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Management of groundwater resources is very important for regions where freshwater supply is 
naturally limited. Long-term planning of groundwater usage requires method-based new decision 
support tools. These tools must be able to predict the change in the groundwater storage with sufficient 
accuracy, and must allow exploring management scenarios with respect to different criteria such as 
sustainability and cost. So, a multi-objective optimization algorithm is used for groundwater 
management problem. In this paper, a genetic algorithm with two additional techniques, Pareto 
optimality ranking and fitness sharing, is applied to simultaneously maximize the pumping rate and 
minimize pumping cost. The methodology proposed has more Pareto optimal solutions. However, it is 
desirable to get, and to find the ones scattered uniformly over the Pareto frontier in order to provide a 
variety of compromise solutions to help the decision maker. A groundwater resources management 
model in which performed through a combined simulation-optimization model is used. This multi-
objective genetic algorithm (MOGA) of optimization combines the modular three-dimensional finite-
difference (MODFLOW) and genetic algorithm (GA). MOGA model is applied in El-Farafra oasis, Egypt to 
develop the maximum pumping rate and minimum operation cost as well as the prediction of the future 
changes in both pumping rate and pumping operation cost. It also makes a feasible solution in 
groundwater management. Finally, a compromise solution is presented from a set of Pareto optimal 
solutions. 
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INTRODUCTION 
 
Multi-objective optimization problems are mostly different 
from single-objective optimization problems. In the single-
objective case, one attempts to obtain the best solution, 
which is absolutely superior to all other alternatives. 
While in the case of multiple objectives, it may not be 
necessary to obtain a best solution with respect to all 
objectives because of the conflict among multiple 
objectives. A solution may be the best in one objective 
but the worst in other objectives. There usually exist a set 
of solutions for the multiple-objective case which cannot 
simply be compared with each other. For such solutions 
called Pareto optimal solutions, no improvement in any 
objective function is possible without sacrificing at least 
one  of  the  other  objective  functions  (Cheng  and   Gen, 
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1998). 

Compromise solution-based fitness assignment has 
been proposed by Cheng and Gen (1998) as a mean to 
obtain a compromised solution instead of generating all 
Pareto optimal solutions. For many problems, a set of 
Pareto solutions may be very large. Having to evaluate a 
large set of Pareto solutions in order to select the best 
one poses a considerable cognitive burden on the 
decision maker. Groundwater simulation and optimization 
techniques have been used together to explore 
management options. Depending on the particular 
problem under consideration and the assumptions made 
in solving it, the optimization problem may be 
deterministic, stochastic, or a combination of both. 
Shafike et al. (1992) used quadratic programming to 
study pumping costs with drawdown, when drawdown 
magnitude exceeds a small fraction of the saturated 
thickness. Hsiao and Chang (2002) presented optimization 
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required in a broad range of design problems for fixed 
costs of installing new wells which may be a relevant 
component of cost functions in groundwater planning 
strategies. Hsu and Yeh (1989) studied monitoring 
network design and several groundwater remediation 
design projects giving rise to combinatorial problems in 
which decision variables included location of wells and 
pumping rates. Ahlfeld and Heidari (1994) studied 
hydrogeological complex sites in which conditions were 
obscured an obvious intuitive design. Park and Aral 
(2003) presented a multi-objective optimization approach 
to determine pumping rates and well locations to prevent 
saltwater intrusion, while satisfying desired extraction 
rates in coastal aquifers. This approach was an iterative 
sub-domain method, in which the proposed algorithms 
searched for the optimal solution by disturb the well 
locations and pumping rates simultaneously. Frind (1982) 
and Cheng et al. (2000) studied two important objectives 
that were associated with the management of 
groundwater extraction in coastal aquifers. Ritzel et al. 
(1994) applied two variations of the genetic algorithm 
(GA), a Pareto GA and a vector-evaluated genetic 
algorithm (VEGA), for a multi-objective, groundwater 
pollution containment problem. The multi-objective 
problem was formulated to minimize the containment 
design cost while maximizing the design’s reliability. The 
Pareto GA based on a ranking scheme that ordered the 
population according to each containment design’s 
degree of domination. The VEGA searched for multiple 
solutions for multi-objective problems simultaneously by 
selecting a fraction of the next population, based on the 
associated values of each objective function. Richardson 
et al. (1989) considered the VEGA as a multi-objective 
optimization method and reported that VEGA tended to 
favor the extreme of the objective functions, such that 
only the endpoints of the tradeoff curve were found. 
Ritzel et al. (1994) also concluded that the Pareto GA 
was superior to the VEGA in finding the largest portion of 
the Pareto optimal solutions. Cieniawski et al. (1995) 
investigated the performance of four GA formulations in 
solving a multi-objective groundwater monitoring problem 
where they simultaneously maximized reliability of a 
monitoring system and minimized the contaminant plume 
size at time of first detection. They implemented a 
weighted GA, VEGA, Pareto GA and a VEGA/pareto GA 
combination and compared them to the results generated 
by simulated annealing. The VEGA and Pareto GA 
method was showed to be more computationally efficient 
and more successful at generating the greatest portion of 
the tradeoff curve than the other GA formulations. 
Goldberg (1987) recommended that a form of fitness 
sharing used to enhance the Pareto GA in this area, 
where crowding in the Pareto optimal solutions were 
alleviated by decreasing the fitness of crowded 
individuals. For multi-objective optimization methods, 
some modifications to simple GA had been made to 
produce    multi-objective    genetic    algorithm    (MOGA) 

