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The impact and uncertainty of climate change on stream flow of the Bilate River Watershed was 
assessed. Ensemble of 20 Coupled Model Intercomparison Project Phase 5 (CMIP5) general circulation 
models (GCMs) under two Representative Concentration Pathways and six GCM structures were 
selected to form 24 future climate scenarios for the watershed. Soil and Water Assessment Tool (SWAT) 
model was selected to simulate stream flow of the watershed. The respective statistical results of the 
coefficient of determination (R

2
), Nash-Sutcliffe coefficient (NSE) and percent bias (PB)  are 0.79, 0.78 

and 0.56 for calibration period and 0.64, 0.60 and -21.7 for validation period which show that the model 
predicted the stream flow reasonably. The annual stream flow increased progressively throughout the 
century for all time periods. The increases under RCP 8.5 scenario are the larger compared to RCP 4.5 
scenarios, approximately 42.42% during the 2080s period. The six GCMs selected to see the 
uncertainties related to GCMs suggest that the river flow will change by small amounts of -6.18 to 7.83% 
change compared with the baseline. The simulated runoff depended on the projected amount of rainfall 
embedded in the GCM structures selected to simulate the future climate and less dependent on the 
local temperature increment. 
 
Key words: Climate change, Bilate River watershed, stream flow, soil and water assessment tool (SWAT), 
uncertainty. 

 
 
INTRODUCTION 
 
Based on the fact that a wide variety of natural resources, 
ecosystems and  populations  being  affected  by  current 
 

and future climate variability and change, the potential 
consequences   of    climate     change     have    received 
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considerable attention internationally (Ryu et al., 2011). 
The third assessment report of the Intergovernmental 
Panel on Climate Change (IPCC, 2001) revealed the 
general impacts of climate change on water resources 
indicating an intensification of the global hydrological 
cycle and affecting both ground and surface water supply 
for domestic and industrial uses. 

Understanding and quantifying the responses of 
hydrological processes to an increased atmospheric CO2 
concentration and climate change is critical for 
developing appropriate mitigation and adaptation 
strategies for sustainable water resources management 
within agricultural systems (Ficklin et al., 2009). Many 
studies have been done to investigate long-term 
hydrologic variability associated with climate change. 
Hydrologic models combined with climate scenarios 
generated from general circulation models (GCMs) are 
used to produce potential scenarios of climate change 
effects on water resources (Ficklin et al., 2009) and 
assessment of the sensitivity of a model to climate 
change provide insights to the sensitivity of the 
hydrological systems to changes in climate (Arnell and 
Liv, 2001; Ficklin et al., 2009). 

Simulation models such as the Soil-Water Assessment 
Tool (SWAT) are frequently used to project the 
responses of watershed processes to climate change and 
provide a link between climate changes and water yields 
through simulation of hydrologic processes within 
watersheds (Butcher et al., 2014). Hydrologic models 
also allow various simulations to be performed based on 
user needs (Ficklin et al., 2009). 

GCMs projected precipitation and temperature data are 
often used as input to a calibrated hydrological model to 
simulate the future hydrological cycle (Dessu and 
Melese, 2013). GCMs are commonly utilized for local-
scale forecasts under global warming scenarios (Ryu et 
al., 2011). CMIP5 includes comprehensive GCMs 
including finer spatial resolution, associated with more 
complex orography of the region and different 
greenhouse gases emission scenarios (Taylor et al., 
2012). The statistical downscaling approach such as 
delta approach is often applied in hydrological impacts 
studies due to its simplicity, flexibility and low 
computation cost (Wilby et al., 2002). Thus the objective 
of this study is to evaluate the response of the stream 
flow of the Bilate watershed to climate change using the 
SWAT model.  
 
 
MATERIALS AND METHODS 
 
Study area and data used  
 
The absolute location of BRW, south-north extends from 6° 36'N 
38°00'E at Lake Abaya Wolaita Zone SNNPR to 8°05'N 38°12'E at 
Gurage and Silte Zones border, SNNPR. On the other hand its 
west-east  extension   is   from   7°18'N  46'E  at  Kambata  Zone  to 

7°12'N38°22'E Sidama Zone. The watershed covers an area of 
about 5625 km square in the southern Ethiopian Rift Valley and 
partly in the Western Ethiopian Highlands. 

The digital elevation model (DEM), daily precipitation and daily 
temperature, soil characteristics, land use and the river flow data 
are known to be the main data needed for the simulation of SWAT 
model. Digital Elevation Model (DEM) with 30 m resolution is 
acquired from the Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER). The DEM shown in Figure 1 is 
used for derivation of spatial parameters for hydrological model. 
The topography of the BRW varies from lowlands of altitude 1,146 
m above sea level (m.a.s.l.) near Lake Abaya to highlands with 
peak elevation of 3,393 m.a.s.l. towards the northern realm of the 
watershed. Stream (channel slope, length and width) and 
catchment characteristics (slope gradient, slope length, stream 
network) were derived from the DEM by using the Arc SWAT 
automatic watershed delineation tool. 

There are more than 18 weather observation stations in and 
around the Bilate River watershed; but there are many missing 
values. The historical weather data for the period of 1980 -2013 for 
these stations were obtained from Ethiopian National 
Meteorological Agency (NMA) and further analyzed for simulation 
purpose. 

The soil data used in this research was obtained from Food and 
Agriculture Organization of the United Nations data base (FAO, 
2003). According to the FAO soil map, the soil depths in the study 
area is between 1.00 and 2.00 m and the dominant soil types are 
Eutric Nitosols, Plinthic Ferralsols, Eutric Cambisols, Ochric 
Andosols and  Haplic Xerosols. The land use date with 500 × 500 m 
spatial resolutions were obtained from Ministry of Agriculture (MoA) 
which is derived from FAO 98 land use classification for Ethiopia 
and further reclassification was performed in the model used for 
simulation of hydrological processes. The land cover in the BRW is 
predominated by different types agricultural land (87%), grass and 
rangeland only 0.8% and the remaining mixed land cover including 
plantation forest, shrub land and wetland accounts about 12.2%. 
These days, the forests are transformed to croplands and/or 
grazing areas. 

