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Intertidal sediments are critically important in controlling intertidal mudflat microphytobenthic primary 
productivity and the functioning of intertidal ecosystems. This paper demonstrates the possibility of 
deriving different intertidal sediment properties from coarse-to-medium resolution remote sensing 
imagery. Supervised and image based classification methods were used to map different substrate 
types based on the Spectral Angle Mapper (SAM) algorithm. The algorithm characterized different 
sediment properties from remote sensing data based on field collected and image-extracted 
endmembers. The results demonstrate that, different substrate types can be derived from coarse-to-
medium resolution images using SAM algorithm. Supervised and image-based classification methods 
performed well in deriving intertidal sediment properties. From the results, sand sediments cover a 
wide area in extent than clay whereas Normalized Difference Vegetation Index (NDVI) validation results 
indicate that, clay sediments have higher NDVI values as compared to sand sediments. We conclude 
that, intertidal sediment properties can be successfully derived from coarse-to-medium resolution 
satellite imagery. 
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INTRODUCTION 
 
Deriving information on intertidal mudflats sediment 
properties is critical for understanding and making 
inferences on the functionality of intertidal ecosystems, 
as well as understanding levels of sediment stability and 
sedimentation (Jesus et al., 2006). Familiarity with 
intertidal sediment characteristics helps in understanding 
the spatial and temporal variability in microphytobenthic 
chlorophyll-a (chl-a) content and microphytobenthic 
primary productivity. Ecologically, intertidal mudflat 
sediment surfaces are a  habitat  to  pelagic  and  benthic 
 

micro-organisms or micro-algae capable of forming 
biofilms and microbial mats, and which are responsible 
for intertidal primary productivity as well as sediment 
stability through the secretion of extracellular polymeric 
substances (EPS) (Paterson et al., 2001; Stal, 2010). 
EPS glue sediment grains together, resulting in 
stabilization of estuarine sediments from tidal suspension 
(Adam et al., 2009; Blanchard, 2000; Kromkamp et al., 
2006). In this regard, the existence of intertidal mudflats is 

bio-physically and  ecologically  crucial  to  coastal  ecosystems. 
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Despite the bio-physical and ecological significance of 
intertidal mudflats, the existence of intertidal mudflats is 
currently threatened by phenomena such as climate 
change which cause sea level rise. In addition, physical 
human development emanating from regular shipping 
activities also causes alterations in sedimentation 
patterns (CPSL, 2005; Reise et al., 2010). Intertidal 
mudflats are normally characterized as coastal wetlands 
that result from prolonged and consistent deposition of 
nutrient- rich estuarine silts, clays, or sand particles, and 
marine animal detritus by tides and rivers in shallow 
areas or within the intertidal zone (Adam et al., 2009; 
Reise et al., 2010). In intertidal mudflats, sediment sizes 
vary from nutrient-poor coarse sand with grain size 
stretching from 63 µm to 2 mm (Adam et al., 2009), to 
nutrient-rich silt and fine clay or mud with particles less 
than 62.5 µm (Stal, 2010). 

Although, intertidal sediments surfaces have an 
undisputable ecological role, our knowledge on the 
spatial distribution of intertidal sediment properties is 
limited. This limitation is related to problems linked to field 
measurements such as area inaccessibility (Jesus et al., 
2006), the patchy nature of their occurrence (Adam et al., 
2009; Jesus et al., 2006; Kromkamp et al., 2006; Smith et 
al., 2004) and the cost of fine resolution satellite remote 
sensing data. According to Adam et al. (2011), field 
measurements on intertidal mudflat sediment surfaces 
are tedious, expensive, labour-intensive, ecologically 
destructive and also do not fully capture the spatial 
heterogeneity since they are conducted at point basis. 
Moreover, field measurements on intertidal mudflat areas 
are also affected by the unpredictable tidal cycle. In the 
light of the above, the advent of satellite remote sensing 
techniques offers a better alternative means of obtaining 
essential information to study intertidal mudflats (Adam et 
al., 2009; Deronde et al., 2006; Murphy et al., 2008; van 
der Wal et al., 2004). Satellite remote sensing data has 
the capability of providing a consistent and full spatio-
temporal coverage of intertidal mudflat areas. The 
technique also provides non-intrusive measurements of 
areas considered to be inaccessible and highly sensitive 
to any physical disturbances such as trampling. Remote 
sensing and GIS techniques enhance spatio-temporal 
investigations on the ecological and physical 
characteristics of the environment by providing a synoptic 
view of intertidal areas at minimal costs (van der Wal et 
al., 2010). To the best of our knowledge, intertidal 
sediment properties have been derived from fine 
resolution satellite remote sensing data such as 
HyperMap

