the flow domain are calculated by 
numerical solution of the governing equations. These 
equations are continuity, momentum and energy 
including convection and diffusion terms. The fluid flow is 
considered to be laminar, two-dimensional and 
incompressible and all thermo-physical properties of fluid 
are constant. The non-dimensional forms of the 
governing equations are given as follows: 
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In the above equations, the following dimensionless 
groups are used: 
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Where Pr and Re are the prandtl and Reynolds numbers, 
respectively, DH is the hydraulic diameter and V0 is the 
fluid velocity at duct inlet section. 
 
 
Boundary conditions 
 
Equations 1 to 4 are solved with considering appropriate 
boundary conditions. For the fluid flow problem, no-slip 
condition is applied on solid boundaries. According to this 
criteria, the y-component of fluid velocity on the 
permeable wall with bleeding is set equal to ��, such that 
the positive and negative values for this velocity denote 
blowing and suction, respectively. Besides, at the inlet 
section, slug flow with velocity V0 is considered and at the 
outlet section, zero axial gradient for velocity components 
u and v is employed. 

For the thermal problem, the top wall and bottom wall 
including the step are kept at constant temperature Tc 
and ��, respectively. Besides, at the inlet section, a 
uniform temperature �� is assumed and zero temperature 
gradient in axial direction is employed at the outlet 
section. 
 
 
Entropy generation 
 
In the forced convection process the entropy generation 
is associated to the heat transfer and to the viscous 
friction. According to Bejan [1982], the local entropy 
generation (Ns) in dimensionless form can be determined 
by the following expression: 
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The following dimensionless quantities are used in the 
calculation of entropy generation: 
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where Ns is the entropy generation number, S”gen the 
volume rate of entropy generation, Br the Brinkman 
number and tau is the non-dimensional temperature 
difference. 

In Equation (5) for computation of entropy generation 
number, the first term represents entropy generation due 
to the heat transfer (��� 	
��), while the second term 
represents the entropy generation due to the fluid viscous 
effect (��� 
��	). An alternative parameter for 
irreversibilities distribution is the Bejan number (Be) 
defined as follows [Bejan, 1982]: 
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According to the definition of Bejan number, the 
irreversibilities due to the viscous effect are dominant 
when ��� ���. When ��� ���, the heat transfer 
irreversibilities dominate the process and if Be=0.5, the 
entropy generation due to the viscous effect and heat 
transfer are equal.  
 
 
GRID GENERATION 
 
As described in the previous sections, because of the 
complex geometry in the physical domain, the set of 
governing equations are transformed in the 
computational domain and are solve numerically in this 
region. Toward this end, the grid generation in the 
present work is carried out with the numerical integration 
of the Schwarz-Christoffel transformation. By this 
technique, a polygon in the (x,y)-plane, is mapped onto 
the upper half of (�-�)-plane as shown in Figure 2. The 
relation between the Z-plane as physical domain to the γ

-plane as computational domain is as follows [Milne-
Thomson, 1960]: 
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In Equation 7, α  is the angle of counterclockwise 
rotation at each apex and N  is the number of polygon 
apices. The points �i (i=1.2,…N) are positions on the real 
axis in �-plane, where each of them corresponds to an 
apex of the polygon in Z-plane. The values of parameters 
�i are unknown which will be determined iteratively during 
the numerical procedure. Also, in Equation 7, A  is a 
complex constant which depends on the geometry of 
physical domain. According to Riemann theorem [Milne-
Thomson, 1960], the positions of three points of �i on the 
real axis of computational plane are arbitrary. To find the 
mapping function ��� , we integrate the differential 
Equation (Equation 7). Let us do this for the general case 

of an N-sided polygon with vertices Nzzz ...,,, 21  at which 

the exterior angles are Nααα ...,,, 21 : 
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In Equation 8, B is a complex constant and �0 is a point 
on the upper half of computational plane. As noted 
before, the correct selection of points �i involves an 
iterative procedure. The details of this transformation and 
the related numerical procedure in grid generation are 
given completely in Sridhar and Davis (1985]. By this 
technique, the relation between physical and 
computational planes is determined from which the values 
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Table 1. Values of parameters 
'A , 

'B , φ	  and φS
 in transformed governing equations. 

 

Equation 'A  
'B  φ  φΓ

 φS
 

Continuity *u  
*v  1 0 0 

ξ - Momentum. 
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of metric coefficients which are needed to transform the 
governing equations into computational domain can be 
obtained. The transformed form of the governing 
equations in the computational plane for any dependent 
variable Ø, can be written in the following common form: 
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in which, J is the Jacobian of transformation, 
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� YYJ += , and the values of parameters 

'A , 
'B , φ	  

and SØ are given in Table 1 for continuity, momentum and 
energy equations. 
 
