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Stochastic models have proven to be practically fundamental in fields such as science, economics, and 
business, among others. In Malawi, stochastic models have been used in fisheries to forecast fish 
catches. Nevertheless, forecasting water levels in major lakes and rivers in Malawi has been given little 
attention despite the availability of ample historical data. Although previous multichannel seismic 
surveys revealed the presence of low stands (sediment bypass zone) in Lake Malawi indicating that 
since the beginning of its formation, important water level fluctuations have been occurring, these 
previous surveys failed to predict and highlight much more clearly the status of these levels in the 
future. Therefore, the main objective of the study was to fill these research gaps. The study used 
Autoregressive (AR), Moving Average (MA), Autoregressive Moving Average (ARMA) and 
Autoregressive Integrated Moving Average (ARIMA) processes to select the appropriate stochastic 
model. Based on lowest Normalized Bayesian Information Criterion (NBIC), Root Mean Square Error 
(RMSE), Mean Absolute Percentage Error (MAPE), Mean Forecast Error (MFE), Maximum Absolute 
Percentage Error (MAXAPE), Maximum Absolute Error (MAXAE), and Mean Absolute Error (MAE) - 
ARIMA (0,1,1) model is found suitable for forecasting Lake Malawi water levels which shows negative 
trend up to 2035. The study further predicted that Lake Malawi water levels will decrease from the 
current average level of 472.97 m to an average of 468.63 m for the next 18 years (up to 2035). 
 
Key words: Forecasting, Lake Malawi, modelling, stochastic, time series, water levels. 

 
 
INTRODUCTION 
 
Time series stochastic process is a set of random 
variables *  + where the index t takes values in a certain 
set C (Alonso and Garcia-Martos, 2012). The process 
provides attractive  modeling  techniques  for  forecasting 

and planning because historical data can be used to a 
reasonable level of certainty (Box et al., 2015). The 
model deals with a sequential set of data points, 
measured typically over successive times. It is
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mathematically defined as a set of vectors  ( )  
      where t represents the time elapsed (Hipel and 
McLeod, 1994). The variable x(t) is treated as a random 
variable and the measurements taken during an event in 
a time series are arranged in a proper chronological 
order. The principles of stochastic process are to 
describe and summarize time series data, fit low-
dimensional models and make forecast (Box et al., 2015). 
Time series data have many forms and represent 
different stochastic processes. According to literature, 
Autoregressive (AR) and Moving Average (MA) models 
have been widely and commonly used in different fields 
(Box and Jenkins, 1970; Hipel and McLeod, 1994). The 
combination of AR and MA models forms Autoregressive 
Moving Average (ARMA). However, ARMA model only 
works with stationary time series data. Thus, from 
application viewpoint, ARMA models are inadequate to 
properly describe non-stationary time series, frequently 
encountered in practice. For this reason, the 
Autoregressive Integrated Moving Average (ARIMA) 
model (Box and Jenkins, 1970) is proposed. The ARIMA 
model is a generalisation of an ARMA model which 
includes the case of non-stationarity as well (Chang et 
al., 2012). The model was first proposed by Box and 
Jenkins in the early 1970s and was often termed as Box-
Jenkins models (Stuffer and Dhumway, 2010). Because 
ARIMA model is relatively systematic, flexible and can 
grasp more original time series information, it is widely 
used in meteorology, engineering technology, marine, 
economic statistics, prediction technology, hydrology and 
water resources studies (Yevjevich, 1972; Aksoy et al., 
2013; Cryer and Chan, 2008; Kantz and Schreiber, 
2004). 

In Malawi, ARIMA model has been commonly used in 
fisheries to forecast fish catches (Zindi et al., 2016; 
Lazaro and Jere, 2013; Singini et al., 2012; Mulumpwa et 
al., 2016). Nevertheless, forecasting water levels in major 
lakes and rivers in Malawi has been given little attention 
despite the availability of ample historical data. On the 
same note, although previous multichannel seismic 
surveys (Scholz and Rozendahl, 1988; Johnson and 
Davis, 1989; De Vas, 1994) revealed the presence of low 
stands in Lake Malawi indicating that since the beginning 
of its formation, important water level fluctuations have 
been occurring, these previous surveys failed to predict 
and highlight much more clearly the status of these levels 
in the future. Consequently, the present study was 
designed to fill these research gaps. 
 
