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In this research, a steady state analytical solution is suggested and derived for the groundwater flow 
equation in a homogeneous unconfined aquifer. The solution can be used for calculating the hydraulic 
heads in a complex flow field caused by multi injection-pumping wells having different rates in a 
domain subjected to a uniform recharge. The analytical method, used for flow simulation, is coupled 
with the Particle Swarm Optimization (PSO) method, used for optimization, to solve the groundwater 
management problem. A new model called Analytic-PSO, which consists of the two methods, is 
originally developed. The performance of the proposed model was tested on a popular hypothetical 
example to maximize the total pumping rate from located well system at steady state condition. The 
results show the superiority of the proposed model to obtain the maximum pumping rate compared 
with other methods of previous work. The application was extended to use the Analytic-PSO model for 
determination of both the optimal location and maximum pumping rate for each well for the pre-
specified number of wells in the same hypothetical example. Obtained results of the hypothetical 
example illustrate the ability of the Analytic-PSO model to solve efficiently the groundwater 
management problem in the real field aquifers. 
 
Key words: Groundwater management, analytical solution, particle swarm optimization, optimization methods, 
Fourier series. 

 
 
INTRODUCTION 
 
Groundwater is considered an important source of 
freshwater especially in arid semi-arid zones which is 
used for several life purposes such as drinking, domestic, 
industrial, and irrigation uses. Indiscriminate exploitation 
of this source causes environmental hazards including 
decline of groundwater level and well interference. 
Consequently, sustainable management strategies have 
to be developed by decision makers to optimally utilize 
the groundwater resources. Groundwater management 
problems are typically solved by researchers using the 
simulation-optimization approach. In the simulation- 
optimization approach, a coupled optimization and 

groundwater flow  model  is  used  to  obtain  the  optimum 
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strategy. 
During the past two decades, several computer codes 

have been established to deal with groundwater 
management problems by linking groundwater flow and 
optimization models (McKinney and Lin, 1994; Wang and 
Zheng, 1998; Wu et al., 1999; Wu and Zhu, 2006; Zhu et 
al., 2006; Ayvas, 2009; and Gaur et al., 2011a). These 
codes differ in the used numerical model to simulate the 
groundwater flow system, the type of groundwater 
management problems and the approaches used to solve 
these management problems (Gaur et al., 2011b). In 
most of the previous groundwater management studies, 
the flow models were based on the finite difference 
method (FDM) or finite element method (FEM). These 
two methods, which are used to predict the hydraulic 
heads for the whole flow domain, have several limitations 
such as domain discretization error, selection of 
appropriate boundary conditions, numerical stability,  and 
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approximate location of well over the cell. Analytic 
element method (AEM) is considered one of the analytical 

methods used to simulate the groundwater flow. AEM 
can give an exact analytic solution for groundwater flow 
problems and is capable of simulating streams, lakes, 
and complex boundary conditions (Strack, 1989). 

Optimization techniques are categorized into two types. 
The first one is deterministic optimization technique 
including Linear Programming (LP), Non-Linear 
Programming (NLP), and Dynamic Programming (DP). 
The second type is the stochastic optimization including 
Genetic Algorithm (GA), Particle Swarm Optimization 
(PSO), Shuffled Complex Evolution developed at 
University of Arizona (SCE-UA), Simulating Annealing 
(SA),…etc. Groundwater management problems are 
usually nonlinear and non-convex mathematical 
programming problems (McKinney and Lin, 1994). For 
such problems, using deterministic optimization techniques 

may result in some unexpected situations. These 
techniques usually require good initial solutions to 
produce an optimal solution. Also, they rely on local 
gradients of the objective function to determine the 
search direction, and thus, may converge to local optimal 
solutions (Ayvas, 2009). Therefore, use of the stochastic 
optimization techniques is usually preferred due to their 
ability of finding solutions without requiring gradients and 
initial solutions. 