TM
 (Hyper spectral Mapper) scanner and the 

Airborne Hyperspectral Sensor (AHS) on board of the 
CASA 212-200 aerial platform with a spatial resolutions 
ranging from 3 to 10 m (Adam et al., 2009). This study 
explores the possibility of using coarse-to-medium 
resolution images such as the Advanced Spaceborne 
Thermal Emission and Reflection Radiometer (ASTER), 
Landsat Thematic Mapper (TM5) and Medium Resolution  
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Imaging Spectrometer (MERIS) in order to derive 
different intertidal substrate types in the Wadden Sea. 
Accurate mapping of different intertidal substrate types in 
the Wadden Sea is critical for sustainable monitoring and 
management of these fragile ecosystems. 
 
 
MATERIALS AND METHODS 

 
Study area 

 
This study was conducted in the Dutch Wadden Sea (the 
Netherlands). The sea is a shallow open estuarine intertidal region 
(CPSL, 2005). It has an areal coverage of approximately 10,000 
km2 and about 500 km in length (Hogan, 2011; Hommersoms, 
2010). In June 2009, the Wadden Sea was included in the World 
Heritage list by UNESCO (Hommersoms, 2010; UNEP, 2009) 
because of its unique ecological, economic and societal 
significance (Otto et al., 2001). Its ecological significance is mostly 
centered on biological diversity that is based on coastal habitats 
such as intertidal mudflats (Reise et al., 2010). 

The Wadden Sea experiences temperate climatic conditions 
defined by the convergence of two different air masses that result in 
mild winters and cooler summers (UNEP, 2009). Although the sea 
is the source of humid air, precipitation in the Wadden Sea area is 
moderate, ranging from 700 to 800 mm yr-1 or approximately 2 mm 
d-1 (UNEP, 2009). The Wadden Sea landscape is made up of flat 
coastal plains and the lowly-elevated offshore barrier islands with 
an altitude of approximately ± 50 m above sea level. Coastal sand 
dunes, beach ridges and dykes constitute the main topographic 
types in the area (UNEP, 2009) (Figure 1) 

 
 
Field radiometric measurements 

 
In-situ field radiometric measurements were conducted between the 
26th and 28th of September 2011. Measurements were done on 
exposed intertidal mudflat sediment surfaces following the predicted 
tidal cycle (Figure 2) using the Trios RAMSES sensors. The 
sensors measured upwelling radiance (Wm-2 sr-1 nm-1) and the 
downwelling irradiance (Wm-2 nm-1). Intertidal mudflats properties 
were divided into three (3) types that is, sand, clay, and sea weeds. 
Coordinates of the intertidal mudflat sites sampled at low tide are 
shown in Table 1. Field measurements were specifically done on 
undisturbed sediment surfaces so as to capture an undistorted 
reflectance from intertidal sediment surfaces. Downwelling 
irradiance Ed (0+, λ) was measured at an angle of 135° and 
upwelling radiance Lu (0

+, λ) with an angle of 40° and a field of view 
of 7°. All these measurements were done simultaneously from a 
fixed height of 110 cm above the intertidal surface sediments so as 
to increase the radiometric footprint. Spectral signature values were 
assessed for consistence through plotting spectral graphs against 
wavelength in the field (Figure 3). The coordinates of the sampling 
sites were recorded using a handheld Global Position System 
(GPS) receiver (with an error of ± 3 m) and imported to a GIS 
environment. For radiometric measurements, a stratified random 
approach was used to select 37 locations on 3 different sites to 
capture the inherent sediment spatial heterogeneity.  