 
 
 
 
(Fonseca and Fleming, 1993), VEGA (Schaffer, 1985), 
niched pareto genetic algorithm (NPGA) (Horn et al., 
1994) and non-dominated sorting genetic algorithm 
(NSGA) (Srinivas and Deb, 1994). In this paper, the main 
objectives are to develop the MOGA with two additional 
techniques, pareto optimality ranking and fitness sharing, 
that simultaneously maximizes the pumping rate and 
minimizes pumping cost. A compromise solution from a 
set of Pareto optimal solutions is also achieved to help 
the decision maker for choosing the best groundwater 
management scenario for the unique source of fresh 
water in El-Farafra Oasis, Egypt. 
 
 
Site description 
 
El-Farafra oasis is a natural depression located in the 
hyper arid region of the Western Desert, Egypt. It lies 
between latitudes 26° 00" and 27° 30" N and longitudes 
27° 20" and 29° 00" E, 510 km south the Mediterranean 
shoreline and at 240 km east of the Libyan borders 
(Figure. 1). It represents one of the morphotectonic 
depressions of the western desert. It is excavated in the 
eocene limestone plateau (400 masl). The plateau 
surface is covered in some parts by sand dunes (Ghard 
Abu-Mohariq). Dry wadies dissect the plateau surface 
and drain into the excavated depression. The eocene 
plateau is bounded by conspicuous escarpment which 
takes the shape of questa. In addition, the floor of the 
depression is excavated in the soft carbonate of chalk 
formation. It is characterized by desert climate with scarce 
precipitation (3 mm/year). 

Geologically, the previous literatures (Hermina, 1990; 
Abdel-Atti, 2002; Ebraheem et al., 2002; Ali, 2004; 
Hamad, 2004; El Sabri and El Sheikh, 2009) concluded 
that the sedimentary succession is not fully penetrated by 
the recent deep wells. The sedimentary succession, from 
older to younger, includes the partially penetrated pre 
cenomanian rocks (188 m). Bahariya formation (lower 
Cenomanian) with a thickness of about 605 m composes 
of two sandstone rock units separated by a marker shale 
rock unit. hafuf formation (campanian- turonian) reaches 
18 m thick. It is composed of dolostones, alternating with 
arenaceous and argillaceous beds. Khoman chalk 
formation reaches 220 m while the El-Farafra chalk 
formation reaches 220 m (Maestrichtian Rocks). Dakhla 
formation (Maestrichtian-Danian) covers the floor of Abu 
Monqar depression with thickness of 185 m. Tarawan 
chalk formation forms the low dissected plateau between 
north Abu Monqar scarps and south El-Quss Abu Said 
plateau with thickness of about 5.5 m in Gabal Gunna 
North (Upper Paleocene). Esna shale formation with 
maximum thickness of 123 m was recorded in El Quss 
Abu said section (late paleocene-early eocene). Thebes 
formation (lower eocene limestone) is of thickness 145 m. 
Radwan formation (Oligocene Rocks) unconformably 
overlies Bahariya formation. Naqb formation (early middle
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Figure 1. Location map of the study area showing the location of 48 flowing wells.  

