
International Journal of Science and Technology Education Research Vol. 1(7), pp. 143 - 146, December 2010
Available online http://www.academicjournals.org/IJSTER
ISSN 2141-6559 ©2010 Academic Journals

Full Length Research Paper

Cluster of heterogeneous computers: Using mobile
agents for improving load balance

Mohammed A. M. Ibrahim

Department of Information Technology, Faculty of Engineering and Information Technology, Taiz University, Taiz City,

P. O. Box: 6030, Republic of Yemen. E-mail: Sabri1966@yahoo.com.

Accepted 05 November, 2010

Due to the increasing interest to achieve high performance computing using cluster, which consists of
heterogeneous workstations and/or personal computers (PCs) connected via a fast network. Usually
programming such systems is done by applying message-passing libraries like MPI. Due to the lack of
a load balancing facility, it is quite possible to overload machines on the network with tasks, and lead
parallel applications to frustrated results. In this paper, the mobile agent based approach to improve the
load balancing of parallel tasks in heterogeneous computing environment has been proposed. Its
benefit has been demonstrated with the experimental results.

Key words: Cluster of heterogenous workstations, mobile agent, load balance, parallel computing.

INTRODUCTION

With the prevalence of powerful workstations and
personal computers, and the availability of advanced
networking technologies, there has been a great interest
in using inter-connected network of workstations and/or
personal computers for high performance parallel
computing. The cost effectiveness is obvious when the
system is compared with dedicated and expensive
parallel computer systems. Programming such systems is
usually by applying message-passing libraries like
parallel visual machine (PVM) or message passing inter-
face (MPI). Parallel programs based on these libraries
are built as a collection of communicating processes or
threads. To efficiently use such systems, the programmer
is responsible for distributing the parallel tasks evenly
among the machines in the system. More-over, the
programmer can also take dynamic effects like
background loads into account. Due to the lack of a load
balancing facility (Byers and Mitzenmacher, 2003;
Godfrey et al., 2004) it is quite possible to overload
machines on the network with tasks.

Nowadays, a new distributing computing model, mobile
agent, is of increasing interest. Mobile agents are auto-
nomous software entities that are able to migrate through
a heterogeneous network, example, the Internet and to
perform tasks on the visited computer nodes (Zhou,
2006; Godfrey and Stoica, 2005; Kunz, 1991;
Papastavrou et al., 2000). Based on such systems, we
present an approach in this paper to improve the
performance of the MPI parallel applications executing in

heterogeneous computing environment. We first use the
mobile agents to gather load status of each machine in
the system, and then the lightweight nodes are selected
according to the load information. These machines form
the sub-computing system to run the MPI application.
The experimental results indicate that it is beneficial to
use our approach to improve the load balancing of the
cluster.

TYPES OF MOBILE AGENT

Mobile agent is an emerging paradigm that is now gaining momen-
tum in several fields of applications (Jonathan, 1996). A mobile
agent corresponds to a small program that is able to migrate to
some remote machine, where it is able to migrate to execute some
function or collect some relevant data then migrate to other
machines in order to accomplish another task. The basic idea of
this paradigm is to distribute the processing through the network
(Lange and Oshima, 1999; Karnik and Atripathi, 1998a). Several
types of applications (Karnik and Tripath, 1998b) are appropriate for
mobile agent technology which includes at least one of the following
features: data collection, searching and filtering, distributed
monitoring, information dissemination, negotiating and parallel
processing.

Many mobile agent systems have been developed in the last few
years, such as Aglet from IBM, Agent TCL from Dartmouth College,
Voyager from object space, Concordia from Mitsubishi, TACOMA
from Cornell University, and Odyssey from general magic. Most of
the mentioned systems have been implemented on top of Java for
its wide spreading but also for its technical advantages: machine
independence and strong typing for security Figure 1.

Aglets is the underlying system for our framework, a detailed

144 Int. J. Sci. Technol. Educ. Res

Storage

Figure 1. Machine independence and strong typing for security

Old cluster New cluster

Task assigner Machine selector Load monitor

Figure 2. Architecture.

description is presented next. Aglet is probably the most famous
platform of mobile agents. It is a very robust platform.