 
 
Remote sensing data acquisition 

 
Selected remote sensing imagery that is, ASTER, Landsat TM5, 
and MERIS, with a spatial resolution of 15, 30, and 300 m, 
respectively  were used. Landsat  images  were  acquired  from  the  
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Figure 1. False- colour composite map of the Wadden Sea with special reference to the Dutch part (Source: 
ASTER 2007). 

 
 
 

 
 

Figure 2. Predicted tidal cycle followed in undertaking field radiometric measurements. 

 
 
 

Table 1. Coordinates of the intertidal mudflat sites sampled at low- tide  
 

Date Station Lat. N Long. E Location Sample points 

26.09.2011 Site 1 53°2.460 04°58.426 Lutjeswaard 6 

27.09.2011 Site 2 53°4.193 04°53.181 Vlakte van Kerken 13 

28.09.2011 Site 3 52°57.225 04°50.213 Balgzand 18 

 
 
 
readily available online Landsat archive, that is, via the United 
States Geological Survey Global Visualization Viewer (GloVis) 
(http://glovis.usgs.gov/ web-link). ASTER level 1B images were 
acquired via the ITC RSG lab, whereas MERIS images were 
acquired from European Space Agency  (ESA).  Cloud-free  images 

were acquired during a period of low tide. To confirm whether the 
images were collected during a period of low tide we retrieved 
information on tidal water height from an online tidal database. Den 
Helder which is in the Western part of Wadden Sea was used as 
the reference for the whole area under study. 



 
 
 
 

 
 

Figure 3. Three spectral signatures derived from intertidal sediment 
properties. 

 
 
 

 
 

Figure 4. Map showing adopted field sampled site. 

 
 
 
Field data preprocessing 
 
Downwelling irradiance and upwelling radiance derived from the 
Trios RAMSES sensors were used to derive the remote sensing 
reflectance for sand, clay and sea weeds (Figures 5 to 7). Remote 
sensing reflectance was determined directly by computing the ratio 
of upwelling radiance and downwelling irradiance as shown in 
Equation 1. 
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Where: Rrs = remote sensing reflectance [sr-1], Lu (0+, λ) = 
upwelling radiance [Wm-2 sr-1 nm-1], Ed (0+, λ) = downwelling 
irradiance [Wm-2 nm-1]. 
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Remote sensing reflectance was converted to spectral reflectance 
by multiplying the resultant output by pi (π) in order to derive 
information on sediment types. Three spectral end member types 
were determined and these were used for ecotopy mapping. This 
spectral end member refers to a specific pure spectral feature 
acquired through in situ radiometric measurements or laboratory 
analysis of reflectance spectra; principally focusing on a single 
surface (Hommersoms, 2010; Schwengerdt, 1997; Yuhas et al., 
1992). 
 
 
Remote sensing data calibration 
 
Landsat images were acquired in Digital Number (DN) format. 
However, for these images to be used in deriving information on 
mudflat substrate types, firstly they had to be calibrated into 
spectral radiance units [Wm-2sr-1µm-1] following the calibration 
method by Chander et al. (2009). The calibration coefficients were 
provided together with the respective Landsat images. The 
conversion from DN to spectral radiance was done band by band. 
ASTER level 1B contains radiometrically-calibrated and 
geometrically co-registered data (YCEO, 2011). MERIS level 1B 
were readily geometrically calibrated so as to be matched with the 
Top-Of-Atmosphere (TOA) radiance.  
 
 
Atmospheric correction of remote sensing data 
 
The visible bands for Landsat TM5 and ASTER images were 
atmospherically-corrected using the Fast Line-of-sight Atmospheric 
Analysis of Spectral Hypercubes (FLAASH) model (Felde et al., 
2003; Kaufmann et al., 1997) which is only applicable to 0.35 to 2.5 
µm visible region of the electromagnetic wavelength. The FLAASH 
model, an interface of the ENVI GIS software, is recommended for 
retrieving reflectance from multispectral radiance images 
(Kaufmann, et al., 1997; Trishchenko, et al., 2002). On the other 
hand, MERIS images were corrected for atmospheric effects using 
Simple Method for Atmospheric Correction (SMAC) in the BEAM 
software (ESA, 2012). SMAC is a semi-empirical approximation of 
the radiative transfer in the atmosphere (Rahman et al., 1994). 
FLAASH and SMAC incorporates the MODTRAN4 radiation 
transfer code (Berk, 2000) which involves the application of a 
correlated-k algorithm which significantly enables precise 
computation of various scattering.  