 
 
 
miocene) unconformably overlies the paleocene tarawan 
chalk. Monqar el talh formation (post-miocene) 
unconformably covers Bahariya formation of lower 
cenomanian age with a thickness of about 158 m. The 
quaternary deposits are represented by eolian sands, 
playa, sabkhas and salt deposits. 

Hydrogeologically, the present aquifers are considered a 
part of the well known Nubian sandstone aquifer system. 
Their large areal extent across the western desert implies 
serious consideration towards optimizing the utilizations 
of these most vital natural water resources especially 
where extreme aridity prevails. Abdel-Atti (2002) and 
Hamad (2004) differentiate the water-bearing complexes 
in El-Farafra depression into two distinctive aquifers. The 
fractured chalky limestone shallow aquifer (171 m) with 
secondary hydraulic conductivity due to the 
interconnection between the fractures and faults is 
underlain by the deep Nubian sandstone aquifer. The 
deep aquifer is classified into three productive zones. The 
first productive zone is of thickness 139 m and the 
second productive zone, acting as the main groundwater 
resource, is of average thickness of 402 m. The third 
productive zone is consisting of two distinctive intervals, 
the low productive interval (145 m) and the productive 
one (249 m). The bottom level of the Nubian aquifer 
varies from 1700 m to about 2300 m (Thorweihe, 1990). 
The number of wells tapping this aquifer increased from 
18 wells in 1960s to about 140 wells in the present time. 

Hence, the pumping from the aquifer was increased in 
the last decade to reach about 145 million m

3
/year. This 

figure is expected to increase in the near future due to 
continuous increment in drilling of wells. The 
transmissivity of the three productive zones recorded 
148.6, 1613 and 1642 m

2
 per day respectively while the 

average permeability reached 1.3, 5.7 and 7 m/day 
respectively. The groundwater flow direction is from 
South East (SE) to North West (NW) (Figure 2). The 
equipotential lines reflect the extensive exploitation of 
groundwater in the northern areas. Southern parts 
showed small drawdown indicated by regular contour 
lines. The direction of head decline is from 136 masl at 
Abu Minqar area to about 88 masl at north Qasr El 
Farafra area (Moharram et al., 2011). 
 
 
MATERIALS AND METHODS 

 

The materials used in this paper were collected through carrying 
out two field trips in El-Farafra depression during the period 2009 to 
2010. The two field trips were achieved with the team work of the 
desert research center. The basic hydrologic data of the present 
flowing wells were obtained from the groundwater sector, water 
resources research institute (WRRI) during these field trips. These 
materials include collection of archival data (well drilling reports, 
registration of discharge, distribution of wells, proposed operating 
systems for both groundwater supply and reclaimed area beside 

recording depth to water for groundwater level changes) were 
gathered from both groundwater sector- WRRI and GARBAD, 2005.
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Cenomanian age with a thickness of about 158 m. The Quaternary deposits are represented by 

eolian sands, Playa, Sabkhas and salt deposits. 
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Figure 2. Hydrogeologic cross-section in El-Farafra depression (after Hama, 2004-left graph) and Piezometric head contour map 

of the Nubian Sandstone aquifer at April 2008 (after El Sabri and El Sheikh, 2009-right map). 

 
 
 

In addition, the results of the groundwater flow simulation of El-
Farafra depression applying MODFLOW software (Moharram, 
2011) were used in this paper. Moreover, the results of the 
combination between MODFLOW and optimization techniques - 
optimization procedure of the simulation-optimization (S/O) model- 

applied by Moharram et al. (2011) were also used as input data for 
the multi-objective optimization approach in this work.The 
methodological approach used in this paper is based on the multi-
objective optimization with genetic algorithm techniques applying 
MOGA software. In this technique, two objectives are considered as 
follows: 
 

(1) First objective, minimization of operation cost (Z1): The cost 

objective demands for wells are operated in such a manner as to 
minimize the total cost. This essentially requires the identification 
for locations of wells as determination of their pumping rates, which, 
are satisfying operated the required water demand with the least 
possible cost. This objective is formulated as: 
 

Min 

1

1

wN

j j j

j

Z C r Q



 

                                       (1) 
 

Where, Nw is the number of potential pumping wells, C j is the daily 
cost of pumping and transportation in monetary units,  per  unit  
volume  per  unit  lift  for  location  j,  Q j  is  the pumping rate in cell j 
(j = 1,…,Nw) ; rj is the pumping lift given by (H-hj); H is height of 
ground surface and hj is the head in pumping well j. 
 
