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Some types of land development can be associated with increased impervious area that causes increase 
in surface runoff and decrease in ground water recharge. Both of these processes can have large-scale 
ramifications through time. Increased runoff results in higher flows during rainfall events. On the other 
hand, groundwater recharge decreases due to increase impervious surfaces and decrease rate. Hence, 
there is a need to quantify the impacts of landuse changes from the point of minimizing potential 
environmental degradation. The objective of this study is to develop a model for assessing the impacts 
on the watershed runoff due to changes in landscape patterns. While conceptual or physical based 
models are of importance in the understanding of hydrologic processes, there are many practical 
situations where the main concern is with making accurate predictions at specific locations. For this 
purpose, artificial neural network (ANN) model was developed. Landsat data was used in this study in 
view of its ability to provide useful information on landuse dynamics. The model’s performance in both 
training and testing phases were evaluated  using mean absolute error (MAE), mean square error (MSE), 
U Theil’s coefficient and regression analysis. The correlation coefficients between simulated and real 
data were found to be 0.94 and 0.89 for the training and testing phases respectively. Most of the data 
points were within the confidence level of 95%. The model can be used as a decision making tool when 
formulating landuse policies. It can be a practical tool for hydrologists, engineers, and town and country 
planners. 
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INTRODUCTION 
  
Due to land cover changes, many watersheds and river 
basins soils are converted to impervious surfaces which 
lead to decrease in the soil infiltration rate and 
consequently increase of the amount and rate of runoff. A 
lot of rain water makes its way to the sea during rainy 
seasons due to high rate of runoff without being used for 
the human needs. Deforestations, urbanization and other 
land use activities can significantly alter the seasonal and 
annual distribution of stream and base flows within a 
watershed. Understanding how these activities have 
influenced stream flow pattern may enable planners to 
formulate policies to minimize the undesirable effects of 
future land development. 

Most hydrologic processes have a high degree of 
temporal and spatial variability, and are further plagued by 
issues of nonlinearity of physical processes, conflicting 
spatial and temporal scales, and uncertainties in 
parameter     estimation.   Determining    the    relationship 

between rainfall and runoff for a watershed is one of the 
most important problems faced by hydrologists and 
engineers, in particular in design and management of 
water resources. 

While conceptual or physical based models are of 
importance in understanding of hydrologic processes, 
there are many practical situations where the main 
concern is with making accurate predictions at specific 
locations. In such situations, it is preferable to implement 
a simple “black box” model to identify a direct mapping 
between the inputs and outputs without detailed 
consideration of the internal structure of the physical 
process. A method to predict the runoff response of the 
watershed on the basis of known meteorological data, 
hydrologic time series, soil condition and spatial 
distribution of land use could be based on the application 
of artificial neural networks (ANN). The use of ANN 
models   in   water   resources   applications   has    grown 
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Figure 1. Location of the study area. 

 
 
 
considerably over the last decade. An attractive feature of 
ANN is its ability to extract the relation between the inputs 
and outputs of a process, without the physics being 
explicitly provided to them. The major issues that need to 
be addressed in constructive algorithms include the way 
additional nodes are connected to the existing network, 
how to determine optimal connection weights (new and 
existing) once a node has been added and, when to stop 
the addition of hidden nodes (Kwok and Yeung, 1997). 
Shrestha (2002) stated that the relationship between the 
changes of the runoff values for the change in rainfall was 
found to be nonlinear for different land use. The 
performance of the network in training and validation 
using a feed forward back propagation network model to 
predict the runoff from the land use, soil moisture and 
rainfall was found to be quite satisfactory and the model 
can be used for estimation of flows for ungauged periods. 

 
 
METHODOLOGY  

 
Data set  

 
This study was conducted in a 200 km watershed located in the 
southeastern part of the state of Perak and northeastern part of the 
state of Selangor, Malaysia. The area lies between 3° 36’ 23” to 3° 
47’ 55” N and 101° 30’ 53” to 101° 39’ 33” E. The area is 

characterized by high temperature and humidity with relatively small 
seasonal variation. The mean relative humidity is 77%, while the 
minimum and maximum temperatures are 26 and 32°C respectively.  

The average rainfall ranges from 2,000 to 3,500 mm. The mean 
annual evaporation ranges from 1,200 to 1,650 mm, and the 
average daily sunshine is 6.2 h. The wind is calm for most of the 
year, with the average daily wind speed being 89 km/day. Six soil 
series are found within the study area. The dominant vegetation 
cover in the river basin consists of tropical hill rainforests, oil palm 
and rubber. Other land covers that can be found are a few small or 
medium sized urbanized areas especially along the river banks and 
roadsides. The main tributaries of the river are the Bernam  and  Inki 

Rivers (Figure 1). 
LANDSAT 5 satellite images (path 127 and row 57) of 30 m 

resolution for the years 1989, 1993, 1995, 1998 and 2001 were 
processed using ERDAS IMAGINE 8.4 (ERDAS, 1990). The images 
were enhanced, registered, and classified into different land use 
types using supervised classification with average classification 
accuracy of 90%. The false composite colors (FCCs) were used for 
the visual examination and interpretation. The training signatures to 
perform the supervised classification were collected from hardcopy 
and topographic maps. In areas where there were no distinct 
spectral signatures within the land cover types as a result of mixed 
pixels, ground truth data was collected using Global Positioning 
System (GPS) facilities, and onscreen digitizing techniques were 
applied to clearly demarcate the classes. 