 
 
Image classification algorithm 

 
The supervised and image-based classification methods were 
implemented using spectral angle mapper (SAM) algorithm 
(Boardman 1994; Brotas, et al., 1995). The SAM algorithm is 
expressed in Equation 2: 

 


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where: nb = number of bands, ti = unknown spectra and ri = known 
spectra. 
 
The algorithm classifies images by comparing the unknown image 
spectra with the known spectra (De Carvalho et al., 2000; Kruse et 
al., 1992)   as shown in Figure 4. The resultant outputs of SAM, 
were classified images with the best match at each pixel, measured 
in radians ranging from 0 to π/2 (Kruse et al., 1993). Derivation of 
endmembers from remote sensing data was  done  using  the  Pure
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Figure 5. SAM algorithm Concept 

 
 
 

 
 

Figure 6. Spectral signature for sea weeds in intertidal mudflats of Wadden sea. 

 
 
 
Pixel Index (PPI). Before this algorithm was implemented, the 
inherent remote sensing data was reduced using the Minimum 
Noise Fraction (MNF) transformation method (Boardman 1994). 
The MNF transformation method defines the inherent data 
dimensionality through separating and equally distributing the noise 
within data (Boardman and Kruse, 1994). The method ensured that, 
the data variance declined with an increase in the number of bands. 
The decrease in data variance continued until only noise and none 
coherent image bands remained. For the PPI method that was used 
for multi-spectral endmember extraction, a value of 19.5 for the 
number of PPI, and a PPI threshold value of 8.5 was used. The 
smaller number of PPI was selected because it showed only purest 
pixels as compared to a large number. The PPI computation 
identified and grouped purest pixels in the n-dimensional space. 
The purest pixels are associated with  bright  pixels   in   the   image  

(Chaudhry, et al., 2006). 
 
 
Normalised difference vegetation index (NDVI) 
 
NDVI is a numerical indicator often used as a proxy for estimating 
chl-a concentration in mudflats from remotely-sensed data 
(Kromkamp et al., 2006). In analyzing remote sensing data; the 
index uses the visible (VIS), red (0.4 to 0.7 µm), and near-infrared 
(NIR) bands (0.75 - 1.1 µm) of the electromagnetic spectrum 
(Rulinda et al., 2010; Tucker, 1979). The index determines chl-a 
concentration based on Equation 3. When the difference between 
the NIR and the red reflectance is large it means that, the 
concentration of chl-a is very high and the reverse is true. NDVI 
values range from -1 through 0 to 1. 
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Figure 7. Spectral signature for clay sediments in intetrtidal mudflats of Wadden sea. 
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Where: NIR
 = chl-a maximum reflectance in the near-infrared 

wavelength; and RED
 = maximum absorption in the red band. 

 
Thus, based on the above equation, NDVI was calculated as 
followings: 
 
Landsat TM5 = (B_840-B_660)/ (B_840+B_660); 
ASTER  = (B_807-B_661)/ (B_807+B_661); 
MERIS   = (B_865-B_665)/ (B_705+B_665). 

 
 
RESULTS AND DISCUSSION 
 

Field spectral reflectance curves 
 

Figures 5, 6, and 7 present the different spectral 
signatures for sea weeds, clay and sand substrates 
across the Wadden Sea. It can be observed that, sea 
weeds spectral signature is characterized by low 
reflectance values in the visible spectrum (VIS) with 
approximately 0.0025 between 400 to 700 nm and 
around 0.3 to 0.35 in the near infra-red (NIR) bands. A 
steep red edge between the visible and near infra-red 
bands was observed. Low reflectance values in the 
visible spectral region are a result of high absorption of 
radiation by chlorophyll-a, whereas high reflectance 
values in the near-infra-red are due to the seaweed blade 
internal scattering and no absorption. Spectral trends in 
the VIS and NIR imply that seaweeds have some 
concentrations of photosynthetic pigments that absorb 
light in the visible range at the same time reflecting much 
in the longer wavelength. 