There are several studies dealing with the solution of 
groundwater management problems using stochastic 
optimization methods. One of the first applications was 
performed by McKinney and Lin (1994). In that study, the 
GA-based groundwater simulation optimization models 
were developed to solve three groundwater management 
problems. They found that genetic algorithms could 
effectively and efficiently be used to obtain globally (or, at 
least near globally) optimal solutions to these 
groundwater management problems. Wang and Zheng 
(1998) compared the performance of GA and SA for 
maximization of pumping and minimization of the cost. 

Their results showed that both methods yield nearly 
identical and better solutions than various other 
programming methods. Wu et al. (1999) developed a GA 
based SA penalty function approach (GASAPF) to solve 
a groundwater management model. Their results showed 
that GASAPF model can effectively solve the groundwater 

management model. Wu and Zhu (2006) applied (SCE-
UA) to solve groundwater management models. Using 
the developed solution algorithm, two management 
models were developed for an unconfined aquifer: linear 
model of maximum pumping and nonlinear model of 
minimum pumping cost. In a later study, Zhu et al. (2006) 
compared the performances of SCE-UA and GA methods 
in the solution of a management model for deep 
groundwater resources of the Yangtze Delta, which is a 
multi-aquifer system with large area and complicated 
geology conditions. Their results showed that the SCE- 
UA is more effective than GA in the solution of the 
management   model.   Ayvas   (2009)   tested   Harmony 

 
 
 
 
Search (HS) algorithm on three separate groundwater 
management problems. Their results showed that the HS 
yields nearly same or better solutions than the previous 
solution methods and may be used to solve management 
problems in groundwater modeling. Gaur et al. (2011) 
developed two models for the solution of groundwater 
management problem. The first one consists of a linkage 
between analytical element and particle swarm 
optimization methods (AEM-PSO) whereas the second 
model consists of finite difference and particle swarm 
optimization methods (FDM-PSO). The comparative 
analysis was performed between AEM and FDM, and the 
abilities of the AEM method to solve groundwater 
management problems were investigated. Also Gaur et 
al. (2011) applied (AEM-PSO) model to the Dore river 
basin, France, to solve two groundwater hydraulic 
management problems. They examined the effect of 
piping length in the total developed cost for new wells. 
They also used the (AEM-PSO) model to determine 
optimal locations, discharges and optimum number of 
wells. 

There are two main objectives of this study; the first 
one is to derive a new analytical solution for the 
groundwater flow equation to predict the hydraulic heads 
in the unconfined aquifer, and the other objective is to 
develop a groundwater resources management model 
that combines a new analytical and particle swarm 
optimization methods (Analytic-PSO). The proposed 
management model is tested on the most popular 
hypothetical example to obtain the maximum pumping 
rate and a comparison is carried out with the 
corresponding ones given by other previous studies. Also 
(Analytic-PSO) model is used to determine both the 
optimum locations and discharges of wells for the pre-
specified number of wells. 
 
 
PROBLEM FORMULATION 
 
In the design of ground water management systems, 
there are usually two sets of variables: decision variables 
and state variables. In the considered model, the decision 
variables include the well locations and pumping rates. 
These are the variables that can be specified, managed, 
or controlled by the designer. The purpose of the design 
process is to identify the best combination of these 
decision variables. On the other hand, the state variable 
is the hydraulic head, which is the dependent variable in 
the groundwater flow equation (Wang and Zheng 1998). 
The governing equation describing the three dimensional 
movement of ground water is as follows (Bear, 1979): 
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in which, Kxx, Kyy, Kzz: the principal components of 
hydraulic   conductivity   aligned   along  the  x,  y,  and  z 



 
 
 
 
coordinate axes, respectively; h: the hydraulic head; f: a 
flux term that incorporates pumping, recharge, or other 
sources or sinks; Ss: the specific storage; and t: the time. 