(2) Second objective, maximization of total pumping rates (Z2): The 

studied area is characterized by inadequate water supply for both 
domestic and irrigation requirements. Then any surplus water from 
the domestic demand can be used for irrigation. Therefore, this 

objective seeks to maximize the amount of water which can 
sustainable be extracted from the groundwater aquifer. The 
objective function can be written as:  

 

Max 

2

1

wN

j

j

Z Q



 

                                              (2) 

 
Equations (1) and (2) are subject to three constraints: pumping 
constraint, drawdown constraint and water demand constraint. 

 
(a) Pumping constraint (Qj): The pumping rates at potential 

pumping wells in the water demand are constrained for values 
between some minimum (Qj

min
) and maximum (Qj

max
). The 

permissible pumping rates are formed as follows:  

 
Qj

 min 
≤ Qj ≤ Qj

 max
 j = 1,…….,Nw                        (3) 

 
For the GA simulation, this constraint can be easily satisfied by 
restricting the population space of the design variables within the 
above limits. Hence no special treatment is needed for this 
constraint. 

 
(b) Drawdown constraint (rj): This constraint normally means to 
protect the ecosystem by avoiding excessive drawdown. In this 
work, the drawdown constraints are formulated to avoid mining and 
formulated as follows:  

 

1

wN

j i

j

r d

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                                                 (4) 



  

 
 
 
 
Where rj is the drawdown at control point i caused by a pumping 
rate from pumping well j, di is the permissible drawdown at control 
point i.  
 
(c) Water demand constraint (QD): The Nubia Sandstone aquifer is 
considered the sole source of water. Therefore, the designed 
optimal pumping strategy must supply at least the minimum water 
demand. It is formulated as follows:  
 

1

wN

j D

j

Q Q



 

                                    (5)  
 

Where QD is water demand. 
 
 
Discritization of optimization model 

 
Multi-objective optimization extends optimization theory by 
permitting multiple objectives to be optimized simultaneously. In 
contrast with single objective optimization problems, there may not 
exist a single solution that is optimal with respect to all objectives of 
the multi-objective optimization problem. Instead, there is a set of 
solutions that is superior to the rest of the solutions in the search 
space considering all objectives, and no solution in this set is 
absolutely better than the other solutions. This set is called the 
Pareto optimal set (Liu and Hammad, 1997). Several methods for 
generating the Pareto optimal set of a multi-objective optimization 
problem have been proposed, such as weighting objectives, 
constraint approach, and goal programming, (Konak et al., 2006). 
The basis of these methods is the transformation of the multi-
objective optimization problem into a single-objective optimization 
problem by combining multi-objective into a single objective or 
transforming some objectives into constraints. 

The flowchart illustrating the MOGA implemented in the present 
study is shown in Figure 3. Three modules numbered in this figure 
are the main processes. These are: (1) production of the initial 
generation and establishment of an initial Pareto optimal set, (2) 

application of MOGA techniques of Pareto optimality ranking and 
fitness sharing, and (3) reproduction by selection, crossover, and 
mutation operators and revision of the pareto optimal set. For each 
generation, MOGA firstly determines the fitness function of each 
population individual of the previous generation and then generates 
strings by selecting two parents on the basis of their fitness and 
reproducing them by crossover and mutation until the whole 
population is recreated. Finally, MOGA decoded and evaluates the 
strings of this new generation and revises the pareto optimal set of 
the previous generation. This procedure is repeated many times 
until one of the following termination criteria is satisfied: (1) the 
maximum generation number is reached or (2) the convergence 
index is sufficiently small. Termination criterion (1) is necessary to 
prevent a run with excessively long time. Termination criterion (2) is 
an important criterion to check the convergence of the optimization 
procedure, as will be shown in the numerical example of the next 
section. In the numerical examples, the convergence of the 

preceding procedure was checked for several cases with different 
parametric values using a suggested convergence index. 
 
 
Pareto optimality ranking and fitness sharing 

 
Pareto optimality ranking suggested by Goldberg (1989) is rank 
based fitness assignment method that takes into consideration 
each of the different optimization objectives. To illustrate this 

method, an example of a ranked population of 20 solutions, plotted 
according to pumping cost versus average pumping rate, is shown 
in Figure  4.  The  superscripts  of  these  individuals  are  the  rank 
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Figure 3. Flowchart describing the MOGA model. 
 