Spectral signature for clay sediments with algae display 
a steep rise between 400 to 550 nm and a strong chl-a 
absorption dip at 673 nm. However at 700 nm, the 
reflectance spectra  turns  to  be  smooth,  without  much 

change. This implies that the spectral signature was not 
affected by the presence microphytobenthos (MPB) 
within clay sediments. This spectral dip at 673 nm is 
expected and most probably explained by the presence 
of microphytobenthic diatoms in clay sediments which 
significantly said to contribute to mudflat biomass. Adam 
et al. (2009) conducted similar field measurements using 
ASD spectrometer and attained similar spectral trends 
over clay sediments, with high absorption around 673 
nm. Actually, literature shows that when there is no 
microphytobenthic biomass content within sediments, the 
spectral profile will be somehow smooth indicating no 
absorption troughs (Adam et al., 2009). In a different 
study by Kromkamp et al. (2006) found that, sediments 
dominated by MPB diatoms had a sharp spectral 
reflectance at around 500 nm with an absorption dip at 
675 nm resulting from chl-a absorption within that 
spectral region (Figure 6). 

Spectral reflectance for sandy sediments demonstrates 
a different spectral signature, with low values with almost 
smooth spectral reflectance signature (maximum 
reflectance around 0.18) when compared to that for clay 
(~ 0.35). It is assumed that, this observation maybe as a 
result of low microphytobenthic content in sand substrate. 
Sands tend to be both lower in nutrients and more 
frequently resuspended than cohesive clay sediments, 
and these characteristics probably contribute towards 
lower MPB biomass. This remark is also confirmed by a 
smooth trend in the spectral reflectance profile with less 
chl-a absorption dip at 673 nm throughout the spectral 
range as observed in Figure 8. However, minor 
absorption residuals that can be recognized around 673 
nm are a result of the presence of MPB diatoms within 
sandy substrates. In general, a clear-cut distinction 
amongst different endmembers from different substrate 
types is observed. These differences can be attributed to 
the variability in algal /or MPB content available in 
different substrate types. According to Carrère et al. 
(2004), the amount of absorption in different sediment 
spectra   is   directly  a  function   of   chl-a   concentration
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Figure 8. Spectral signature for sand sediments in intertidal mudflats of Wadden sea 
 
 
 

 
 

Figure 9. Intertidal mudflats sediment classes derived from Landsat 2000 using SAM. 
 
 
 

detected in different substrates. Although, natural and 
expected spectral patterns can be observed, the purity of 
these spectral signatures seems to be largely 
compromised by substrate moisture effects and its 
significant radiation absorption (Figure 7) 
 
 
Intertidal substrate types 
 
The results in Figure 14 indicate clay and sand sediments 
classes derived from Landsat TM, ASTER and MERIS 
images respectively. The sediments were characterized 
from remotely sensed data using field-derived spectral 
signatures (Figures 5 to 7). From these results it can be 
further observed that, both clay and sand sediments 
significantly vary spatially across the entire intertidal area. 
Although, there is spatial variability of both sediments, a 
close examination of results shows that, clay sediments 
present a lesser spatial extention than sand. This is 
because   substrates   within   the    intertidal    area    are 

constantly exposed to suspension and further 
destabilization by waves and tidal currents, resulting in 
washing away of interstitial/pore-water nutrients leaving 
behind vast areas covered by sand. It can also be 
realized that, in the year 2000 there was a more 
pronounced clay and sand content over the entire 
Wadden Sea area (Figure 8). It can also be observed 
that, across the entire region sandier and clay sediments 
were detected in the north eastern and south western 
regions. Limited detections were made in the central 
region of the Wadden Sea probably due to high water 
levels submerging the mudflats during the satellite 
overpass period.  