In this study, two separate groundwater management 
problems are solved. The objective function in the two 
problem is to maximize the total pumping rate from an 
aquifer. For the first management problem, it is assumed 
that the numbers and the locations of the wells are known 
whereas in the second management problem the number 
of wells is only known. Consequently, decision variables 
are only the pumping rates in the first management 
problem and both the pumping rates and locations of the 
wells in the second management problem. The two 
management problems are subjected to constraints on 
lower and upper bounds of pumping rates. Also, there is 
an additional constraint on hydraulic heads at well 
locations such that they must be greater than a specified 
lower bound. The management model can 
mathematically be stated as follows (Ayvas, 2009): 
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Subjected to: 
 
hi ≥ hi, min, i = 1, 2, 3, ..., NW                                            (3) 
 
Qi min ≤ Qi ≤ Qi max, i = 1, 2, 3, ..., NW                               (4) 
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in which, Qi: the pumping rate of well i; NW: the number of 

wells; )(hP : penalty term; hi, min: the minimum hydraulic 

head value at well i; and Qi min and Qi max: the minimum 
and maximum bounds of the pumping rates at well i, 
respectively. 
 
 
ANALYTICAL SOLUTION 
 
There are several previous studies that suggested 
different analytical solutions for the groundwater flow 
equation in confined and unconfined aquifers (Grubb, 
1993; Shan, 1999; Kim and Ann, 2001; Yeo and Lee, 
2003; Ma et al., 2009). Lee and Yeo (2003) suggested an 
analytical steady state solution using double Fourier 
transformation to deal with arbitrarily located multi-
injection/pumping wells in anisotropic homogeneous 
confined aquifer. This methodology is adopted in the 
present study with the following modifications: 
 
1. The analytical solution is carried out for the 
groundwater flow equation that describes unconfined 
aquifer. 
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2. The effect of uniform recharge on the studied domain 
is taken into consideration. 
3. Different types of boundary conditions (BCs) are 
considered in the studied domain (two Dirichlet BC and 
two Neumann BCs). 
4. The suitable number of Fourier coefficients is 
determined. 
5. Application of the sigma-approximation technique, 
given by Jerri (1998), to reduce the effect of Gibbs 
phenomenon. 
 
For the unconfined aquifer shown in Figure 1, the 
following assumptions are taken into consideration for the 
derivation of analytical solution: (1) the Dupuit’s hydraulic 
assumption is employed to vertically integrate the flow 
equation, reducing it from three dimensional geometry to 
two dimensional, (2) the aquifer specific storage is 
ignored such that the governing equation becomes time 
independent, (3) the wells fully penetrate the aquifer 
thickness, (4) the impervious bed of the aquifer is 
considered horizontal, (5) hydraulic conductivity is 
assumed constant throughout the studied domain, and 
(6) two Dirichlet boundary conditions are assumed having 
the same value. 

According to the previous assumptions, Equation 1 can 
be written as follows: 
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on the rectangular domain (x, y) ∈  Ω = [0, L] × [0, H] 
subject to the boundary conditions: 
 

h (x, 0) = h (x, H) = ho                                                     (7) 
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in which, L: length of the studied domain in the direction 
of x-axis, H: length of the studied domain in the direction 
of y-axis, and ho: boundary condition constant head. 

Equation 6 can be linearized by the substitution 

2
2h=φ  and the equation then takes the form: 
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Figure 1. Definition sketch of the studied 

domain. 

 
 
 

The analytical solution of Equation 9 can be written as a 
double Fourier series of the form: 
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where the constant c is obtained from the boundary 
conditions to be: 
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From condition given in Equation 11.: 
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which implies that 
n

b
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= 0. From condition given in 

Equation 10: 
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which implies that 
0

~c = 
m

c~ = 0. According to these 

conditions, the analytical solution of Equation 9 can be 
written as double cosine-sine Fourier series in the form: 
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To evaluate the Fourier coefficients cn, m, the solution 
given in Equation 18 is substituted in Equation 9 to obtain 
the following form: 
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in which, bn,m represents the coefficient of the double 
cosine-sine Fourier series of the function f(x, y) and can 
be obtained by the canonical form: 
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hence, cn,m is given by: 
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Consider the case where: 
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in which, W: the uniform rainfall or uniform evaporation 
(W takes minus sign in case of uniform evaporation), Qi: 
the injection or pumping rate of the i

th
 well (Qi takes 

minus sign in case of injection), δ : the Dirac delta  function, 



 
 