The river flow data from the gauging stations near Alaba Kulito, 
which has, relatively, long record of time series of daily flow data for 
the period of 1990-1996 was considered for calibration and daily 
flow data for the period of 1997-2002 used for validation purpose. 
The gauging station near Bilate Tena has very intermittent data only 
used for description of the characteristics of the flow but cannot be 
used for calibration and validation purpose. 

 
  
Soil-water assessment tool (SWAT) 

 
Several watershed simulation models have been developed so far, 
but it is not easy to choose the most suitable model for a particular 
watershed to address a particular problem. Even though there are 
no clear rules for making a choice from the existing watershed 
models, some guidelines can be considered (Fiseha, 2013). An 
extensive review on published literature related to calibration, 
validation, and application of watershed models in similar scenario 
is needed to get watershed model which is commonly used, 
accepted, and recommended in published literature; and all 
depending on the objective of the study at hand (Moriasi et al., 
2007).  

For this particular study, SWAT model was selected to simulate 
stream flow of the Bilate River watershed based on the following 
criteria’s as suggested by (Fiseha, 2013):\ 

  
(i) Considering the availability of input data 
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Figure 1. Digital elevation model (DEM) map of BRW. 

 
 
 
(ii) Considering the nature and type of hydrologic process needs to 
be simulated 
(iii) Considering the availability of the watershed simulation model 
itself 
(iv) Considering the nature of data handling mechanisms (storage, 
retrieval and manipulation with use of Geographical Information 
Systems (GIS)). 
 

The SWAT model is a watershed scale model created to run with 
readily available input data so that general initialization of the 
modeling system does not require complex data gathering or 
calibration. It was originally intended to model long-term runoff and 
nutrient losses from rural watersheds, particularly those dominated 
by agriculture (Arnold et al., 1998; Arnold and Fohrer, 2005; Easton 
et al., 2008; Pervez and Henebry, 2015). SWAT is a semi-
distributed, continuous time model that operates on a daily time 
series (Narsimlu et al., 2015). The capabilities of SWAT in 
simulating various hydrological processes in different part of the 
world is discussed in scientific literatures (Gassman et al., 2007, 
2014; Krysanova and White; 2015) and up to date publications 
were also available in the SWAT literature database at 
https://www.card.iastate.edu/swat_articles/. 

The performance of SWAT in other parts of Ethiopia is also 
considered as criteria for selection of the model (Setegn et al., 
2009; Easton et al., 2010; Betrie et  al.,  2011;  White  et  al.,  2011) 

and in other east African countries also satisfactory performance 
and applicability of SWAT was reported (Jayakrishnan et al., 2005; 
Mulungu and Munishi, 2007; Mango et al., 2011; Dessu and 
Melesse, 2012). 

In SWAT, the simulation of the hydrology of a watershed is 
performed in two phases, the first is the land phase of the 
hydrological cycle while the second is routing phase of the 
hydrologic cycle. The land phase controls the amount of water, 
sediment, nutrient and pesticide loadings to the main channel in 
each sub basin and simulates the canopy storage, infiltration, 
redistribution, evapotranspiration, lateral subsurface flow, surface 
runoff, ponds, tributary channels and return flow. The routing phase 
can be defined as the movement of water, sediments, nutrients and 
organic chemicals through the channel network of the watershed to 
the outlet (Neitsch et al., 2005; Setegn, 2010). 

The hydrological components of SWAT model are governed by 
the water balance equation which is depicted as follows (Equation 
1) (Neitsch et al., 2005; Narsimlu et al., 2015): 
 

                                                                                                       (1) 
 

where SWt is the final soil water content (mm); SW0 is the initial soil 
water content on day i (mm); Rday is the amount of precipitation on 
day i (mm);  Qsurf  is  the amount of surface runoff on day i (mm); Ea  
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is the amount of evapotranspiration (ET) on day i (mm); Wseep is the 
amount of water entering the vadose zone from the soil profile on 
day i (mm); and Qgw is the amount of return flow on day i (mm). 

 
 
Model setup, calibration, validation and sensitivity analysis 
 
The model setup is performed by the following four major steps: (i) 
watershed delineation and derivation of sub-basin characteristics, 
(ii) hydrological response unit definition, (iii) model run and 
parameter sensitivity analysis, and (iv) calibration and validation of 
the model (Fiseha, 2013). The input data like soil maps, land use 
and hydro-meteorological data for the basins were prepared and 
during the watershed delineation, the spatial datasets that include 
DEM, land use and soil maps were projected to the same 
coordinate system of zone 37 in Universal Transverse Mercator 
(UTM 37N) and the delineator in the ArcSWAT follows the steepest 
slope paths to define the stream networks.  

The HRU definition was performed based on the soil, land cover 
and slope.  In addition to the soil and land use data described 
earlier, five classes of slope were considered and they are 0-5%, 5-
10%, 10-15%, 15-20% and ≥20%. The threshold values for multiple 
HRU definition were 10% for land use, 20% for soil and 5% for 
slope of ever sub basin area. Overall, there were 285 HRUs defined 
in the watershed within 31 sub basins. The model was then run by 
using weather data inputs from 7 stations for precipitation and 3 
stations for temperature. The simulation was run first for the 
calibration period of 1987 to 1996 using the first three years as a 
warm up period. After the results of the first simulation were found, 
the sensitivity analysis and calibration of the parameters was based 
on the parasol calibration algorithm. Manually tuning the sensitive 
parameters finally resulted in ranked outputs that show how the 
catchment behaves under the given conditions.  