 
 

number, and their subscripts represent indicates. All individuals in 
the current population are compared, and the non-dominated 
individuals are identified and assigned a rank of 1, which is also the 
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Pareto optimal set of this population. Then, these individuals of rank 
1 are set apart, and the remaining individuals are compared to 
select a new non-dominated set with a rank of 2. This process 
continues until the entire population is ranked. The fitness function 
value of each individual is assigned according to its rank, as shown 
in Equation 6: 
 

                                              (6) 
 
Where, fit (i) and rank (i) are the fitness function and the rank 
number of individual number of individual i, respectively. 
 
In addition, the fitness sharing is used to divide the population into 
subpopulations of similar individuals as shown in Figure 4. In a 
multi-objective optimization problem, fitness sharing is useful in 
stabilizing the multiple subpopulations that arise along with the 
Pareto optimal set and preventing excessive competition among 
distant population members. In this study the pumping rate, one of 
the two objective functions, is divided into several intervals. Each 
solution is assigned to an interval, thus forming subpopulations 
classes of solutions. The sharing fitness function of a solution i is 
taken as its fitness function divided by the number of solutions 
belonging to its class, that is; 
  

                             (7) 
 
Where, shared fit (i) is the shared fitness function of solution i, and 
num (i) is the number of solutions in the class to which individual i 
belongs. The shared fitness function of each solution replaces its 
fitness function as the selection criterion. 
 
 
Selection, crossover, and mutation 
 
The fitness proportionate selection is adopted as the selection 
method by Goldberg (1989). For this method, the pumping rate 
solutions with shared fitness function values that are equal to or 
greater than the average shared fitness function in the population 
will survive and be selected to generate the new population 
individuals of the next generation, while the pumping rate solutions 
with smaller values will be eliminated in the selection procedure. As 

shown in Figure 5, crossover is introduced within every substring 
corresponding to one point, and the number of the crossover 
variables is the same as the number of points. The multipoint 
crossover affects every bridge with the same probability and 
accelerates the optimization process. Similarly, the bitwise 
complement mutation operator changes one binary value to the 
opposite within every substring such as 0 to 1 or 1 to 0. The details 
of multipoint crossover and multipoint mutation can be found in Liu 

et al. (1996). 
 
 
Multi-objective genetic algorithm (MOGA) model  

 
MODFLOW FORTRAN code is used as the simulation of 
groundwater flow which is linked with genetic algorithm 
optimization. Figure 3 shows the flowchart for simulation-
optimization model where FORTRAN program is used to link 

between the simulation code and genetic algorithm. To obtain the 
compromise solution of multi-objective optimization in this paper, 
the technique based on a theorem proposed by Grierson  (2008)  is 

 
 
 
 
used. This is from a set of Pareto optimal solutions for which the 
competing criteria/objectives are mutually satisfied in a Pareto 
optimal sense. This technique is called Multi-Criteria Decision 
Making (MCDM) strategy. The theorem is called Pareto-Edgeworth-
Grierson (PEG). The mathematical formulations used to determine 
the compromise solution among a set of Pareto–optimal solutions, 
are programmed in a code by El-Beltagy et al. (2010). 

 
 
RESULTS AND DISCUSSION 
 
The parameters of GA used as inputs to the applied 
MOGA model in this study are population size (200); 
number of generations (200); crossover ratio (0.6); 
mutation ratio (0.05); and uniform crossover. 
Convergence index for any generation equals the 
minimum distance between the current pareto optimal 
solutions and the corresponding ones at the previous 
generation dividing by number of current Pareto optimal 
solutions. The resulted convergence of the optimization 
process after checking according to the change in a 
convergence index with the number of generations is 
shown in Figure 6. The code terminates as stated before 
either the number of generation reaches to its maximum 
value or the convergence index is less than or equal 
0.001. 