 
 
NW: number of wells. Then, from Equation 22 and for 
integer m ≥ 1: 
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In actual computations, a truncated Fourier series is 
used. To achieve a certain degree of accuracy in 
computations, the number of Fourier coefficients is 

chosen such that it ensures that ε<mnc ,  for a 

sufficiently small positive constantε . From Equation 22: 
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and if equal number of Fourier coefficients is set for both 
variables x and y and denote it by M, then the following 
inequality holds: 
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Finally, since the function f(x, y) considered in the 
proposed model contains the Dirac delta function, 
Equation 18, the obtained Fourier series is affected by 
the Gibbs phenomenon. This phenomenon describes that 
the partial sum of the Fourier series has large oscillations 
near the jump, which might increase the maximum of the 
partial sum above that of the function itself. Several 
methods are available to reduce the Gibbs effect such as 
Fejer summation (Carslaw, 1921) and sigma 
approximation (Jerri, 1998). The sigma-approximation 
technique is used and the truncated series solution then 
takes the form: 
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The hydraulic head can be computed using the following 
equation: 
 

),(2),( yxyxh φ=           (29) 
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PARTICLE SWARM OPTIMIZATION 
 
PSO was developed by Kennedy and Eberhart (1995). 
The PSO is inspired by the social behavior of a flock of 
migrating birds trying to reach an unknown destination. In 
PSO, each solution is a ‘bird’ in the flock and is referred 
to as a ‘particle’. The birds in the population only evolve 
their social behavior and accordingly their movement 
towards a destination (Shi and Eberhart, 1998). 

Physically, this mimics a flock of birds that 
communicate together as they fly. Each bird looks in a 
specific direction, and then when communicating 
together, they identify the bird that is in the best location. 
Accordingly, each bird speeds towards the best bird 
using a velocity that depends on its current position. Each 
bird, then, investigates the search space from its new 
local position, and the process is repeated until the flock 
reaches a desired destination. It is important to note that 
the process involves both social interaction and 
intelligence so that birds learn from their own experience 
(local search) and also from the experience of others 
around them (global search). 

The process is initialized with a group of random 
particles (solutions). The i

th
 particle is represented by its 

position as a point in a S-dimensional space, where S is 
the number of variables. Throughout the process, each 
particle i monitors three values: its current position (Xi); 
the best position it reached in previous cycles (Pi); its 
flying velocity (Vi). These three values are represented as 
follows ( Elbeltagi et al. 2005): 

 
Current position Xi = (xi1, xi2,..., xiS) 

 
Best previous position Pi = (pi1, pi2,..., piS) 

 
Flying velocity Vi = (vi1, vi2,..., viS) (30) 

 
In each time interval (cycle), the position (Pg) of the best 
particle (g) is calculated as the best fitness of all particles. 
Accordingly, each particle updates its velocity Vi to catch 
up with the best particle g, as follows (Shi and Eberhart 
1998): 

 
 

( )iiii XPRNcVcurrentVNew −××+×=
11

ω ( )ig XPRNc −××+ 22  (31) 

 
using the new velocity Vi, the particles update their 
position as follows: 

 
 

iii VNewXpositioncurrentXpositionNew += ; maxmax VVV i −≥≥  (32) 
 
in which, c1 and c2: two positive constants named 
learning factors (c1 = c2 = 2); RN1 and RN2: two random 
functions in the range [0, 1]; Vmax: upper limit on the 
maximum change of particle velocity (Kennedy and 
Eberhart, 1995); and ω : an inertia weight employed as 

an improvement proposed by Shi and Eberhart (1998)  to 
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Figure 2. Flow chart for coupled Analytic-PSO model. 
 