The top ten most sensitive parameters were considered for 
further use in the model calibration and validation processes. The 
SWAT model performance was evaluated using statistical analyses 
to compare reliability and quality of simulated discharge against the 
observed data. The statistical approaches used in this study are the 
coefficient of determination (R2), Nash-Sutcliffe coefficient (NSE) 
and percent bias (PB) (Nash and Sutcliffe, 1970; Gupta et al., 1999; 
Leong et al., 2014).  

 

                   (1)                             

 

                                              (2)          

 

                                                      (3) 

 
where O and P are observed and simulated stream flow, 
respectively and n is the number of measured stream flow. Both the 
R2 and NSE ranges from 0 to 1 with higher value indicating good 
agreement between the model and the observation. The PB 
measures the tendency of the simulated flows to be larger or 
smaller than their observed counterparts; the optimal value is 0.0, 
positive values indicate a tendency to overestimation, and negative 
values indicate a tendency to underestimation. SWAT modeling 
performance is categorized as satisfactory if NSE > 0.5 and PB < 
±25. Alaba station monthly stream flow from 1990 to 1996 and 1997 

to 2002 were used for stream flow calibration and validation, 
respectively (Nash and Sutcliffe, 1970; Gupta et al., 1999).  

The sensitivity analysis was made using a built-in SWAT 
sensitivity analysis tool that uses the Latin Hypercube One-factor-
At-a-Time (LH-OAT) global sensitivity analysis procedure (Van 
Griensven et al., 2006). The sensitivity of all parameters was 
analyzed using average observed flow at Alaba Kulito gauging 
station and the optimization procedure was then set to minimize the 
sum of squared error objective function. 
 
 
Climate change scenarios and climate projection models 
 
During the IPCC Fifth Assessment Report, the Representative 
Concentration Pathways (RCPs), was used for the new 
climate model simulations carried out under the framework of the 
Coupled Model Intercomparison Project Phase 5 (CMIP5) of the 
World Climate Research Programme (IPCC, 2013). In this study, 
climate change scenarios were generated for two Representative 
Concentration Pathways (RCPs): RCP 4.5 and RCP 8.5 using 20 
GCMs from CMIP5 bias-corrected under three time slices, near-
term (2010-2039), mid-century (2040-2069) and end-century (2071-
2099). 

Data of the twenty GCMs (Table 1) from the Coupled Model 
Intercomparison Project Phase 5 (CMIP5) were provided by the 
AgMIP climate team from the NASA Goddard’s online File Depot. 
Based on their underlying assumption and complexity, these GCMs 
can project a wide range of future climatic conditions (Sah and 
Zeleke, 2015). So far different studies have used outputs from a 
single GSM for impact studies (Smith et al., 2009) or out puts from 
several GSM individually (Setegn et al., 2010) but multi model 
ensemble simulations are known to provide more reliable 
information than that of a single model output (IPCC, 2007). In this 
study, ensemble mean outputs of the twenty GCMs (ensemble_20) 
were used. 

The capacity of climate models in CMIP5 to represent a certain 
aspect of present climate has been studied by Ramirez-Villegas et 
al. (2013) for East Africa region. So, using ensemble mean outputs 
of these GCMs will help us to find the combination of GCMs that 
underestimate, overestimate and accurately capture annual data 
(Dessu and Melese, 2013). 

In addition to the ensemble mean outputs of the twenty GCMs 
(Table 1) the climate uncertainty assessment used in this study 
includes 25 climate scenarios (Table 2) developed for climate 
impact and uncertainty analysis based on the modified QUEST-GSI 
methodology (Todd et al., 2011; Leong et al., 2014). According to 
Leong et al. (2014) some of the points considered while modifying 
the QUEST-GSI methodology are (1) the HadCM3 GCM is replaced 
by CMIP5 GCM ensemble of 20 GCMs (under RCP 4.5 and 8.5), 
(2) prescribed increases in global mean temperature (1-6°C) using 
ensemble_20, (3) six GCM structures from different countries and 
institutions (ACCESS1.0, BCC-CSM1.1, CanESM2,  CCSM4, 
MIROC-ESM,  NorESM1-M) under RCP 4.5, (4) prescribed 
warming of 2°C using ACCESS1.0, BCC-CSM1.1, CanESM2,  
CCSM4, MIROC-ESM and NorESM1-M. 

The resolution of GCMs varies from 96 × 96 km2 to 320 ×160 km2 

which is coarse and need to be downscaled before applying them 
to assess the impact of climate change on regional scale. Statistical 
downscaling involves developing a relationship between the large 
and local scales using historical data and then applying this 
relationship to adjust independent large-scale data down to the 
local scale (Kirchmeier et al., 2014). Statistical downscaling 
methods are typically as effective as and less expensive than 
dynamical downscaling and especially useful for temporal 
downscaling (Brown et al., 2008). In this study, the Delta method 
analysis protocol of the Agricultural Intercomparison and  
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Table 1. List of the global climate models in CMIP5 used in the study. 
 