 
METHOD OF SOLUTION 
 
Finite difference forms of the transformed partial differential 
equations (Equation 9) are obtained by integrating over an 
elemental cell volume with staggered control volumes for the � - 
and �- velocity components. The discretized forms of the governing 
equations are numerically solved by the SIMPLE Algorithm of 
Patankar and Spalding [1972]. Numerical solutions are obtained 
iteratively by the line-by-line method such that iterations are 
terminated when the sum of the absolute residuals is less than 10-4 

for each equation. Numerical calculations are performed by writing 
a computer code in FORTRAN. Extensive mesh testing is 
performed to guarantee grid-independency. Based on this study, 
the optimum grids with 400 to 500 intervals in the � -direction and 
100 to 150 intervals in the �-direction dependent to the flow 
condition are employed with clustering near the solid boundaries 
and closed to the domains with sharp gradients in dependent 
variables. 

After calculation of velocity and temperature fields, Equation (5) 
is used to solve for the entropy generation number at each grid 
point in the physical domain. Besides, the distributions of Nusselt 
number and coefficient of friction on the top and bottom walls are 
calculated by the following equations: 
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Validation of computational results 
 
The numerical solution is validated by comparing the calculated 
entropy generation for a test case with the theoretical finding by 
Abu-Nada [2009]. In this test case, a laminar forced convection flow 
over a vertical backward step in a duct with bleeding on the bottom 
wall in the region � � � � ��� was analyzed. The variations of 
entropy generation number Ns along the bottom wall for two 
different bleed coefficient are shown in Figure 3 with comparison to 
that obtained in Abu Nada [2009]. Since, in Abu Nada (2009), the 
step has right angle, the value of step inclined angle is set equal to 
�/2 in the computation of Figure 3. It is seen that the minimum 
value of Ns occurs directly at x=0 at the bottom step corner, where 
the fluid has no motion. Also, Figure 3 shows that the maximum 
value of Ns occurs inside the recirculation zone and then it drops 
sharply to a very low value at the reattachment point after which Ns 
increases and approaches to a constant value far from the step. It 
is seen from Figure 3 that blowing reduces the value of entropy 
generation number which is due to the decreased temperature and 
velocity gradients for the case of blowing. However, according to 
Figure 3, the general agreement between the present results with 
the theoretical finding in Abu Nada [2009] is quite good and the 
values of minimum and maximum entropy generation numbers and 
their predicted locations are reasonably closed to each other. 
 
 
RESULTS AND DISCUSSION 
 
The present research results are presented for air flow 
adjacent to an inclined forward step in a duct at Reynolds 
number equal to 400, while the Prandtl number is kept 
constant at 0.71 to guarantee constant fluid physical 
properties for moderate and small values of temperature 
difference (Th-Tc).  According to the physical domain 
shown in Figure 1, the expansion ratio (ER=H/h) is set 
equal to 2. Besides, the values of non-
dimensionaltemperatures for the bottom wall (including 
the step), top wall and inlet fluid are set equal to 1, 0 and 
0.7, respectively. The computed domain in the x-direction 
has a length of L=30 H,  while the  distance  between  the
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Figure 1. Physical model. 

 
 
 

 
 
Figure 2. Mapping of a polygon in Z(x,y)-plane onto the upper half of  � (�-
) – plane. 

 
 
 

 
 
Figure 3. Variation of entropy generation number along the bottom 
wall Re=400, 

inlet section and step depicted by a, is set equal to 10 H 
to ensure fully developed condition for velocity and 
temperature distributions before the step. Also in the 
computations, it is assumed that the permeable wall with 
bleeding has a length of Lb=5 H (Figure 1). It is worth 
mentioning that the values of bleed coefficient used in the 
present work are 0 and ±0.01, where positive and 
negative values correspond to blowing and suction, 
respectively, and zero value of bleed coefficient 
corresponds to impermeable wall. 

First in order to show the flow pattern, the streamlines 
downstream the step are plotted in Figure 4 for an 
inclined step with �� ��  �
 for three different bleeding 
coefficient including both suction and blowing. The effect 
of inclined step on the flow is clearly seen from the 
curvatures of streamlines. Figure 4 shows a recirculation 
zone adjacent to the bottom wall downstream the step for 
all values of the bleeding coefficient. The effect of 
bleeding on the fluid flow is clearly seen in Figure 4, such 
that in the case of suction, the secondary recirculation 
zone also takes place on  the  top  wall  after  the  step.  It 
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Figure 4. Streamlines in flow over inclined step in a duct with three different values of bleeding coefficient, 

°= 60� . 
 