 
 

control the impact of the previous history of velocities on 
the current velocity. The operator ω  plays the role of 

balancing the global search and the local search; and 
was proposed to decrease linearly with time from a value 
of 1.4 to 0.5 (Shi and Eberhart, 1998). As such, global 
search starts with a large weight and then decreases with 
time to favor local search over global search (Eberhart 
and Shi, 1998). 

It is noted that the second term in Equation 31 
represents cognition, or the private thinking of the particle 
when comparing its current position to its own best. The 
third term in Equation 31, on the other hand, represents 
the social collaboration among the particles, which 
compares a particle’s current position to that of the best 
particle (Kennedy 1997). Also, to control the change of 
particles’ velocities, upper and lower bounds for velocity 
change is limited to a user-specified value of Vmax.  Once 

 
 
 
 
the new position of a particle is calculated using Equation 
32, the particle then flies towards it (Shi and Eberhart 
1998). The main parameters used in the PSO technique 
are the population size (number of birds), number of 
cycles, the maximum change of a particle velocity Vmax; 
and the inertia weight ω . 

 
 
SIMULATION-OPTIMIZATION MODEL 
 
After developing the simulation and optimization models, 
mentioned in the two previous sections, both models are 
coupled to solve groundwater management problems. 
Figure 2 shows the flow chart of the Analytic–PSO model. 
The coupled Analytic–PSO model is particularly 
developed to apply the principles of simulation–
optimization approach, where the optimization model 
repeatedly calls the simulation model to find the optimum 
solution of the problem. The optimization model calls 
simulation model to predict the state variables (hydraulic 
heads at well locations). The values of those state 
variables are used to check the constraints and then 
penalty value is considered if constraint violations 
occurred. The whole solution procedure is successively 
repeated to generate new solution (well discharges in the 
first application and set of co-ordinates and discharge of 
the wells in the second application, which excessively 
increases the computational burden) until the global (or 
near global) solution is obtained. 
 
 
NUMERICAL APPLICATION 
 
To investigate the performance of applying Analytic-PSO 
model to solve groundwater management problems, two 
problems are used as examples. The first one concerns 
with determining the maximum pumping form pre-
specified well system, whereas the second problem 
includes determination of both coordinates and maximum 
pumping from a pre-specified number of wells. The two 
applications are performed in unconfined aquifer system 
given by McKinney and Lin (1994). Figure 3 shows the 
plan view and cross-sectional elevation of the studied 
aquifer. As can be seen from this figure, the aquifer 
having dimensions of 4500 × 10000 m

2
. The boundary 

conditions include the Dirichlet at the north (river) and 
south (swamp) sides (h0 = 20 m); and the no-flow at the 
east and west sides (mountains). The aquifer is 
composed from sand and gravel and it is assumed that 
porous medium is homogeneous and isotropic. The 
hydraulic conductivity and the areal recharge rate (K and 
W) are 50 m/day and 0.001 m/day, respectively. There 
are 10 pumping wells having locations listed in Table 1. 
 
 
Groundwater management problem (1) 
 

The   first  problem  deals  with  the  maximization  of  total 



 
 
 
 
Pumping from an unconfined aquifer using a pre-
specified system of wells, McKinney and Lin (1994). This 
typical problem was solved by various researchers 
(McKinney and Lin, 1994; Wang and Zheng, 1998; Wu et 
al., 1999; Wu and Zhu, 2006; Ayvas, 2009; Gaur et al., 
2011) using different optimization methods such as LP, 
GA, SA, SCE-UA, HS, and PSO. The purpose of this 
section is to perform a comparison between results of 
Analytic-PSO model and the corresponding ones given 
by other previous researchers. The objective function for 
this problem was taken as Equation 2. Two constraints 
were considered, (1) hydraulic head should be above the 
aquifer bottom (hi,min = 0), and (2) discharge range of the 
pumping wells should be within the limits of 0–7000 
m

3
/day to prevent aquifer dewatering. The suitable 

number of Fourier coefficients is determined, in the worst 

case, by taking max iQ  = 7000 m
3
/day, NW = 10, H = 

10000 m, L = 4500 m, K = 50 m/day, π = (22/7), and M = 
60, (Equation 27.) in the analytic flow model. 