Model name Modeling Center (or Group)  

ACCESS1.0 
Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of Meteorology 
(BOM), Australia 

  

BCC-CSM1.1 Beijing Climate Center, China Meteorological Administration 

BNU-ESM College of Global Change and Earth System Science, Beijing Normal University 

CanESM2 Canadian Centre for Climate Modelling and Analysis 

CCSM4 National Center for Atmospheric Research 

CESM1(BGC) Community Earth System Model Contributors 

  

CSIRO-Mk3.6.0 
Commonwealth Scientific and Industrial Research Organization in collaboration with Queensland Climate 
Change Centre of Excellence 

  

GFDL-ESM2G 

GFDL-ESM2M 
NOAA Geophysical Fluid Dynamics Laboratory 

  

HadGEM2-CC 

HadGEM2-ES 
Met Office Hadley Centre  

  

INM-CM4 Institute for Numerical Mathematics 

  

IPSL-CM5A-LR  

IPSL-CM5A-MR  
 Institut Pierre-Simon Laplace 

  

MIROC-ESM 
Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The 
University of Tokyo), and National Institute for Environmental Studies 

  

MIROC5 
Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental 
Studies, and Japan Agency for Marine-Earth Science and Technology 

  

MPI-ESM-MR 

MPI-ESM-LR 
Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology) 

  

MRI-CGCM3 Meteorological Research Institute 

NorESM1-M Norwegian Climate Centre 

  
 
 
 
 

Improvement Project (AgMIP) was used to project the 
future climate state in the farm lands of Bilate watershed 
(Rosenzweig et al., 2013). The downscaled GCM 
simulations provided meteorological data, for input to the 
hydrologic model, on a daily time step.  
 
 
RESULTS AND DISCUSSION 
 
Results of sensitivity analysis, calibration and validation. 
Ranges of values used during the sensitivity analysis and  
the calibrated parameter value are shown in Table 3. The  

results showed that the most sensitive parameters are 
those representing the surface runoff, evaporation, soil 
water, groundwater and channel flow. The parameters 
governing the hydrological processes in the watershed in 
the order of their sensitivity rank are SCS runoff curve 
number for moisture condition II (CN2), soil evaporation 
compensation factor (ESCO),  available soil water 
capacity (Sol_Awc), threshold water level in the shallow 
aquifer for return flow to occur (Gwqmn), effective 
hydraulic conductivity in main channel alluvium (Ch_K2), 
base flow recession constant (Alpha_Bf), Manning's 

roughness  coefficient for main channel (Ch_N2), surface
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Table 2. Climate scenarios for SWAT input (Ensemble_20 is the average of twenty GCMs). 
 

ID Model  Scenario Period Detail 

1 Ensemble_20 4.5 2010-2039 

Hydrological impact 
assessment 

2 Ensemble_20 4.5 2040-2069 

3 Ensemble_20 4.5 2071-2099 

4 Ensemble_20 8.5 2010-2039 

5 Ensemble_20 8.5 2040-2069 

6 Ensemble_20 8.5 2071-2099 

7 Ensemble_20 4.5/+1°C 2010-2039 

Prescribed temperature 
increase 

8 Ensemble_20 4.5/+2°C 2010-2039 

9 Ensemble_20 4.5/+3°C 2010-2039 

10 Ensemble_20 4.5/+4°C 2010-2039 

11 Ensemble_20 4.5/+5°C 2010-2039 

12 Ensemble_20 4.5/+6°C 2010-2039 

13 ACCESS1.0 4.5 2010-2039 

GCM structure 

14 BCC-CSM1.1  4.5 2010-2039 

15 CanESM2 4.5 2010-2039 

16 CCSM4 4.5 2010-2039 

17 MIROC-ESM  4.5 2010-2039 

18 NorESM1-M 4.5 2010-2039 

19 ACCESS1.0 4.5/+2°C 2010-2039 

2°C increase in average 
global temperature 

20 BCC-CSM1.1  4.5/+2°C 2010-2039 

21 CanESM2 4.5/+2°C 2010-2039 

22 CCSM4 4.5/+2°C 2010-2039 

23 MIROC-ESM  4.5/+2°C 2010-2039 

24 NorESM1-M 4.5/+2°C 2010-2039 

25 Observed dataset Baseline 1980-2009 Control run 

 
 
 
runoff lag coefficient (Surlag), groundwater delay time 
(Gw_Delay) and aquifer percolation coefficient 
(Rchrg_Dp). 

Calibration of the parameters was immediately followed 
after the sensitivity analysis.  Stream flow at the Alaba 
Kulito gauging station was calibrated by auto-calibration 
and manual procedures for the period of 1990-1996. The 
model efficiency measures for initial monthly default 
simulation are, the coefficient of determination (R

2
), 

Nash-Sutcliffe coefficient (NSE) and percent bias (PB) 
were 0.78, 0.45 and 42.39, respectively which show low 
performance of the model by the default parameter 
values. Thus, model parameter adjustments were 
undertaken for a realistic hydrologic simulation and the 
key hydrologic parameters shown in Table 3 were 
adjusted until the simulated flow was nearly equal to the 
observed flow during calibration processes. The 
statistical results show that the model predicted the 
stream flow at the Alaba Kulito gauging station 
reasonably because the coefficient of determination (R2), 
Nash-Sutcliffe coefficient (NSE) and percent bias (PB)  
are 0.79, 0.78 and 0.56, respectively. 

Figure 2 shows hydrograph comparisons for  the  Bilate  

River watershed at the Alaba Kulito gauging station 
during simulation periods (1 January 1990 to 31 
December 1996) to measure how the calibrated model 
predicts stream flows against the observed flows.  
Overall, the calibrated flows match observed flows well, 
but the magnitude of peaks during the summer (June-
August) is somewhat different from the observed flow in 
particular years, such as July 1993, 1995 and 1996 
(Figure 2).  

In the validation process, the model was operated with 
input parameters set during the calibration process 
without any changes. A separate 6-year (1997–2002) 
simulation was used and it was found that the model has 
strong predictive capability with the coefficient of 
determination (R2), Nash–Sutcliffe coefficient (NSE) and 
percent bias (PB) of 0.64, 0.60 and -21.7 respectively. 
Statistical model efficiency criteria fulfilled the requirement 
of R2 > 0.6 and NSE > 0.5 which is recommended by 
SWAT developer (Nash and Sutcliffe, 1970; Santhi et al., 
2001) and the PB < ±25 suggested by (Gupta et al., 
1999). The model validation results for monthly flow 
(Figure 3) indicated generally a good fit between 
measured   and   simulated   output  and  this  shows  the  
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Table 3. Hydrologic parameters included in SWAT sensitivity analysis for the Bilate River watershed. 
 