 
 
should be noted that for small values of the Reynolds 
number (say for Re<300 for this test case), only the 
primary recirculation zone appears. 

Since, the main task of the present study is to 
investigate the effect of step inclined angle � and 
bleeding on the entropy generation and other 
thermohydrodynamic characteristics of laminar forced 
convection flow, thereby the following figures are about 
the effects of these two factors on entropy generation 
number, Nusselt number, Bejan number and friction 
coefficient on the solid walls. 

Variations of entropy generation number Ns along the 
bottom wall for three different values of the bleed 
coefficient and two different values of the step inclined 
angle are plotted in Figure 5. It is seen that for all values 
of bleed coefficient and step inclined angle, the maximum 
value of Ns along the bottom wall occurs inside the 
recirculation zone and then it drops sharply to a very low 
value at the point of reattachment. This behavior can be 
explained by noting that after flow separation, the vortices 
increase dramatically inside the recirculation region that 
causes to take place maximum value of Ns in this zone. 
Besides, at the reattachment point no shear stresses are 
taking place and the entropy generation is totally due to 
conduction. It is found in Figure 5 that suction increase 
the value of Ns and blowing reduces the entropy 
generation   number.   This   is  related  to  the  increased 

temperature and velocity gradients for the case of suction 
in comparison to blowing. If one focuses on the entropy 
generation curves in the vicinity of x=0, it is seen that Ns 
decreases along the projected area of the step and 
becomes zero on the bottom wall coincides the step 
corner. Comparison between Figures 5a and b shows 
that the value of entropy generation number increases 
with increasing in step inclined angle. 

The variations of Ns along the top wall for the case of 
right angle step are illustrated in Figure 6. According to 
this figure, for each value of bleed coefficient, a maximum 
value for Ns is detected at x=0, which is due to the high 
shear rates encountered due to the development of 
viscous boundary layer. After the leading edge of top 
wall, entropy generation number decreases sharply along 
the wall and the minimum value of Ns occurs around the 
point of reattachment. This is related to the fact that the 
maximum local Nusselt number on the bottom wall 
coincides with the reattachment point. Besides, Figure 6 
presents that the effect of bleed coefficient on Ns 
distribution along the top wall is negligible. 

For more study about the thermal behavior of 
convective laminar flow over inclined step, the variations 
of Nusselt number defined as Nu=� hD H/k along the 
bottom wall are plotted in Figure 7. It is seen that the 
minimum value of Nu occurs on the bottom wall adjacent 
to step corner and the maximum value  at  the  reattachment 
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Figure 5. Variation of entropy generation numbers along the 
bottom wall. 
 
 
 
point after which Nu approaches to a constant value. It is 
found in Figure 7 that high values of temperature 
gradients at the bottom wall because of the suction 
results in higher values of Nusselt number compared to 
that of blowing. Besides, it can be found that more 
inclined steps generate high values of convection 
coefficient on the bottom wall. 

Figure 8 presents the distributions of friction coefficient 
along the bottom wall for various values of bleed 
coefficient and step inclined angle. It is seen that Cf is 
negative inside the circulation zone due to the  back  flow 

 
 
 
 

 
 
Figure 6. Variation of entropy generation numbers along the top 

wall, 
o90� = . 

 
 
 
and the minimum value of friction coefficient take place in 
this region after which the value of Cf becomes equal to 
zero at the point of reattachment. If one focuses on the Cf 
curves for inclined steps in the vicinity of x=0 in detail, it is 
seen that for inclined steps, the value of friction 
coefficient is negative along the step projected area and 
then becomes zero at the step corner on the bottom wall. 
This is related to this fact that the surface of inclined step 
is exposed to the back flow which is recognized by the 
negative values of velocity and negative velocity 
gradients as shown in Figure 4.  By examining the effect 
of suction on friction coefficient within the recirculation 
bubble, it is clear that suction increases the absolute 
value of Cf which is due to streamlines attraction near to 
the permeable wall. The effect of blowing on the friction 
coefficient is opposite to the effect of suction which is due 
to the repulsion of streamlines from the bottom wall. It is 
worth mentioning that for the case of suction with 
negative bleed coefficient, the friction coefficient has a 
peak value after the reattachment point. This maximum 
value coincides with the appearance of the secondary 
recirculation bubble on the top wall. The recirculated 
region on the top wall narrows down the flow passage 
and maximized local velocity gradient on the bottom wall. 
One of another result that can be drawn from Figure 8 for 
both step inclined dangle is the effect of bleeding on the 
extent of recirculated zone. It is clear that the extent of 
domain with negative value for Cf shows the breadth of 
recirculated zone. It is seen that in the case of blowing, a 
wide recirculated domain exists adjacent the  bottom  wall 
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Figure 7. Variation of Nusselt number along the bottom wall. 
 