 
MATERIALS AND METHODS 
 
Study area and physiography 
 
The study was conducted in Lake Malawi, located at the southern 
end of the Great Rift Valley region. It is an elongated lake 
surrounded by mountains with highest elevations to the north. 
Figure 1 shows that the boundaries of Lake Malawi cross 
Mozambique and Tanzania with an outlet in the  southern end.  The  

 
 
 
 
lake is ranked as the ninth largest and third deepest freshwater lake 
in the world with an estimated total area of 28,750 km2 and a 
volume of about 7725 km3. The Shire River is the outlet of Lake 
Malawi and flows approximately 410 km from Mangochi to Ziu Ziu in 
Mozambique, where it drains into Zambezi River (Shela, 2000). 
According to Shela (2000), the physiography of upper Shire has 
offered opportunities for regulating river flows and subsequently 
lake levels, with possible expansion. The middle section of Shire 
River is estimated to be 80 km and is very steep characterised by 
rock bars and outcrops with water falls of about 370 m. 
 
 
Data collection and time series model description 
 
Lake Malawi has been there over the years. Literature has shown 
that in early 1924, Dixey attempted to understand the hydrology of 
Lake Malawi (Dixey, 1924). However, he failed due to lack of 
hydrological data (Dixey, 1924). Later in the years, the fear of 
period of no outflow by authorities greatly forced them to seriously 
monitor the Lake levels (Drayton, 1984). Department of Water 
Resources seriously embarked on collection of water levels data 
later in the years; however, the data collected from 1950s to 
somewhere around 1980s were too complex and the quality was 
too inconsistent. Similar observation was reported by Kaunda 
(2015). Because of these past data anomalies, the present study 
analysed the univariate time series data of Lake Malawi water 
levels from 1985 to 2016 period. Figure 1 shows that the 
Department of Water Resources collects water levels data from 
three stations along the lake shore (Chilumba, Nkhatabay and 
Monkey Bay). The water level is normally the average of three 
records ignoring the water level gradient which is between the north 
and south tip of the lake (Kumambala, 2010). 
 
 

Application of stochastic models 
 

The study used two linear time series models known as 
Autoregressive (AR) (Box and Jenkins, 1970) and Moving Average 
(MA) (Zhang, 2003) models. These models were combined to form 
Autoregressive Moving Average (ARMA) (Cochrane, 1997). The 
combination of these two models were based on famous Box-
Jenkins principle (Box and Jenkins, 1970) also known as the Box-
Jenkins models. 
 
 

Autoregressive Moving Average (ARMA) Model 
 

An ARMA (p,q) model which is a combination of AR(p) and MA (q) 
models was developed. In an AR (p) model, the future value of a 
variable was assumed to be a linear combination of (p) past 
observations and a random error together with a constant term. 
Mathematically, the AR (p) model (Hipel and McLeod, 1994) is 
expressed as 
 

     ∑          
 
                                     (1) 

 

where    and    are the actual value and random error at time 
period t, respectively,   (i=1, 2 ... p) are model parameters and c is 
a constant. Just as an AR (p) model regress against past values of 
the series, an MA (q) model uses past errors as the explanatory 

variables. The MA (q) is given by    (Hipel and McLeod, 1994) and 
is expressed as: 
 

     ∑         

 

   

                                ( ) 

 

Here, μ is the mean of the series, j =1, 2….  are  model  parameters  
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Figure 1. Map of Malawi showing Lake Malawi-Shire River system (GoM, 2005). 