Parameter Description 
Model 
process 

Rank 
Variation 

range 
Fitted 
value 

CN2 SCS runoff curve number for moisture condition II Runoff 1 -25 - +25 20C 

ESCO Soil evaporation compensation factor Evaporation 2 0-1 1a 

Sol_Awc Available soil water capacity Soil water 3 -25 - +25 15C 

Gwqmn Threshold water level in the shallow aquifer for return flow to occur (mm) Groundwater 4 0-1000 258a 

Ch_K2 Effective hydraulic conductivity in main channel alluvium (mm h- 1) Channel flow 5 0-150 31a 

Alpha_Bf Base flow recession constant (days) Groundwater 6 0-1 0.09a 

Ch_N2 Manning's roughness coefficient for main channel Channel flow 7 0-1 0.43a 

Surlag Surface runoff lag coefficient Runoff 8 0-12 9.64a 

Gw_Delay Groundwater delay time Groundwater 9 0-10 6.45a 

Rchrg_Dp Aquifer percolation coefficient Groundwater 10 0-1 0.49b 
 

a=default values are replaced by this value (absolute change); b= default values are multiplied by one plus this value (relative change); 
c=default values are increased by this value (absolute change). 
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Figure 2. Manual calibration results for monthly flow at Alaba Kulito (1990 -1996). 

 
 
 

 
 

Figure 3. Simulated versus observed flow during validation period. 
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Table 4. Stream flow simulation changes against the base period simulation for different climate scenarios. 
 

ID 
Mean monthly stream flow 

(m
3
/s /%) 

Monthly Q95 

(m
3
/s /%) 

Monthly Q5 

(m
3
/s /%) 

1 31.66/10.9 7.86/1.66 61.09/-4 

2 33.15/16.12 7.87/1.79 60.64/-4.71 

3 35.25/23.48 9.19/18.88 61.81/-2.87 

4 31.5/10.34 8.33/7.82 62.48/-1.83 

5 34.38/20.43 8.54/10.48 63.84/0.31 

6 40.66/42.42 10.49/35.7 76.79/20.67 

7 30.73/7.65 7.31/-5.44 56.53/-11.18 

8 31.53/10.45 8.07/4.37 59.72/-6.16 

9 32.07/12.33 8.66/12.09 61.04/-4.09 

10 32.53/13.95 8.79/13.72 61.92/-2.7 

11 31.58/10.63 8.27/7.05 58.97/-7.34 

12 31.75/11.2 8.52/10.23 59.2/-6.98 

13 28.98/1.52 8.63/11.59 53.87/-15.35 

14 30.78/7.83 6.65/-13.94 57.89/-9.04 

15 29.86/4.59 6.22/-19.5 55.95/-12.08 

16 29.5/3.34 7.8/0.9 53.82/-15 

17 29.93/4.83 7.29/-5.73 53.9/-15.31 

18 26.78/-6.18 5.77/-25.32 52.31/-17.81 

19 28.62/0.25 8.17/5.66 51.6/-18.92 

20 30.25/5.98 6.55/-15.22 56.06/-11.91 

21 34.3/20.16 6.04/-21.87 65.33/2.65 

22 29.06/1.81 7.72/-0.18 52.33/-17.77 

23 28.78/0.81 7.06/-8.62 50.49/-20.66 

24 26.46/-7.29 5.79/-25.14 50.65/-20.41 

25 28.55 7.73 63.64 

 
 
 
in the watershed to the best of their ability given available 
data and can be used to predict watershed response for 
various climate scenarios. 
 
 
Climate change impact on stream flow  
 
To evaluate the influences of climate change the monthly 
stream flow in the reach of sub basin 10 (Alaba Kulito 
station) during the period 2020, 2050 and 2080 are 
simulated by the calibrated SWAT model under different 
climate scenarios (RCP 4.5 and RCP 8.5). A baseline 
scenario, assumed to reflect current conditions, was 
executed prior to performing scenario simulations and the 
simulated baseline annual stream flow (ID 25) with the 
amount of 28.55 m

3
s

–1
 is used as the reference frame to 

show the amount of change in the stream flow under 
different climate scenarios. Table 4 shows the results of 
the ensemble_20 annual stream flow changes as well as 
the results of the other developed climate scenarios for 
Alaba Kulito station. The annual stream flow increased 
progressively throughout the century for  all  time  periods 

under both RCP scenarios. The increases under RCP 8.5 
scenario are the larger compared to RCP 4.5 scenarios, 
approximately 42.42% during the 2080s period. The 
lowest stream flow change occurred under RCP 8.6 with 
an increase of 10.3% for the 2020s period. Under RCP 
4.5 scenario, the annual stream flow is expected to 
increase by 10.9, 16.12 and 23.48% for the 2020s, 2050s 
and 2080s period, respectively. 

The low flows (Q95) highly and progressively increased 
by 7.82, 10.48 and 35.7% for RCP 8.5 scenario for the 
2020s, 2050s and 2080s, respectively. While the low flow 
under RCP 4.5 will increase very slightly (1.66 and 
1.79%) for 2020s and 2050s but it will increase at 18.88% 
for 2080s.  The high flows (Q5) slightly decreased for 
RCP 4.6 (-2.87 to -4%) and dramatically increased for 
RCP 8.5 (20.67%) for 2080s. Results for Bilate watershed 
pointed positive change of annual stream flow throughout 
the century by the ensemble of 20 GCMs which is driven 
by the projected increase in precipitation and shows that 
water resources of the Bilate River will be satisfactory 
until the end of the century. 