The classified thematic raster maps were vectorized and 
converted to landuse maps. ARCGIS 8.3 was used to generate the 
map’s databases and to perform the computations. Four major types 
of land use were identified in the study area, which are forest, 
rubber, oil palm and built-up areas. The percentages of land use 
areas for different years were calculated and hence, changes in the 
land use can be detected through the years. 
 
 

Artificial neural network model 
 

A feed forward neural network was used in this study. The back 
propagation learning algorithm (Rumelhart et al., 1986), which is the 
most popular and most used in the field of water resources 
management, was used as training algorithm to train  the ANN. 
Model training was accomplished by providing suitable inputs for the 
model, computing the output and adjusting the interconnection 

weights until the desired outputs were obtained. The network 
architecture that resulted in minimum error over the training epochs 
was considered as the optimal architecture, which was obtained by 
trial and error. The general steps followed to identify and validate the 
ANN model for this study can be expressed as follows: 

 
(1) Selection of inputs and outputs data those are suitable for 
calibration and validation.  
(2) Selection of the model structure and estimation of the model 

parameters.  
(3)  Model generalization.  
(4) Validation of the identified model. 
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Figure 2. ANN structure for UBRB. 
 
 
 

(5)  Running the model for land use scenarios.  
 
It has also been suggested that it might be best to fix the number of 
nodes, rather than the number of hidden layers, and to optimize the 
connections between the nodes, as well as the connection weights 
associated with each connection, during training (Kumar, 1993). 

For the purpose of this study, six parameters were selected to 
represent the input layer, which were monthly rainfall (mm), 
antecedent soil moisture index, and percentages areas of the four 
major land uses found in the study area, which are forest, rubber, oil 
palm and developed areas. There was only one output from the 

model, which is the monthly runoff (mm). The observed flow data in 
(mm) for the years 1989, 1993, 1995, 1998, and 2001 were used as 
target for the purpose of training and testing the model. The average 
soil moisture index was determined by taking AMC II and III to 
represent the dry and wet seasons respectively. The data sets were 
divided into two segments, 85% of the data was used in the training 
phase, and 15% was used to test the model. The data sets were 
normalized and scaled to be within the standard range of (0 to 1) 

which is required by the model’s algorithm.  
There is no standard rule to define network structures. In this 

study, the selection of the optimum network structure was performed 
by trial and error. Multilayer networks using the back propagation 
algorithm were selected to construct the network. The Levenberg-
Marquardt (LM) training algorithm was used. The Log-sigmoid 
transfer function was used in the hidden layer while hard-limit 
transfer function was used in the output layer. The error goal was set 
at mean square error (MSE) of 0.005. 

The input layer composed of six neurons, while the output layer 
has only one neuron. The hidden layer started with small number of 
neurons and increased progressively until the optimum structure was 
reached. Too few neurons lead to under fitting and difficulty in 
mapping, while too many neurons lead to over fitting and increase of 
training time. Using the optimum network architecture, the ANN 
model was trained for given inputs and output sets. 

One of the problems that occur during neural network training is 

over fitting. The error in the training set is driven to a very small 
value, but when new data is presented to the network the error 
becomes large. The network has memorized the training examples, 
but it has not learned to generalize to new situations. Early stopping 
technique was used to improve the model generalization. Since the 
LM training algorithm, which converges too rapidly, was used in this 
model the training, parameters need to be adjusted so that the 
convergence is relatively slow. 

The performance of a trained network can be measured to some 

extent by the errors on the training, validation and test sets. 
However, it is often useful to investigate the network’s response in 
more detail.  To  perform  this,  a  regression  analysis  between  the 

network output and the corresponding targets were conducted to 
determine the slope and correlation coefficient R

2
. The statistical 

criteria that were used to evaluate the model performance were 
mean absolute error (MAE), MSE and U Theil’s coefficient. A T-test 
with 95% confidence was carried out to compare the means of the 
observed and simulated data. In order to validate the scatter of the 
output values, 15  and 20% deviation bands were used for the 
training and testing phases respectively. These criteria were 
employed to measure the goodness of fit of the model and to test the 
model efficiency of both the training and testing phases. 

Final weights and bias values calculated during training phase for 

the network were used in the testing phase. This phase involves 
evaluating the network performance on a set of test problems that 
were not used for training. The model output from the testing 
process was compared to the observed data and examined using 
the same statistical criteria that was used during the training phase. 

 
 
Model application 

 

Rainfall pattern from the year 1989 was superimposed to determine 
the runoff amount based on the land use of the years of 1989,1993, 
1995, 1998 and 2001, and for the development plans of the year 
2020 proposed by the Department of Town and Country Planning, 
Malaysia. In this plan, all the rubber and oil palm areas will be 
converted into built-up areas. Changes in the runoff amount will be 
due to the changes in land use. 
 