 
 
 
and q being the order of the model. The random shocks are 
assumed to be white noise (Hipel and McLeod, 1994) process. 
Autoregressive (AR) and Moving Average (MA) models were 
combined together to form a general and useful class of time series 
models known as the ARMA model. Mathematically, an ARMA (p, 
q) model is presented as (Cochrane, 1997): 
 

       ∑  

 

   

     ∑      

 

   

                                                      ( ) 

 
where the model orders p, q refers to p autoregressive and q 
moving average terms. Usually, ARMA models are manipulated 
using the lag operator notion. The lag operator is defined as 

        . Polynomial of lag operators are used to represent 
ARMA models as follows: 
 

AR(p) model:     ( )                                                                (4) 
 
MA(q) model:    ( )                                                                 (5) 
 

ARMA (p, q) model:  ( )    ( )                                                          ( ) 
 
where 
 

 ( )    ∑   
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Stationary analysis 
 

When an AR (p) process is presented as:    ( )  , the  ( )    
is known as the characteristic equation for the process. Box and 
Jenkins (1970), proved that a necessary and sufficient condition  for 

the AR (p) process to be stationary is that all roots of the 
characteristic equation must fall outside the unit circle. It is very 
important to note that ARMA models can only be used for stationary 
time series data. The fact that Lake Malawi water levels data was 
non-stationary, led to proposition of the Autoregressive Integrated 
Moving Average (ARIMA) model which is a generalization of ARMA 
model. In ARIMA model, non-stationary time series data is made 
stationary by applying finite differencing of data points (Cochrane, 
1997). The mathematical formulation of the ARIMA (p, d, q) using 
lag polynomials is given below (Lombardo and Flaherty, 2000). 
 

 ( )(   )     ( )                                                                   (8) 
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here p, d and q are integers greater than or equal to zero and refer 
to the order of the autoregressive, integrated and moving average 
parts of the model, respectively. The integer d controls the level of 
differencing. 
 
 
Autocorrelation (ACF) and Partial Autocorrelation (PACF) 
 
To determine a proper model for fitting time series data, ACF and 
PACF analysis was carried out. These statistical measures 
reflected how observations in a time series data are age-related to 
each other. For modelling and forecasting purposes, ACF and 
PACF against consecutive time lags were plotted. These plots 
helped to determine the order of AR and MA terms. Below are the 
mathematical models: For a time, series * ( )          + the 
autocovariance at lag k is defined as: 
 
      (      )   ,(    )(      )-                                   (10) 
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Figure 2. Water levels of Lake Malawi from the period of 1985 to 2016. 
 
 
 

The autocorrelation coefficient at lag k is defined: 
 

   
  

  
                                                                                         (11) 

 
where μ is the mean of the time series, that is,    ,  -. The 
autocovariance at lag zero, that is,    is the variance of the time 
series. Another measure, known as the Partial Autocorrelation 
Function (PACF) is described by Box and Jenkins (1970). It is used 
to measure the correlation between an observation k past period 
and present observation after controlling observations at 
intermediate lags. 
 
 
Trend model fitting 
 
Conducting various diagnostic tests is an important step in time 
series modeling (Chung, 2009). The famous Box-Ljung Q-statistics 
as described by Box and Jenkins (1970) was used to transform the 
non-stationary data into stationary and to check adequacy for the 
residuals. In practice, the Box-Ljung Q-statistics was computed 
(Ljung and Box, 1978) as 
 

   (   )∑
 ̂ 
 

   

 
                                                                     (12) 

 

where  ̂  is the estimated autocorrelation of the series at lag k and 
m is the number of lags being tested. Box and Jenkins (1970) 
developed a practical approach to build ARIMA model, which best 
fit a given time series and also satisfy the parsimony principle. 
According to Box and Jenkins (1970), the three-step approach of 
model identification, parameter estimation and diagnoststic 
checking to determine the best persimonious model from general 
class of ARIMA models (Zhang, 2003) were applied. The three-step 
process was repeated several times until a satisfactory model was 
finally selected. The appropriate model selection step is very 
critical. It is based on the fact that sample ACF and PACF, 
calculated from the training data should match with the 
corresponding theoretical or actual values (Chatfield, 1996). In this 
case, various model fitting statistics like Root Mean Square Error 
(RMSE), Maximum Absolute Percentage Error (MAXAPE) and 
Maximum Absolute Error (MAXAE), Mean Absolute Error (MAE), 
Mean Absolute Percentage Error (MAPE), Mean Forecast Error 
(MFE) and Bayesian Information Criterion (BIC) were employed to 
evaluate the adequacy of AR, MA and ARIMA processes. Based on 