Increases  in  stream  flow  are also  projected  for each 
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Figure 4. Annual stream flow changes at Alaba Kulito station of Ensemble_20 under RCP 4.5 and RCP 8.5 for 
the periods of 2020s, 2050s and 2080s. 

 
 
 
month (Figure 5) with exceptions in the months of July 
and August where there will be a decrease of stream flow 
in the watershed. The largest projected monthly 
increases in stream flow will occur in December (5.67, 
5.98, and 7.94 m

3
/s for the RCP 4.5 and 6.06, 8.04 and 

14.25 m
3
/s for the RCP 8.5) in 2020s, 2050s and 2080s, 

respectively. While, the largest possible monthly 
decrease in stream flow will occur in the month of July (-
10.21, -9.92, and -9.98 m

3
/s for the RCP 4.5 and -11.25, -

10.42 and -7.34 m
3
/s for the RCP 8.5) in 2020s, 2050s 

and 2080s, respectively. 
 
 
Climate impact uncertainty assessment 
 
Figure 4 shows the projected changes in annual river 
discharge projected by the Ensemble of 20 CMIP 5 
GCMs for three future time periods under two RCPs. An 
increase in annual river flow compared with the baseline 
is projected under all six scenarios. The magnitude of 
increase for annual river discharge ranges from 10.34 to 
42.42%. The projected change in monthly discharge 
under all six scenarios mostly decreases in the rainy 
season and increases in the dry season (Figure 5). 

For prescribed temperature increase of 1-6°C 
scenarios, mean annual river discharge does not show a 
linear decrease as it does in other watersheds in other 
studies (Leong et al., 2014; Khoi and Han, 2015) showing 
that the local temperature increments have less effect on 
the hydrology of Bilate River watershed similar to other 
river basin in East Africa region (Dessu and Melese, 
2013). Figure 6a shows the changes in monthly 
discharge for all the six scenarios of prescribed 
temperature increase. The monthly river discharge in  the 

wet season of the area (Jun- September) decreases from 
-2.23% in September for the 1°C scenario to -25.52% in 
July for the 3°C scenario and monthly discharge in the 
dry season (October-May) increases dramatically from 
9.13% in October for the 1°C scenario to 77.23% in 
February for the 4°C scenario. Uncertainty in projected 
monthly stream flow for prescribed temperature scenarios 
varies from -24.97 to 64.24% for the 1°C scenario to the 
range of -22.71 to 65.35% for the 6°C scenario. 

Five of the six GCMs (ACCESS1.0, BCC-CSM1.1, 
CanESM2, CCSM4, MIROC-ESM) under RCP 4.5 for 
2020s show that annual stream flow will increase 
compared to the baseline, except for the NorESM1-M, 
which shows a change of -6.18% in annual stream flow. 
The six GCMs (ACCESS1.0, BCC-CSM1.1, CanESM2, 
CCSM4, MIROC-ESM, NorESM1-M) selected to see the 
uncertainties related to GCMs suggest that the river flow 
will change by small amounts of -6.18 to 7.83% change 
compared with the baseline. Projected changes in mean 
annual river discharge under the prescribed increase in 
mean temperature of 2°C shows similar trend of increase 
for five GCMs (ACCESS1.0, BCC-CSM1.1, CanESM2, 
CCSM4, MIROC-ESM) and a decrease of simulated 
stream flow for NorESM1-M. It was experiential that the 
simulated runoff in the Bilate River depended on the 
projected amount of rainfall and the GCM structure 
selected to simulate the future climate and less 
dependent on the local temperature increment.  

Figure 6b and c shows that the projected increase and 
decrease of monthly stream flow changes for selected 
GCM structures and increase of 2°C on top of the 
downscaled temperature output of the selected GCM. 
The results show stream flow changes are evenly 
distributed throughout the year for both the causes.   
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Figure 5. Monthly stream flow changes at Alaba Kulito station of Ensemble_20 under RCP 4.5 and RCP 
8.5 for the periods of 2020s, 2050s and 2080s. 
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Figure 6. Changes of monthly discharge against the baseline at Alaba Kulito station for climate 
scenarios: (a) Prescribed temperature of 1-6°C, (b) GCM structure, and (c) 2°C increase in 
temperature. 
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Uncertainty in the Q5 ranges from -17.81 to -9.04% for 
GCM structures and from -20.66 to 2.65% for GCM plus 
2 °C scenarios. These results showed that there will be 
decrease in the high flows in 2020s. Uncertainty in Q95 
ranges from -25.32 to 11.59% for GCM structures. As 
shown in Figure 6b, ACCESS1.0 shows the largest 
variation (-30.39 to 71.6 7%) and CanESM2 shows the 
smallest variation (-23 to 52.8%) at monthly scale.  
 
 

Conclusions  
 

This study applied the SWAT model to assess the 
sensitivity of the Bilate River stream flow to individual and 
combined changes in temperature and rainfall with 25 
different scenarios. The climate scenarios were generated 
from an ensemble of twenty GCMs from the Coupled 
Model Intercomparison Project Phase 5 (CMIP5) under 
RCP 4.5 and 8.5 scenarios for 2020s, 2050s and 2080s 
period. The results of calibration and validation of SWAT 
model showed that the model can be a reliable tool for 
hydrology cycle simulation in Bilate River watershed. 
Based on the different climatic scenarios, the simulation 
results indicated a range of possible hydrologic futures 
mostly an increase in annual river flow compared with the 
baseline is projected under all scenarios. The magnitude 
of increase for annual river discharge ranges from 10.34 
to 42.42%.  