From both supervised classification and image-based 
classification results; it can be observed that, more clay 
sediments have been derived from the image based 
classification method than the later (Figures 9, 10, 11, 12, 
and 13). A similar clay and sand sediment distribution 
trend is observed on both classification results from 
MERIS 2011. In Figure 14, both image-based classification
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Figure 10. Intertidal mudflats sediment classes derived from Landsat 2003 using SAM. 

 
 
 

 
 

Figure 11. Intertidal mudflats sediment classes derived from Aster 2007 using SAM. 

 
 
 
and supervised classification demonstrates a similar 
distribution of sand and clay sediments although not 
giving a one-on-one match-up. This observation can be 
attributed to the fact that, field-collected endmembers 
may be affected by the prevailing environmental factors. 
For instance, the presence of thin water films can largely 
compromise the purity field collected spectral 
endmembers. However, this limitation can be improved 
either through undertaking laboratory analysis of 
substrate reflectance spectral signatures (Schwengerdt, 
1997) or by using analytical methods like x-ray or 
microprobe analysis (Clark et al., 1993; Kempeneer et al., 
2006) because these procedures would minimize the 
influence of environmental factors on reflectance. 
However, the  fact  that  image-based  classification  may 

have overestimated the substrates content within 
intertidal mudflats may not be ruled out. 
 
 
Validation of substrates properties with spatial 
variation of NDVI 
 
Table 2 illustrates a summary of statistics computed from 
all the image-based classification results to accuracy for 
assessment. It can be noted that, NDVI values are high 
on seaweed substrates, followed by those on clay 
substrates, which is to be expected, since clay substrates 
have higher concentrations of organic matter and 
microphytobenthic organisms (Dube, 2012). The highest 
NDVI value (0.71) was recorded in year 2000 from Landsat
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Figure 12. Intertidal mudflats sediment classes derived from Landsat TM 2009 using SAM. 

 
 
 

 
 

Figure 13. Intertidal mudflats sediment classes derived from Landsat TM 2010 using SAM. 

 
 
 

 
 

Figure 14. Intertidal mudflats sediment classes derived from use of MERIS 2011. 
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Table 2. Summary of statistical tables for Image based classification. 
 

Remotely sensed data Sediment class Minimum Maximum Mean St. dev ndvi 

Landsat TMS 2000 

Sea weeds 1.00 7.00 5.68 2.49 0.71 

Clay 0.01 2.00 1.95 0.21 0.28 

Sand 2.00 5.00 5.98 0.03 0.02 

       

ASTER 2003 

Sea weeds 0.00 8.00 7.98 0.41 0.65 

Clay 0.00 2.00 1.68 0.67 0.23 

Sand 1.00 7.00 7.00 0.08 0.02 

       

Landsat TMS 2009 

Sea weeds 0.00 5.00 4.34 1.79` 0.50 

Clay 0.00 3.00 2.16 0.37 0.25 

Sand 2.00 6.00 5.87 0.61 0.01 

       

Landsat TMS 2010 

Sea weeds 0.00 4.00 0.92 1.75 0.40 

Clay 0.01 7.00 2.47 1.51 0.21 

Sand 0.00 9.00 8.74 1.53 0.02 

       

MERIS 2011 

Sea weeds 0.10 12.00 9.30 2.41 0.37 

Clay 0.60 7.97 2.47 0.35 0.13 

Sand 1.00 10.00 7.49 2.53 0.03 
 
 
 

imagery and the lowest (0.01) was recorded in 2009 from 
Landsat imagery. This shows that, in year 2000 the 
concentration of microphytobenthic organisms, seaweeds 
were very high as compared to the following years (Table 
2). 
 
 
Conclusions 
 
Based on our findings we come up with three 
conclusions: 
 
i) Radiometric filed measurements indicate that, different 
sediment properties (sea weeds, clay and sand) have 
different spectral characteristics; 
ii) Intertidal sediment properties can be successfully 
derived from coarse-to-medium resolution imagery, 
based on the sediment inherent optical properties; 
iii) NDVI can be successfully used to validate the 
sediment properties classification results, with high NDVI 
values observed over sea weeds, clay and sand 
respectively. 
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