The sensitivity analysis is carried out to determine the 
PSO solution parameters as follows: number of particles 
= 40, number of cycles = 300, and Vmax = 200. 

The factor ω  is also set as a linear function decreasing 

with the increase of number of generations where, at any 
generation i, 
 
ω  = 0.4 + 0.8 × (number of generations – i) / (number of 
generations – 1)                                                       (33) 
 
such that ω  = 1.2 and 0.4 at the first and last generation, 

respectively. 
After applying the model to the problem, it is found that 

the values of most of mnc ,  are of order 10
-6

, and the 

maximum value in the last 60 term does not exceed 
0.007.  

The relationship between optimal total pumping rates 
and number of cycles is shown in Figure 4. From this 
figure, it can be shown that the Analytic-PSO model can 
achieve a fairly good solution for pumping rate (59000 
m

3
/day) after only 71 cycles whereas, it converges to the 

optimal value of 59463.76 m
3
/day at the last cycle. Table 

2 presented a comparison between the maximum 
discharge by 10 pumping wells in the present study and 
those given by other previous ones. As can be seen from 
the table, the Analytic-PSO model gives a higher value 
for total pumping rate (59463.76 m

3
/day) in comparison 

with other models. This result closely agrees with the 
PSO 2 solution (59425 m

3
/day) given by Gaur et al. 

(2011). Results of other previous solution methods are 
found to be 59300 m

3
/day in LP, 58000 m

3
/day and 

59000 m
3
/day in GA, 59078 m

3
/day in GASAPF, 59266 

m
3
/day in SCE-UA, 59400 m3/day in SA, and 59279 

m
3
/day in HS. The hydraulic heads at wells and hydraulic 

head contours corresponding to the obtained total 
pumping rate are shown in Table 3 and Figure 5, 
respectively. 
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Figure 3. Unconfined aquifer model under consideration: (a) Plan 
view and (b) Sectional elevation Z-Z (After McKinney and Lin1994). 
 
 
 
Table 1. Coordinates of pumping wells, shown in Figure 3 
(McKinney and Lin, 1994). 
 

Well number x-coordinate (m) y-coordinate (m) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1250 

2250 

3250 

1250 

2250 

3250 

1250 

2000 

2500 

3250 

8500 

8500 

8500 

5000 

5000 

5000 

3500 

3500 

3500 

3500 
 
 
 

The hydraulic heads at wells shown in Table 3 indicate 
that results from the proposed model satisfied constrains 
of the optimization model. Consequently, the Analytic- 
PSO  model  can  effectively  and  efficiently  be  used  to 
solve groundwater management problems. 
 
 

Groundwater management problem (2) 
 
The objective of the second problem is also maximizing 
the total pumping rate from the unconfined aquifer shown 
in Figure 3 as well as determining the best coordinates 
for the ten wells. The used objective function and 
hydraulic constrains are the same ones as in the problem
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Figure 4. Relationship between optimal total pumping rates and number of cycles. 

 
 
 
Table 2. Maximum discharge by 10 pumping wells using different optimization techniques (units: m

3
/day). 