Normalized BIC, the principle is that the lower the value, the better 
the model. Fit statistics such as MAPE, MAE, MFE, BIC and RMSE 
were calculated as shown below: 
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where,           are actual observed and predicted values 
respectively, while n is number of predicted values. In BIC model, n 
is the number of effective observations used to fit the model, p is 

the number of parameters in the model and  ̂ 
  is the sum of sample 

squared residuals. Upon identification of optimum model, forecast 
of the Lake Malawi water levels from 2017 to 2035 were made. 

All inferential and descriptive statistics were performed using 
International Business Management Statistical Package for Social 
Scientists software (IBM SPSS 20) (IBM Corp, 2011). 
 
 

RESULTS AND DISCUSSION 
 

Model selection 
 

The stationarity of a stochastic process was visualized in 
form of a data plot as shown in Figure 2. According to 
Hipel and McLeod (1994), identification of stationarity in 
time series data is a necessary condition for building a 
time series model that is useful for forecasting. Sankar 
(2011) defined time series stationarity as a set of values 
that vary over time around a constant mean and constant 
variance. 
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Figure 3. Autocorrelograms and partial autocorrelograms of first order differenced data. 
 
 
 

According to Hipel and McLeod (1994), time series 
data showing seasonal patterns are usually non-
stationary in nature. From Figure 2, it is very apparent 
that the time series data from Lake Malawi water levels is 
non-stationary due to unstable means which increase 
and decrease at some points throughout 1985 to 2016. 
Similar observation was reported by several authors in 
Lake Malawi (Lazaro and Jere, 2013; Singini et al., 2012; 
Mulupwa et al., 2016; Zindi et al., 2016). Given these 
difficulties in Lake Malawi water levels time series data, 
first  order  differencing  of  the  data  and  stationary  test 

were conducted on the newly constructed series of the 
data. Since the newly constructed data was stationary in 
mean, the next issue was how to select an appropriate 
model that can produce accurate forecast based on the 
description of historical pattern in the data and how to 
determine the optimal model order. In this case, the 
values of p and q in the ARIMA model were identified by 
plotting autocorrelogram and partial autocorrelogram 
presented in Figure 3. 

Figure 3 illustrated that autoregressive model of order 
p(AR (q)) was stationary and  moving  average  model  of
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Table 1. ACF and PACF for time series data of Lake Malawi water levels. 
 

Lag ACF Std Error 
Box-Ljung Statistic 

PACF Std Error 
Value df Sig 

1 0.767 0.177 20.647 1 0.000* 0.767 0.177 

2 0.499 0.261 29.694 2 0.000* -0.216 0.177 

3 0.309 0.289 33.267 3 0.000* 0.021 0.177 

4 0.092 0.299 33.598 4 0.000* -0.244 0.177 

5 -0.130 0.300 34.276 5 0.000* -0.173 0.177 

6 -0.323 0.302 38.646 6 0.000* -0.200 0.177 

7 -0.441 0.313 47.112 7 0.000* -0.080 0.177 

8 -0.483 0.331 57.673 8 0.000* -0.066 0.177 

9 -0.446 0.353 67.094 9 0.000* 0.020 0.177 

10 -0.383 0.370 74.331 10 0.000* -0.082 0.177 

11 -0.308 0.382 79.239 11 0.000* -0.076 0.177 

12 -0.239 0.390 82.349 12 0.000* -0.159 0.177 

13 -0.181 0.394 84.235 13 0.000* -0.147 0.177 

14 -0.102 0.397 84.869 14 0.000* -0.059 0.177 

15 0.052 0.398 85.044 15 0.000* 0.182 0.177 

16 0.200 0.398 87.753 16 0.000* 0.086 0.177 
 
ns

:
 
Non-significant, *, **: Significant at P<0.01, and P < 0.05, respectively. 

 
 
 

Table 2. Fit statistics for various competing ARIMA models. 
 