The most up-to-date climate change impact and 
uncertainties on stream flow changes were assessed 
based on the modified QUEST-GSI methodology (Leong 
et al., 2014) with four major elements: (1) RCP emission 
scenarios, (2) prescribed increase of annual temperature 
of 1-6°C, (3) GCM structure, and (4) prescribed increase 
of temperature of 2°C. The analysis of the results of the 
simulations showed that uncertainties of the simulated 
runoff in the Bilate River depended on the projected 
amount of rainfall embedded in the GCM structures 
selected to simulate the future climate and less dependent 
on the local temperature increment. The ensemble of 
GCMs used in this study is only the simple mean of GCM 
structure outputs which could be improved by applying 
weights to GCMs based on their performance in projection 
of historical climate variables and also more climate 
scenarios should be developed in the future to better 
understand the range and quantify the impact of climate 
change on stream flow. 
 

 

CONFLICT OF INTERESTS 
 

The authors have not declared any conflict of interests. 
 
 

REFERENCES 
 

Arnell NW,  Liv C  (2001). Hydrology and water resources. In: 
J.J..C.O.F..L.N.A..D.D.J..W.K.S. McCarthy, ed. Climate Change2001: 
Impacts. Adaptation  and  Vulnerability.  Cambridge,  UK.: Cambridge  

 
 
 
 

University Press pp. 191-233. 
Arnold JG, Fohrer N (2005). SWAT2000: current capabilities and 

research opportunities in applied watershed modelling. International 
Journal 19(3):563-572.  

Arnold JG, Srinivasan R, Muttiah RS, Williams  JR (1998). Large area 
hydrologic modeling and assessment: Part I. Model development.  

    Journal of the American Water Resources Association 34(1):73-89. 
Betrie GD, Mohamed YA, van Griensven A, Srinivasan R (2011). 

Sediment management modelling in the Blue Nile Basin using SWAT 
model. Hydrology and Earth System Sciences 15(3):807-818. 

Brown C, Arthur G, Paul B, Alessandra G (2008). Review of 
downscaling methodologies for africa climate applications. IRI 
Technical Report 08-05: IRI Downscaling Report. Columbia 
University. 

Butcher JB, Thomas EJ, Daniel N, Saumya S  (2014). Incorporating the 
effects of increased atmospheric CO2 in watershed model projections 
of climate change impacts. Journal of Hydrology 513:322-334.  

Dessu SB, Melesse AM (2012). Modeling the rainfall-runoff process of 
the Mara River Basin using SWAT.Hydrological Processes 
26(26):4038-4049.  

Dessu SB, Melese AM (2013). Impact and Uncertainties of climate 
change on the hydrology of the Mara River basin, Kenya/Tanzania. 
Hydrological Process 27(20):2973-2986. 

Easton ZM, Fuka DR, White ED, Collick AS, Biruk AB, McCartney M, 
Awulachew SB, Ahmed AA, Steenhuis TS (2010). A multi basin 
SWAT model analysis of runoff and sedimentation in the Blue Nile, 
Ethiopia. Hydrology and Earth System Sciences  14(10):1827-1841. 

Easton ZM, Fuka DR, Walter MT, Cowan DM, Schneiderman  EM, 
Steenhuis TS (2008). Re-conceptualizing the soil and water 
assessment tool (SWAT) model to predict run off from variable 
source areas. Journal of Hydrology 348(4):279-291. 

Ficklin DL, Yuzhou L, Eike L, Minghua Z (2009).Climate change 
sensitivity assessment of a highly agricultural watershed using 
SWAT. Journal of Hydrology 374(2):16-29. 

Fiseha BM (2013). Modelling the Hydrologic Behavior of the Upper 
Tiber River Basin under Climate Change Scenarios. PhD Research 
Thesis. Roma, Italy: Universita degli Studi ROMA TRE. 

Gassman PW, Reyes MR, Green CH, Arnold JG (2007). The soil and 
water assessment tool: historical development, applications, and 
future research directions. American Society of Agricultural and 
Biological Engineers 50(4):1211-1250. 

Gassman PW, Ali MS, Raghavan S  (2014). Applications of the SWAT 
Model Special Section:Overview and Insights. Journal of 
Environmental Quality 43:1-8. 

Gupta H, Sorooshian S, Yapo P  (1999). Status of Automatic Calibration 
for Hydrologic Models: Comparison with Multilevel Expert Calibration. 
Journal of Hydrologic Engineering 4(2):135-143. 

Intergovernmental Panel on Climate Change (IPCC) (2001). Climate 
Change 2001: Impacts, Adaptation and Vulnerability. Contribution of 
Working Group II to the Third Assessment Report of the 
Intergovernmental Panel on Climate Change. 

Intergovernmental Panel on Climate Change (IPCC) (2013). Climate 
Change 2013: The Physical Science Basis. Contribution of Working 
Group I to the Fifth Assessment Report of the Intergovernmental 
Panel on Climate Change [Stocker, T.F., Qin, D., Plattner, G.K., 
Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V.and 
Midgley, P.M., (Eds.).]. Cambridge University Press, Cambridge, 
United Kingdom and New York, NY, USA, 1535 pp. 

IPCC  (2007). Climate change 2007 the physical science basis. 
Contribution of working group I to the fourth assessment report of the 
Intergovernmental Panel on Climate Change.. Cambridge, United 
Kingdom and New York, NY, USA: Cambridge University Press,. 

Jayakrishnan R, Srinivasan R, Santhi C, Arnold JG  (2005). Advances 
in the application of the SWAT model for water resources 
management. Hydrological Processes  19(3):749-762. 

Khoi  DN, Phan Thi TH  (2015). Uncertainty Assessment of Climate 
Change Impacts on Hydrology: A Case Study for the Central 
Highlands of Vietnam. In S.e. al., ed. Managing Water Resources 
under Climate Uncertainty. Springer International Publishing 
Switzerland pp. 31-44. 