 
 
in comparison to suction. If one compares the curves 
plotted in Figures 8a and b, it can be concluded that the 
absolute value of friction coefficient increases by 
increasing in the step inclined angle. 

Figure 9 presents the variations of Bejan number along 
the bottom wall under suction, blowing and impermeable 
wall conditions. As it was mentioned before, the Bejan 
number is the ratio of entropy generation dueto 
conduction to the total entropy generation. It should be 
recalled that in all case studies, the upper corner of the 
step is fixed at the section x=0. Figure 9  shows  that  just 
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Figure 8. Variation of friction coefficient along the bottom wall. 

 
 
 
after the step, the Bejan number has a great value equal 
to unity because of zero velocity gradient on the bottom 
wall at the step corner. Also, the value of Be becomes 
equal to unity at the point of reattachment due to zero 
skin friction coefficient. Also, it can be seen that the 
minimum values of Be occur inside the lower primary 
recirculation zone due to increased value of frictional 
entropy generation. Comparison between the curves 
plotted in Figure 9 for three different values of bleed 
coefficient shows a similar pattern for  Be  distributions  in 
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Figure 9. Variation of Bejan number along the bottom wall (
o90� = ). 

 
 
 
the cases of suction, blowing and impermeable wall. But 
the location of maximum Bejan number (the reattachment 
point) moves towards the downstream side by changing 
the value of bleed coefficient from negative value to zero 
and then to positive value. 
 
 
Conclusion 
 
Entropy generation in flow over on an inclined backward-
facing step is calculated numerically under bleeding 
condition using suction/blowing. The set of governing 
equation for the fluid flow, heat transfer and entropy 
generation are solved numerically by CFD techniques in 
the computational domain. Because of the complex flow 
geometry, conformal mapping is used to generate an 
orthogonal grid by means of the Schwarz-Christoffel 
transformation. The governing equations are transformed 
into the computational domain and the discretized forms 
of the governing equations obtained by the control 
volume method are solved numerically. By this method, 
entropy generation due to separation, reattachment, 
recirculation and heat transfer is studied for flow over 
inclined step in a duct with bleeding. It was found that the 
entropy generation is affected by step inclined angle and 
bleed coefficient such that more irreversibilities take 
place in flows over steps with high inclined angle under 
suction. 
 
 
NOMENCLATURE 
 
a:   distance between inlet section and step  (m) 

 
 
 
 
b:        duct  height before the step (m) 
Be:      Bejan number 
Br:       Brinkman number 
c:         heat capacity  (kJ/kg K) 

fc :      friction coefficient 

HD :     hydraulic diameter =2b (m) 
ER:       expansion ratio (H/b) 
H:         channel height after the step (m) 

h:         convection coefficient (
12 .KW.m −−
 ) 

k:          thermal conductivity (
11.KW.m −−
) 

L:          length of the channel (m) 

bL :       length of permeable wall with bleeding (suction 
             / blowing) (m) 
Ns:        entropy generation number 
Nu:        Nusselt number 
P:          dimensionless pressure 
P:           pressure (Pa) 
Pr          Prandtl number 

"
gens

:     volume rate of entropy generation ).K(W.m 13 −−
 

Re:        Reynolds number 
T:          temperature (K) 
(u, v):    x- and y- velocity components (m / s) 

)v,(u **
:  velocity components  in ξ -and η -directions 

0V :         fluid velocity at inlet section (m / s) 
(x,y):      coordinates  in physical plane  (m) 
(X, Y):   dimensionless forms of  (x,y) 
Z:          physical plane 
z:           a point in physical domain 
 
 
Greek symbols 
 
α :         angle 
γ  :        computational plane 

(ξ , η ):  coordinates in computational plane 
θ  :        step inclined angle 
� :         dynamic viscosity )sm g( -1-1k  
ρ :        density  )(kg.m -3

 

� :         bleed coefficient , 0w /Vv  
τ :         dimensionless temperature parameter 

 :         non-dimensional temperature 
φ :         dependent variable 
Ψ :         viscous dissipation number 
 
 
Subscripts 
 
c:          cold wall 
cond:    conduction 
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e
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h:      hot wall 
i:       inlet 
m:     bulk value 
w:      wall 
visc:  viscous 
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