ARIMA (p,d,q) RMSE MAPE MAXAPE MAE MAXAE MFE NBIC 

ARIMA (1,1,0) 0.28 0.04 0.12 0.19 0.53 0.38 -0.21 

ARIMA (1,1,2) 0.29 0.05 0.13 0.21 0.63 0.52 -1.87
 

ARIMA (1,1,1) 0.29 0.05 0.12 0.22 0.58 0.46 -2.00 

ARIMA (0,1,1) 0.29 0.05 0.12 0.22 0.59 0.54 -2.12 

ARIMA (2,1,2) 0.31 0.05 0.13 0.22 0.13 0.49 -1.70 

 
 
 
order q(MA (q)) was good. Guti´errez-Estradade et al. 
(2004) explained that a good autoregressive model of 
order p(AR (q)) has to be stationary and a good moving 
average model of order q(MA (q)) has to be invertible. 
The invertibility and stationarity gives a constant mean, 
variance and covariance which is a necessary condition 
for forecasting (Singini et al., 2012). Following Hipel and 
McLeod (1994), autocorrelation and partial 
autocorrelation coefficients (ACF and PACF) of up to 16 
lag were considered. The type and order of the adequate 
model required to fit the series was determined. As the 
ACF values diminished rapidly with increasing lags, it 
was assumed that lynx series was stationary. The 
autocorrelation and partial autocorrelation coefficients 
(ACF and PACF) of various orders of differenced series 
of data were computed and presented in Table 1. The 
basic principle of model parsimony states that the model 
with smallest number of parameters is to be selected so 
as to provide an adequate representation of the 
underlying time series (Chatfield, 1996). In other words, 
out of a number of suitable  models,  it  is  very  important  

to consider the simplest model while still upholding an 
accurate description of inherent properties of the time 
series (Zhang, 2007). 

As discussed by Hipel and McLeod (1994), a number of 
ARIMA models were competed in order to select the 
simplest one as shown in Table 2. Hipel and McLeod 
(1994) observed that the more complicated the model, 
the more possibilities will arise for departure from actual 
model assumptions. In other words, with the increase of 
model parameters, the risk of model overfitting also 
subsequently increases. Although over fitted time series 
models describe the data very well, it may not be suitable 
for future forecasting. Therefore, genuine attention was 
given to select the most parsimonious model among all 
other possibilities. Using the coefficients in Table 1, 
various ARIMA models were identified and the models 
together with their corresponding fit statistics are 
presented in Table 2. The Root Mean Square Error 
(RMSE) which measured how much dependent series 
varies from its model-predicted level was lowest (0.28) in 
ARIMA (1,1,0) model which according to Cao and Francis 



 

 
 
 
 
Table 3. Lake Malawi water levels estimated ARIMA model. 
 

Parameter Estimate Std Error t-value p-value 

Constant 10.56 0.41 0.59 0.56
ns 

AR 0.38 0.18 2.13 0.04** 
 
ns

:
 
Non-significant, *, **: Significant at P<0.01 and P < 0.05, respectively. 

 
 
 
(2003), indicated a good forecast of the model. Similarly, 
Mean Absolute Error (MAE) also known as Mean 
Absolute Deviation was lowest (0.19) in ARIMA (1,1,0) 
model which indicated a good forecast of the model. In 
other words, the magnitude of overall error occurring due 
to forecasting was very small. 

It was further noted that Mean Absolute Percentage 
Error (MAPE) was lowest and smallest in ARIMA (1,1,0) 
meaning that the percentage of average absolute error 
occurring was very small. In other words, the opposite 
signed errors did not offset each other. It was further 
interesting to note that Maximum Absolute Percentage 
Error (MAXAPE) and Maximum Absolute Error (MAXAE) 
expressed as percentage was very small in ARIMA 
(1,1,0) model indicating overall good model fit. According 
to Czerwinski et al. (2007), the best model should have 
adequate accuracy measures (RMSE, MAE) and lowest 
Normalised BIC for it to have accurate forecasts. 
Therefore, ARIMA (1,1,0) model was selected because it 
had lowest RMSE, MAE, MFE and Normalized Bayesian 
Information Criterion (NBIC). It was further observed that 
the coefficients of the parameters of ARIMA (1,1,0) model 
were significant. According to Czerwinski et al. (2007), 
the model which indicate lowest normalized BIC and is 
significant (p<0.05) is a better model in terms of 
forecasting performance than with large normalized BIC. 
Estimates of the selected ARIMA (1,1,0) model are 
presented in Table 3. 