Aglets are Java objects that can move from one host to another.
It is possible for them to halt execution, dispatch to a remote host,
and restart executing again by presenting their credentials and
obtaining access to local services and data. Aglets provide a
uniform paradigm for distributed object computing. Aglet has the
following characteristics: object-passing, autonomous execution,
local interaction, asynchronous, disconnected operation, parallel
execution, etc. Using Aglets can ease the development of
distributed computing system. The Aglets API defines methods to
control mobility, life cycle, travel, itinerary and security.

In a cluster of heterogeneous workstations, MPI parallel pro-
gramming paradigm is often used to develop parallel applications,
but we might obtain frustrated results, because of the imbalance of
workload among workstations in the cluster. When starting, MPI
processes machines in cluster, some workstations may be heavily
loaded, thus cause uneven distribution of workload and increase
the execution time of the application.
Based on mobile agent system, we create a framework to improve
the load balancing of parallel tasks. It consists of the following

components: load monitoring, machine selecting, and application
executing (Figure 2). With the help of this approach, the parallel
tasks can be running on lightly loaded nodes, whereas it improves
the load balancing in the heterogeneous computing system
resulting in the improvement of the performance of parallel
applications.

LOAD MONITORING

Load information is usually quantifiable by a load index. Usually
load values are computed using a manually-specified formula as
functions of current and recent utilization levels of various re-
sources. Resources include central processing unit (CPU), memory,
disk and network, etc. Different tasks have different requirement of
resources. For example, CPU-bound jobs need more CPU cycles
and are sensitive to the CPU utilization, rather than network delay.
Previous studies have suggested that the run-queue length best
describes a workstation’s loading, and many dynamic load
balancing algorithms have adapted this metric (Byers and
Mitzenmacher, 2003; Kremin and Kramer, 2005; Pan et al., 2005).

Old cluster New cluster

Task assigner Machine selector Load monitor

Ibrahim 145

Master aglet

Slave aglet

Load monitor
procedure

Load monitor
procedure

Slave aglet

Figure 3. Load-monitoring system.

Based on mobile agent system-Aglet, we construct a load-
monitoring system, its architecture is illustrated in Figure 3 and the
work going in this architecture as the following steps: First we
monitor the load level on every machine in the cluster, master
process sends mobile agents to every workstation, where mobile
agents call the native methods to measure the load level of the
local machine and send it to the master. The master is responsible
for selecting lightweight machines to form a new cluster to execute
the MPI application.

Secondly, the master process received load information sent by
mobile agents on every machine, it would execute the machine-
choosing algorithm to select the lowly loaded machines according
certain rules, finally form a new cluster on which the MPI application
will be executed. To choose the lightly loaded machines, the
following machine-choosing algorithm needs to be executed:
Determine the threshold, compare the load level of each machine to
the threshold.

Thirdly, it forms the new cluster in which the load of every
machine is less than the threshold. A fixed threshold value is
usually used in a load balancing system, but it does not work very
well since the state of the system is changing all the time. For
example, the threshold value determined for a system with large
amount of tasks will be too large for system with small mount of
tasks, resulting in the inefficiency of the load balancing mechanism.
Therefore, in our framework adaptive threshold policy has been
used so that the threshold can be adjusted as the global system
load changes.

LKT ×=

Where T is the threshold; K is a constant multiplier; L is the average
workload.

Constant multiplier K reflects the amount that the workload can
be exceeded before CPU becomes heavily loaded.

EXPERIMENTAL RESULTS

Here, the experimental results presented the benefits of
our method, which uses mobile agent technology to
balance the workload within heterogeneous computing

system. Our experimental environment is a local area
network (LAN) here in our laboratory, it consists of five
nodes (Sun workstations, and server with four CPUs),
which are connected with fast Ethernet (100Mbit). Aglets
(mobile agent platform) are run on every node, based on
each node, load monitoring system is executed to
compute the load measure of every machine. The
lightweight machines (under the threshold) form a new
cluster on which we run application.