By applying the objective functions, equation 1 and 2 
and corresponding constraints, equation 3 to 5, MOGA 
model was run for the chosen time steps (the years 2015, 
2020, 2025, 2030, 2035, 2040, 2050 and 2060) to predict 
the head maps and to estimate the optimal pumping rate 
with minimum  operation  pumping  cost.  The predicted 
head maps of the Nubian Sandstone aquifer in El-Farafra 
oasis for specific periods are shown in Figure 7. It is 
noticed that, from these figures, two cones of depression 
will appear in the cultivated areas in the model domain in 
the end of the simulation time with approximate diameter 
of 1.5 and 3 km respectively under the current pumping 
rates. This may attribute to the presence of relatively high 
sand-clay ratio in the aquifer lithology with low 
groundwater recharge rate characterizing to these aquifer 
localities. Otherwise, the middle part of the model domain 
does not affect with this phenomenon due to the effect of 
the great aquifer thickness and the presence of thin clay 
layers rather than the geologic structure impact. The 
resulted optimal pumping rate and the corresponding 
drawdown range from 190699.34 m

3
/day to 179423.32 

m
3
/day and 6.133 to 8.344 m respectively. 

Figure 8 presents results of the final Pareto optimal 
solutions. Each point in the figure represents a possible 
solution for the problem, which contains pumping rate 
versus operation pumping cost. To determine the 
compromise solution among the set of Pareto optimal 
solutions shown in this figure, the code given by El-
Beltagy et al. (2010) is again used. The values of the 
compromise solutions are presented in Table 1. 

From Table 1, it is noticed that, as the optimal pumping 
rate decreases the optimal pumping cost increases at 
specific periods (the  cost  assumption  is  increased  with
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Figure 4. Pareto optimality ranking and shared classes of population individuals.  
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Figure 5. Crossover and mutation operators. 
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Figure 6. The resulted convergence of MOGA model with fitness sharing. 
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Figure 7. Predicted head distribution map of the Nubian Sandstone Aquifer in El-Farafra Oasis (a) at 2015, (b) at 2020, (c) at 

2030, (d) at 2040, (e) at 2050, and (f) 2060 (after Moharram et al., 2011).  
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Figure 8. Final Pareto optimal solutions and compromise solution. 

 
 
 
10% for each five years). Moreover, it is observed that 
the optimal pumping rate is decreased up to the year 

2030 while it is almost constant during the interval from 
2030 up to 2060. This may be attributed  to  the  increase
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Table 1. Compromise solution for optimal pumping rate and optimal pumping cost. 
 

Year Optimal pumping rate (m
3
/day) Optimal pumping cost (L.E) 

2015 190699.34 1797404.5 

2020 184094.87 1974023.0 

2025 181933.18 2138905.3 

2030 180293.18 2475411.1 

2035 179607.15 2656349.6 

2040 179517.76 2656349.6 

2050 179471.58 2840596.8 

2060 179423.32 3022899.2 

 
 
 
in the local groundwater recharge from the surrounded 
Nubian Sandstone Aquifer System outside the oasis after 
the first 15 years of the simulation period till it reaches 
gradually to the natural balance by the end of the 
simulation period (50 years). 
 
 
Conclusions 
 
A computer programming with FORTRAN language has 
been originally established to apply the principles of the 
Multi-Objectives Genetic Algorithm (MOGA) for studying 
the groundwater resources management. In MOGA 
model, MODFLOW is linked with Genetic Algorithm (GA) 
technique to establish a simulation optimization 
groundwater model. MOGA model is applied for Nubia 
Sandstone aquifer in El-Farafra oasis to develop 
maximum pumping rate and minimum operation cost. 

Also the prediction of the future changes in both 
pumping rate and pumping operation cost are developed. 
Pareto optimality ranking and fitness sharing are the two 
necessary techniques to modify the fitness function of 
each population solution, by which a uniform distribution 
of the population solutions evolved with increase in the 
generation number. The Pareto optimal set at the final 
generation illustrates the relationship between the 
pumping rate and pumping operation cost. This 
relationship provides the decision makers with several 
candidate solutions. According to this relationship, the 
decision maker can work out the groundwater 
management considering both pumping rate and 
pumping cost. 

Finally, the compromise solution has been chosen from 
a set of Pareto optimal solutions to help the decision 
maker. The performance of the proposed MOGA model, 
when applied to El-Farafra Nubia Sandstone aquifer, 
under the available data, establishes its potential 
applicability to solve the complex groundwater 
management problems. The main advantage of the 
MOGA model is the possibility of linkage the GA based 
optimization model with an external flow simulation 
model. The relative ease and efficiency of this linkage, 
compared   to   the   linkage  using  a  classical  nonlinear 

optimization technique, shall facilitate a solution to large 
scale and complex groundwater management problems.  
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