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Many of the activities associated with the planning and operation of water resource systems require 
forecasts of future events. For the hydrologic component that forms the input for water resource 
systems, there is a need for both short and long term forecasts of stream flow events, in order to 
optimize the real-time operation of the system or to plan for future expansion. For this historical inflow 
series from Sewa hydroelectric Project Stage-II which is a run-of-the river project has been used. For 
model development, 16 years historical inflows data of the river out of available 18 years inflow data 
has been used and the Artificial Neural Network Model has been trained to predict 2 years inflows. In 
order to accomplish this task, historical inflow series is employed for training, validating and testing 
with three different proportions of ratio 60:20:20, 80:10:10 and 90:05:05 were analyzed. The analysis of 
this study demonstrates the ability of neural network prediction model, to forecast quite accurately ten 
days inflows of two years ahead and generate synthetic series of ten days inflows that preserve the key 
statistics of the historical ten days inflows which in a way helps in effective utilization of available 
water, especially in a multipurpose context. 
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INTRODUCTION 
 
To begin with, as water inflow is the fuel for hydro power 
production, the main challenge for a hydro producer with 
reservoir capacity is deciding on how much electricity to 
produce today, versus future periods become essential 
as per ABT norms (Bhushan, 2005; Christensen and 
Soliman, 1988; Deshmukh et al., 2008) for energy system 
planning. To fulfill that criteria, proper planning of hydro 
power through short and long-term forecasts of stream 
flow are carried out for knowing the hydrological 
behaviour of a water structure. Short term forecasts are 
applicable for real time operation of water management 
system and for flood warning. Long term forecasts are 
applicable to operation and management of water supply 
systems. Moreover, stream flow data are very important 
for many areas of water engineering such as dam 
planning, flood mitigation, operation of water reservoirs, 
distribution of drinking water and drainage water, 
hydropower generation in dry  periods,  planning  of  river 
transport and for many other purposes as reported by  
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Salas et al. (1985) and Salas (1993).  
No two hydroelectric systems in the world are alike but 

they are all different. The reasons for the differences are 
the natural differences in the watersheds, the differences 
in the manmade storage and release elements used to 
control the water flows, and the very many different types 
of natural and manmade constraints imposed on the ope-
ration of hydroelectric systems (Wood and Wollenberg, 
1984). The stream flow data for River Sewa has been 
collected through a very sparse and distinct data 
acquisition networks. Also, lot of uncertainty is involved in 
stream flow data because of its non-stationary nature due 
to wet and dry periods over the year (Maier and Dandy, 
2000). 

Furthermore, the inherently non-linear relationship 
between input and output flow challenges stream flow 
forecasting processes. Several researchers have 
suggested different model-driven and data-driven 
approaches to predict stream flows. In traditional model-
driven approaches, such as ARMA-type models, for fitting 
an ARMA type model to a historical time series the data 
need to  be  stationary  (Hipel,  1985)  and  should  follow 
normal   distribution    (Bender    and   Simonovic,   1994)  



 
 
 
 

pattern. Otherwise, a technique such as differencing (Box 
and Pierce, 1970) is applied to induce stationarity and 
then through Box-Cox transformation, normally 
distributed patterns are achieved. Whereas, while 
developing artificial neural network models, the statistical 
distribution of the data does not have to be known (Box 
and Pierce, 1970) and non-stationarities in the data, such 
as trends and seasonal variation, are accounted for by 
the internal structure of the ANNs (Dandy and Maier, 
1996). ANNs are suited to complex problems, where the 
relationships between the variables being modelled are 
not well understood. ANNs differ from the traditional 
approaches in the sense that, they belong to a class of 
data-driven approaches, as opposed to traditional model-
driven approaches such as ARMA-type models. 

Data-driven approaches have the ability to determine 
which model inputs are critical, so that there is no need 
for a prior knowledge about relationships between 
variables. They are relatively insensitive to noisy data, 
unlike ARMA-type models, as they have the ability to 
determine the underlying relationship between model 
inputs and outputs, resulting in good generalization 
ability. Model-driven approaches, on the other hand, 
require some understanding of the problem, as the model 
order has to be determined before the unknown model 
parameters can be estimated (Dandy et al., 1996). In 
addition, an ANN is a nonlinear mathematical structure 
capable of representing arbitrarily complex nonlinear 
processes, that relate the inputs and outputs data (Hsu et 
al., 1995) sets of any system.  

The success with which ANN have been used to model 
dynamic systems in areas of science and engineering 
suggests that the ANN approach have become one of the 
commonly used and powerful alternative technique to 
deal with time series prediction in situation where explicit 
knowledge of the internal hydrologic sub-processes of the 
watershed is not required. Application of ANN to 
problems involving rainfall-runoff modeling (Hsu et al., 
1995; Lorrai and Lorrai, 1995; Cheng and Noguchi, 1996; 
Smith and Eli, 1995) and weather (French et al., 1992; 
Jayawardena and Fernando 1996) and river flow 
prediction (Karunanithi et al., 1994; Raman et al., 1995; 
Raman and Chandramouli 1996) have been reported in 
the literature. 