Based on the study findings, the most suitable model 
for forecasting Lake Malawi water levels was confirmed 
to be ARIMA (1,1,0). 
 
 
Model systematic checks 
 

The basic model verification is concerned with checking 
the residues to see if they contain any systematic pattern 
which could still be eliminated to improve the 
performance of the selected model. Therefore, the 
selected ARIMA (1,1,0) model was subjected to 
autocorrelations and partial autocorrelations of residues 
of various orders. Various autocorrelations of up to 24 
lags were computed and plotted as shown in Figure 4. 
The results showed that none of the autocorrelation was 
significantly different from zero at any reasonable level. 
This implied that the selected ARIMA (1,1,0) model was 
an appropriate model for forecasting Lake Malawi water 
levels. 
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It is very apparent from Figure 4 that autocorrelations of 
the coefficients are within 95% confidence interval, 
suggesting that the selected model was well fitted in time 
series model and had an accurate forecast. 
 
 
Forecasting 
 
Using the selected ARIMA (1,1,0) model, the forecast of 
Lake Malawi water levels was made from 1985 to 2035. 

For preciseness and accurateness sake, only 
observations from 2005 to 2016 were compared with the 
forecasted values as shown in Table 4. Figure 5 on the 
other hand, indicates the forecasted value from 1985 to 
2035. Czerwinski et al. (2007) explained that the forecasted 
and actual values need to be very close, meaning that 
the forecasting error must be very low for the model to 
qualify as good. As observed in Table 4, the noise 
residues were a combination of positive and negative 
errors indicating that the model had a good performance 
of forecasting. It was further interesting to note that the 
magnitude of the difference between the forecasted and 
actual values were very low indicating a good forecasting 
performance. In Figure 5, it is very apparent that Lake 
Malawi water levels are fluctuating with a negative trend. 
Such negative trend will continue up to 2035. 

Figure 5 further indicated that values for water levels 
increased during 2006 to 2010 and decreased up to 2015 
when compared to values of 2005. However, the trend 
declined continuously up to 2035. The basic principle of 
ARIMA model assumes that time series data is linear and 
follows a particular known statistical distribution such as 
normal distribution (Cochrane, 1997). Therefore, it may 
be concluded that the trend in this study behaved in a 
manner consistent with ARIMA principle which is 
assumed to follow a certain probability model described 
by joint distribution of random variable. It is also 
interesting to note that time series is non-deterministic in 
nature such that it cannot predict with certainty what will 
occur in the future. Based on this observation, the study 
indicated that there is high probability that Lake Malawi 
water levels will decrease as far as up to 468.63 m by 
2035. Kidd (1983) had similar observation in 1915 and 
recorded the lowest lake level of 469 m above sea level. 
Drayton (1984) in the 1980s reported that Lake Malawi 
water levels have been unstable over the years with 
notable events occurring in 1890s where unusual low 
water levels (112 m) were recorded. He further noted that 
the Lake water levels were near cessation of outflows for 
more than 20 years (from 1890s to 1935) and 
experienced high levels and outflows in 1970s and 1980s 
which caused flooding of lakeshore communities and 
areas immediately downstream. Kidd (1983) earlier noted 
that a small decrease in the ratio resulted in the basin 
being closed with no outflow as occurred between 1915 
and 1937. Recently, Shela (2000) observed unusual low 
level (115 m) and outflows in the 1990s which was further  
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Figure 4. ACF and PACF residue. 

 
 
 

Table 4. Forecasted Lake Malawi water levels. 
 