 

 

 
 
 
 
Kirchmeier  MC, David JL, Daniel JV  (2014). Statistical Downscaling of 

Daily Wind Speed Variations. Journal of Hydrologic Engineering 
4(2):135-143. 

Krysanova V, Mike W (2015).Advances in water resources assessment 
with SWAT: an overview. Hydrological Sciences Journal 60(5):771-
83.  

Leong TM,  Darren LF, Ibrahim AL,  Zulkifli Y  (2014). Impacts and 
    and uncertainties of climate change on streamflow of the Johor River 

Basin, Malaysia using a CMIP5 General Circulation Model ensemble. 
Journal of Water and Climate Change 5(4):676-695. 

Mango LM, Melesse AM, McClain ME, Gann D,  Setegn SG  (2011).  
Land use and climate change impacts on the hydrology of the upper 
Mara River Basin, Kenya: results of a modeling study to support 
better resource management. Hydrology and Earth System Sciences 
15(7):2245-2258.  

Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith 
TL (2007). Model evaluation guidelines for systematic quantification 
of accuracy in watershed simulations. American Society of 
Agricultural and Biological Engineers 50(3):885-900. 

Mulungu DM,  Munishi SE  (2007). Simiyu River catchment 
parameterization using SWAT model. Physics and Chemistry of the 
Earth 32(18):1032-1039. 

Narsimlu B, Ashvin KG, Baghu RC, Sudhir KS, Prashant KS  (2015). 
SWAT Model Calibration and Uncertainty Analysis for Streamflow 
Prediction in the Kunwari River Basin India, Using Sequential 
Uncertainty Fitting. Environmental Processes 2(1):79-95. 

Nash JE,  Sutcliffe JV (1970). River flow forecasting through conceptual 
models part I — A discussion of principles. Journal of Hydrology 
10(3):282-290. 

Neitsch SL, Arnold J, Kiniry J, Williams J, King K (2005). Soil and water 
assessment tool theoretical documentation version 2005. 2005th ed. 
Texas, USA: Grass land, soil and water reserch centere. 

Pervez MS, Geoffrey MH (2015). Assessing the impacts of climate and 
land use and land cover change on the freshwater availability in the 
Brahmaputra River basin. Journal of Hydrology: Regional Studies 
3:285-311. 

Ramirez-Villegas J, Andrew JC, Philip KT,  Andy J  (2013). Implications 
of regional improvement in global climate models for agricultural 
impact research. Environmental Research Letters 8(2):13 

Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ, Thorburn 
P, Antle JM, Nelson GC, Porter C, Janssen S, Asseng S, Basso B, 
Ewert F, Wallach D, Baigorria G,  Winter JM   (2013). The Agricultural 
Model Intercomparison and Improvement Project (AgMIP): Protocols 
and pilot studies. Agricultural and Forest Meteorology 170:166-182. 

Ryu JH,  Joo HL, Sangman J, Seon KP, Kyuha H  (2011). The impacts 
of climate change on local hydrology and low flow frequency in the 
Geum River Basin, Korea.Hydrological Processes 25(22):3437-3447. 

Sah PP,  Ketema Z (2015). Assessment of streamflow and catchment 
water balance sensitivity to climate change for the Yass River 
catchment in south eastern Australia. Environmental Earth Sciences 
73(10):6229-6242. 

Santhi C, Arnold JG, Williams JR, Dugas WA, Srinivasan R, Hauck LM  
(2001). Validation of the SWAT model on a large river basin with 
point and nonpoint sources. Journal of the American Water 
Resources Association 37(5):1169-1188.  

Setegn SG, Srinivasan R, Melesse AM, Dargahi B  (2009). SWAT 
model application and prediction uncertainty analysis in the Lake 
Tana Basin, Ethiopia. Hydrological Processes 24(3):357-367. 

Setegn SG (2010). Modeling hydrological and hydrodynamic processes 
in lake tana basin, ethiopia. Doctoral Thesis. STOCKHOLM, Sweden: 
KTH- Hydraulic Engineering Research Group Royal Institute of 
Technology (KTH). 

Setegn SG, Rayner D, Melesse AM, Dargahi B, Srinivasan R  (2010). 
Impact of Changing Climate on Water Resources Variability in the 
Lake Tana Basin, Ethiopia. Water Resources Research. 

 
 
 
 
 

Wodaje et al.          75 
 
 
 
Smith K, Boniecka L, Bari M,  Charles S  (2009). The impact of climate 

change on rainfall and streamflow in the Denmark River catchment. 
Western Australia: Department of Water. 

Taylor KE, Stouffer RJ, Meehl GA  (2012). An overview of CMIP5 and 
the experiment design. Bulletin of American Meteorol. Bulletin of the 
American Meteorological Society 93(4):485-498.  

Todd  MC, Taylor RG, Osborn TJ, Kingston DG, Arnell NW, Gosling S   
(2011). Uncertainty in climate change impacts on basin-scale 
freshwater resources – preface to the special issue: the QUEST-GSI 
methodology and synthesis of results. Hydrology and Earth System 
Sciences 15(3):1035-1046. 

Van Griensven A, Meixner T, Grunwald S, Bishop T, Diluzio M, 
Srinivasan R  (2006). A global sensitivity analysis tool for the 
parameters of multi-variable catchment models. Journal of Hydrology 
324(4):10-23. 

White ED, Easton ZM, Fuka DR, Collick AS, Adgo E, McCartney M, 
Awulachew SB, Selassie YG, Steenhuis TS (2011). Development 
and application of a physically based landscape water balance in the 
SWAT model. Hydrological Processes 25(6):915-925. 

Wilby RL, Dawson CW, Barrow EM  (2002). SDSM- a decision support 
tool for assessment of regional Climate change Impacts. 
Environmental Modelling and Software 17(2):145-157.  

 
 
 
 
 
 
 
 
 
 
 
 