 
RESULTS AND DISCUSSION 
 

The optimum ANN model structure was accomplished 
after several trial and error operations to define the 
number of hidden layers, and the number of neurons in 
each layer. It was found that a network of six neurons in 
the input layer, one hidden layer with 15 neurons and only 
one neuron in the output layer (6-15-1), is the optimum 
structure to model the basin runoff in this study. Figure 2 
illustrates the network structure. Table 1 shows the 
percentage of different land use for the different five years 
under investigation. The simulated values were compared 
with the observed data (output target) for the training and 
testing data sets. Both graphical and statistical analyses 
was conducted to validate the ANN model’s performance. 
Figures   3   to   6  show   the   relationships  between  the 
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Table 1. Landuse area percentage in the study area. 
 

Landuse type 
                       % of landuse area 

1989 1993 1995 1998 2001 

Developed area 4 4 5 6 6 

Oil palm 5 9 10 11 15 

Rubber 21 19 17 14 12 

Forest 70 68 68 69 67 

 
 
 
Table 2. Model performance. 

 

Statistical criteria 
Model performance 

Training Testing 

MAE 0.001 17.6 

MSE 4.77 5.6 

R
2
 0.88 0.79 

U Theil’s 0.06 0.11 

T-test (95% con.) 0.99 0.13 

 
 
 
observed and simulated flow for both the training and 
testing phases. Strong correlations and linear fits were 
observed for both cases (Figures 4 and 6). 

In order to evaluate the model’s performance in 
predicting the runoff amount, MAE, MSE, U Theil’s 
coefficient, R

2
 and T-test with 95% confidence level 

analyses were conducted, and the results are as shown in 
Table 2. It is observed that the model’s outputs are within 
the confidence level. Plots of the scattered points for the 
training and testing data show (Figures 7 and 8 
respectively) that most of  the data points are within the 15 
and 20% deviation lines for the training and testing 
phases respectively. 

M and B correspond to the slope and the y-intercept of 
the best linear regression relating targets to network 
outputs. If there is a perfect fit (outputs exactly equal to 
targets), the slope would be 1, and the y-intercept would 
be 0. For this model M and B were found to be 0.88 and 
0.017 respectively for the training phase. The correlation 
coefficient R

2
 between the outputs and targets is a 

measure of how well the variation in the output is 
explained by the targets. If R

2 
is equal to 1, there is a 

perfect correlation between targets and outputs. R
2
 was 

found to be 0.94 for the training phase. The model’s 
performance was evaluated for the testing phase using a 
data set that had not been used during the model’s 
training, and it gave M, B, and R

2 
values of 0.85, 0.016 

and 0.89 respectively. Table 3 shows the regression 
results from the model’s performance test. 

From the above analyses, the model shows good 
performance in simulating runoff based on land use in the 
both training and testing phases. Hence, the model can 
be applied to simulate river flow for different land use 
scenarios. This will enable the model’s users to predict the 

 
 
 
 
Table 3. Regression analysis 
 

Regression parameter Training Testing 

M 0.88 0.85 

B 0.017 0.016 

R 0.94 0.89 

 
 
 
impacts of the land use changes on the basin's runoff. 
From previous studies (Mohan and Shrestha, 2000; 
Mustafa et al., 2004), there is an evidence that change in 
runoff amount due to land use change is constant 
regardless of rainfall pattern. Hence, rainfall pattern can 
be used to investigate the impacts of land use change on 
the runoff amount by imposing the same rainfall pattern to 
different landuse combinations.  A rainfall amount of 300 
mm from the year 1989 was used to run the model with 
different land use patterns for the years of 1989, 1993, 
1995, 1998 and 2001, and the proposed land use plan for 
2020. Figure 9 shows the results obtained. It is observed 
that there was no significant change in the runoff amount 
through the years of 1989 to 2001. This was due to the 
lack of land development during that period, while the 
proposed plan for 2020 will increase the monthly runoff 
rate by 20% compared to the year 2001.  The model was 
tested with deforestation / urbanization percentages of 10, 
50 and 80% using the same rainfall amount. The 
percentage change in the runoff amount due to the 
change in the land use is shown in Figure 9. 
 
 
Conclusions 
 
The following can be drawn from this study: 
 
(i) The ANN model shows very good performance in 
runoff prediction. The model outputs are within the 95% 
confidence level, and ± 15  and 20% deviation lines for the 
training and testing phases respectively. The correlation 
coefficient between the observed and simulated outputs 
was found to be very high for both the training and testing 
phases. 
(ii) The determination of optimal network architecture is 
found to be critical for efficient mapping of rainfall runoff 
relationship. The model can be used for flow estimation 
during ungauged periods. Development plans of 2020 will 
lead to increase of monthly runoff amount by 20% 
compared to the year 2001. 
(iii) ANN model with optimal architecture is very useful tool 
to assess the hydrological effects for a given landuse 
condition. The model can be used as decision making tool 
to formulate the landuse policies. 
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