Year Actual water level (m) Predicted water level (m) 95% confidence interval 

2005 474.49 474.70 (476.0, -475.6) 

2006 474.69 474.28 (-475.6, 474.4.4) 

2007 474.89 474.69 (-474.5, 373.4) 

2008 475.03 474.89 (-134.31, 124.32) 

2009 474.90 475.00 (-402.1, 470.29) 

2010 474.64 474.77 (-373.69, 374.88) 

2011 474.45 474.45 (-171.1, 170.29) 

2012 474.25 474.29 (-804.29, 815.48) 

2013 474.07 474.08 (102.41, 105.6) 

2014 474.06 473.90 (-604.17, 575.05) 

2015 473.45 473.96 (-073.86, 075.05) 

2016 472.97 473.11 (-408.69, 414.88) 

2017  472.68 (-106.48, 124.68) 

2018  472.46 (-102.31, 114.5) 

2019  472.26 (-401.36, 404.55) 

2020  472.07 (-102.52, 203.71) 

2021  471.87 (-108.09, 103.27) 

2022  471.68 (-071.45, 073.47) 

2023  471.47 (-570.9, 573.62) 

2024  471.27 (-010.42, 013.78) 

2025  471.05 (-069.97, 073.780 

2026  470.84 (-409.55, 407.81) 

2027  470.61 (-468.14, 473.81) 

2028  470.38 (-1068.75, 1473.8) 

2029  470.15 (-106.36, 107.76) 

2030  469.91 (-401.98, 423.71) 

2031  469.67 (-132.08, 132.4) 

2032  469.42 (-246.21, 246.2) 

2033  469.16 (-187.63, 179.2) 

2034  468.90 (-465.03, 472.7) 

2035  468.63 (-1464.6, 1473.7) 
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Figure 5. Actual and forecasted Lake Malawi water level. 

 
 
 
associated with a widespread regional drought. The study 
by Neuland (1984) also revealed that there is little risk of 
the lake level exceeding 477.8 m above mean sea level. 
Using the most recent observed climatic parameters of 
the lake, the predicted level by Neuland (1984) remains 
below 477 m and further indicated a high probability of 
negative trend of future water levels as reported in the 
present study. Kumambala and Ervine (2010) further 
added that it is very unlikely for the water level to 
increase to a maximum height of 477 m as it was in 1980. 
Recent prediction by Kaunda (2015) indicated that near 
future and far future projects show that water yield will 
decrease by 8.84% and therefore Lake Malawi water 
level is expected to drop. However, Kaunda findings were 
thus on short term from 2017 to 2020. Following the 
dramatic rise in lake level in 1979, Drayton (1979) made 
a statistical analysis of lake levels and recommended a 
“safe" static level of 477.6 m ASVD for the next 30 years. 
Nonetheless, the negative trend of Lake Malawi water 
levels predicted in the present study is worrisome. With 
such future prediction, deliberate effort has to be made to 
find appropriate policy options and strategies for 
sustaining Lake Malawi water levels. 
 
 
Conclusion 
 
The study selected the ARIMA (0, 1, 1) model for 
forecasting Lake Malawi water levels. The ARIMA (0, 1, 
1) had lowest Normalized Bayesian Information Criterion 
(NBIC), Root Mean Square Error (RMSE), Mean 
Absolute Percentage Error (MAPE), Mean Forecast Error 
(MFE) and Mean Absolute Error (MAE) which indicated a 
good forecast of the model. Based on the selected 

model, it is very apparent that Lake Malawi water levels 
fluctuation is showing a negative trend. Such negative 
trend is predicted to continue up to 2035. The model 
further predicted that Lake Malawi water levels will 
decrease up to 468.63 m by 2035. This study provides 
critical information for future policy making and 
formulation of intervation strategies for sustaining Lake 
Malawi water levels. 
 
 
RECOMMENDATION 
 
The major limitation of ARMA and ARIMA models in this 
study was that they only capture short-range dependence 
(SRD). In other words, they belong to the conventional 
integer models. In practice, several time series exhibit 
long range dependence (LRD) in their observations. To 
overcome this difficulty, it is recommended that a similar 
study should be conducted using Autoregressive 
Fractionally Integrated Moving Average (ARFIMA) model 
with ability to capture long range property of the fraction 
system accordingly and project extended period of more 
than 18 years. 
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