 

Well 

 number 

Optimizations techniques  

(LP) 

McKinney and 
Lin (1994)  

(GA) 

McKinney and 
Lin (1994) 

(GA) 

Wang and 
Zheng (1998) 

(SA) 

Wang and 
Zheng (1998) 

GASAPF 

Wu et al. 
(1999) 

(SCE-UA)  

Wu and  

Zhu (2006) 

(HS) 

Ayvaz 
(2009) 

(PSO 1) 

Gaur 

(2011) 

(PSO 2) 

Gaur 

(2011) 

Present 
study 

1 7000 7000 7000 7000 7000 7000 7000 7000 7000 7000.00  

2 7000 7000 7000 7000 7000 7000 7000 7000 7000  7000.00  

3 7000 7000 7000 7000 7000 7000 7000 7000 7000  7000.00  

4 6000 7000 5000 6200 6056 5987 5904 6300 6315  5960.43  

5 4500 2000 5000 6700 4290 4477 4590 4600 4600  4503.70 

6 6000 6000 6000 6200 6056 5986 5904 6150 6150  5949.65  

7 6800 7000 7000 6650 6774 6814 6821 6500 6600  6729.79 

8 4100 4000 4000 4000 4064 4094 4121 4100 4055  4282.12  

9 4100 4000 4000 4000 4064 4094 4120 4100 4100  4230.97  

10 6800 7000 7000 6650 6774 6814 6820 6600 6605  6807.09 

Total pumping 59300 58000 59000 59400 59078 59266 59279 59350 59425 59463.76 



 
 
 
 

Table 3. Hydraulic head at wells corresponding to the 
obtained total pumping in problem 1. 
 

Well number Head (m) 

1 12.18 

2 11.40 

3 12.18 

4 0.12 

5 0.33 

6 0.03 

7 1.22 

8 0.34 

9 0.68 

10 0.17 
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Figure 5. Contour heads corresponding to the obtained 
total pumping in problem 1. 

 
 
 

1. The sensitivity analysis is performed to determine the 
Analytic-PSO model parameters as follows: M = 60, 
number of particles = 30, number of cycles = 200, Vmax = 
350 and the factor ω  is considered as previously 

mentioned. 
After applying the model it is found that each well can 

pump its  maximum  bound  of  the  pumping  rate   (7000 
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Figure 6. Relationship between optimal total pumping rates and 
number of cycles. 
 
 
 

m
3
/day) without violation of the minimum hydraulic head 

value. Figure 6 demonstrates the relationship between 
optimal total pumping rates and number of cycles. As 
seen from this figure, the Analytic-PSO model can obtain 
an optimum solution for pumping rate (70000 m

3
/day) 

after only 30 cycles performing 900 simulations. Table 4 
lists the obtained coordinates of wells and the hydraulic 
heads at well locations. Figure 7 shows the groundwater 
head contours generated by the Analytic-PSO model for 
the maximum pumping values. 
 

 

Conclusions 
 

A steady state analytical solution is suggested and 
derived for the groundwater flow equation in a 
homogeneous unconfined aquifer. The analytical solution 
is based on double Fourier series and is suitable to deal 
with any number of pumping or injection wells or 
combination of them. In addition, uniform rainfall or 
evaporation can be taken into consideration. The new 
analytical method is linked with the Particle Swarm 
Optimization method to solve the groundwater 
management problems. A new model called Analytic-
PSO, which consists of the two methods, is originally 
developed. The Analytic-PSO model is verified on the 
most popular hypothetical example to obtain the 
maximum pumping rate and a comparison was carried 
out with the corresponding ones given by other previous 
studies. In addition, the model is used to determine both 
the optimum locations and discharges of wells for the 
pre-specified number of wells. The results showed that 
the Analytic-PSO model can effectively and efficiently be 
used to solve real groundwater management problems. 
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Table 4. The obtained results for problem 2 
 

Well no. x-coordinate (m) y-coordinate (m) Head (m) 

1 1538.81 553.1 16.15 

2 4053.67 3398.12 4.18 

3 885.40 2145.87 13.23 

4 4238.68 8515.75 13.75 

5 4154.02 1205.85 12.22 

6 3339.77 3548.14 6.50 

7 1369.39 6814.13 15.50 

8 3442.24 9710.71 16.58 

9 2565.95 4191.12 10.44 

10 3521.94 9908.74 18.36 
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Figure 7. Contour heads corresponding to the obtained total 

pumping in problem 2. 
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