To test this method using mobile agent technology to
improve the load balancing of MPI parallel applications in
heterogeneous computing environment, we choose two
typical problems: PI calculation and matrix multiplication.
These applications have coarse granularity and are easy
to implement in cluster environment. Our goals were to
employ mobile agent computing model to improve the
load balancing of parallel problems by enhancing the
scheduling of tasks.

PI calculation can be divided easily into many tasks
that executed independently of each other. The number
of intervals needs to be a big one in order to increase the
computational level of each task. The benchmark was
executed with and without mobile agents respectively; the
results are shown in Table 1, in which the data are
average of five times execution of the program.

The experiments were conducted under both normal
use and heavy use of the cluster. In the latter case, there
are more heavily loaded machines than in the former
case. It is clear to observe from the Table 1 that the
performance has been better improved using our method
comparing with just using MPI environment. This is true
especially the system in heavy use. If machines are
heavily loaded, assigning extra tasks will worsen the
performance and delay the completion of the program.
But if these nodes are excluded from the cluster, only
lowly loaded machines are used to run parallel tasks,

146 Int. J. Sci. Technol. Educ. Res

Table 1. PI calculation.

Interval number
Normal Heavy

MPI Mobile agent MPI Mobile agent
5000000 0.921 0.692 1.793 1.354

10000000 1.834 1.332 3.475 2.637

Table 2. Matrix multiplication.

Matrix size
Normal Heavy

MPI Mobile agent MPI Mobile agent
250*250 2.056 1.481 4.663 3.648
500*500 19.283 13.072 41.438 32.572

then the load can be balanced in some extent and finally
improve the performance.

Matrix multiplication is also a commonly used applica-
tion in parallel test. Matrix B and blocks of matrix A were
sent to every machine in the cluster. Its experimental
results are shown in Table 2, including size 300×300 and
size 500×500. The benefit of our approach can also be
observed from it.

CONCLUSION AND FUTURE WORK

A mobile agent based approach to improve the load
balancing of parallel tasks in heterogeneous computing
environment is proposed in this paper. Its benefit has
been demonstrated with the experimental results.

REFERENCES

Byers J, Mitzenmacher M (2003). Simple load balancing for Distributed

hash tables. In 2nd International Workshop on Peer-to-Peer Systems
(IPTPS), pp. 80–87.

Godfrey B, Lakshminarayanan K, Surana R (2004). Load balancing in
dynamic structured p2p systems. In 23rd Conference of the IEEE
Communications Society INFOCOM).

Godfrey B, Stoica I (2005)."Heterogenity and load balance in Distributed
Hash Tables", IEEE INFOCOM.

Karnik N, Tripath A (1998a). “Design Issue in Mobile Agent
Programming Systems,” in Proceedings of the IEEE Concurrence,
Boston, Massachusetts, USA, pp. 52-61.

Karnik N, Atripathi H (1998b). “Agent Server Architecture for Ajanta
Mobile-Agent Systems,” in Proceedings of the International
Conference Parallel and Distributed Processing Techniques
(PDPTA’98), CSREA Press, pp. 63-73.

Kremin A, Kramer J (2005). “Methodical Analysis of Adaptive Load
Sharing Algorithms,” IEEE Trans. Parallel Distrib. Syst., 3: 747-760.

Jonathan D (1996). “A Mobile Agent Architecture for Distributed
Information Management,” PhD Thesis, University of Southampton.

Kunz T (1991). “The Influence of Different Workload Descriptions on a
Heuristic Load Balancing,” IEEE Trans. Software Eng., 17(7): 725-
730.

Lange D, Oshima M (1999). “Seven Good Reasons for Mobile Agents,”
Commun. ACM, 42(3): 355-395.

Papastavrou S, Samaras G, Pitoura E (2000). “Mobile Agents for World
Wide Web Distributed Database Access,” IEEE Transactions on
Knowledge and Data Eng., 12(5): 802-820.

Pan Y, Chen D, Guo M, Cao J, Dongarra J (2005). Parallel and
distributed processing and application. Lect. Notes Comput. Sci., pp.
724-733

Zhou S (2006). ”A Trace-Driven Simulation Study of Dynamic Load
Balancing”, IEEE Trans. Software Eng., 14: 1327-1341.