In an effort to address the difficulty and inherent 
uncertainty of forecasting for long term planning horizon, 
the ANN based approach to stream flow forecasting has 
been investigated, which uses a black-box approach, with 
little rationalization about possible interactions between 
input and output data sets (that is historical inflow series) 
taken from Sewa hydro electric project stage-II. In order 
to check the sensitivity of the data training, validation and 
testing data sets with three different proportions of ratio 
60:20:20, 80:10:10 and 90:05:05 were analyzed. Then 
ANN generated results were evaluated using Mean 
Square Error and Regression R value in neural network 
fitting tool box in MATLAB 7.8.  
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Study area and data set 
 
The present study focuses on stream flow forecasting in long-term 
reservoir operation scheduling for Sewa Hydroelectric Project 
Stage-II, a run-of-the river project, which fulfills the partial 
requirements of the irrigation in state of Jammu and Kashmir. The 
power house is located in a village called Mashka near the junction 
of Sewa and Ravi, The project will generate 533.52 million units in a 
90% dependable year and also provide 120 MW peaking capacity 
in the power system of northern region. This plant has a small 
reservoir with maximum storage capacity of 0.9174 million cubic 
meters (MCM) and average storage capacity of 0.2234 MCM. 
Moreover, elevation is taken from above mean sea level through 
some level sensors, maximum reservoir level of this plant is 1200 m 
and average reservoir level measured is 1184 m. The project 
envisages 53 m high concrete gravity dam, a 10,020 m long head 
race tunnel and its power house will be equipped with 3*40 MW 
vertical Pelton turbine units with rated net head of 560 m. Its 
geographical coordinates having latitude 32° 36’ 38” N to 32° 41’ 
00” N and longitude 75° 48’ 46” E to 75° 55’ 38” E is shown in 
Figure 1, referred from site (www.nhpcindia.com). 

In this paper for model development, 16 years historical inflow 
data of the river out of available 18 years inflow data has been 
used. Two years inflow of Sewa River has been forecasted and 
validated by the remaining two years data. The historical time series 
data for stream flow forecasting is taken on duration of 10 days 
interval. There are 36 data in a given year. The inflows are as 
shown in Figure 2. 
 
 
Neural network overview 
 
Neural networks are inspired by nervous systems found 
in biological organisms. It is comprised of data 
processing units (neurons) connected via adjustable 
connection weights. Neurons are arranged in layers, an 
input layer, hidden layer(s), and an output layer. There is 
no specific rule that dictates the number of hidden layers. 
The function is largely established based on the 
connections between elements of the network. In the 
input layer, each neuron is designated to one of the input 
parameters. The network learns by applying a back-
propagation algorithm which compares the neural 
network simulated output values to the actual values and 
calculates a prediction error. The error is then back pro-
pagated through the network and weights are adjusted as 
the network attempts to decrease the prediction error by 
optimizing the weights that contribute most to the error. 
The training or learning of the network occurs through the 
introduction of cycles of data patterns (epochs or 
iterations) to the network. One problem with neural 
network training is the tendency for the network to 
memorize the training data after an extended learning 
phase. If the network over learns the training data, it is 
more difficult for the network to generalize to a data set 
that was not seen by the network during training. There-
fore, it is common practice to divide the data set into a 
learning data set, that is used to train the network and a 
validation data set that is used to test network 
performance. Figure 3 shows the representation of neural 
Network diagram with inputs ai, weights wi, hidden  layer, 
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Figure 1. Location map. 

 
 
 
 

 
 
Figure 2. Plot of the river stream flow data originating from Himalayan region. 
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Figure 3. Feed-forward neural network model. 

 
 
 

and an output ẑ  (Beale et al., 1996). In the present 
study, neural network fitting tool (nftool) of MATLAB 7.8 
(Beale et al., 1996; Sivanandam et al., 2006) has been 
used. This research employed supervised learning where 
the target values for the output are presented to the 
network, in order for the network to update its weights. 
Supervised learning attempts to match the output of the 
network to values that have already been defined. After 
training network verification is applied in which only the 
input values are presented to the network so that the 
success of the training can be established, an algorithm 
that trains ANN 10 to 100 times faster than the usual 
back propa-gation algorithm is the Levenberg-Marquardt 
algorithm. While back propagation is a steepest descent 
algorithm, the Levenberg-Marquardt algorithm is a varia-
tion of Newton's method (Hagan and Menhaj, 1994). In 
this paper, the Levenberg-Marquardt algorithm has been 
employed which is an approximation to Newton's method.  
 
 
Prediction of stream flow data using ann 
 
To forecast stream flow data for Sewa hydro electric 
project stage-II with neural network using Levenberg-
Marquardt algorithm has been investigated in this paper. 
The three layers network structure is shown in Figure 3. 
To solve this problem, the network was trained by using 
Matlab neural networks module (nftool). For investigating 
the suitability of ANN, three ratios between training, 
validation and testing sets were considered that is, 
60:20:20, 80:10:10 and 90:05:05. In order to check the 
sensitivity of neural network, initialization of connection 
weights, training, validation and testing operations have 
been performed with 5 independent random trials. From 
the simulation study  which   was   carried   out   on  three 

different ratios, it was found that lower proportions of ratio 
produced more accurate predictions. Although it requires 
many runs to converge, to get expected training, yet once 
the system was trained then it tests the remaining 
samples of data.  

Figure 4 shows the performance accuracy employing 
different numbers of hidden nodes for 90:05:05 ratio set. 
From the graph, it can be realized that good prediction 
accuracy is achieved with 5 numbers of neurons in the 
hidden layer on fifth trial. It can be noted from the graph 
that with increase in number of neurons in the hidden 
layer, prediction accuracy also increases to some extent. 
In this study, number of neurons in the hidden layer was 
obtained via trial an error method.  

Here, hyperbolic tansig function f(x) = 1/ (1 + exp(x)) is 
applied for the hidden layer, and the linear transfer 
function (purelin) is used in the output layer. Input data is 
applied after normalization process between -1 and +1. 
To evaluate neural network performance, initialization of 
connection weights, training, validation and testing has 
been performed with five independent random trials for 
weight initialization as listed in Table 1. The comparison 
of the mean squared error (MSE) values, indicates the 
average squared difference between outputs and targets, 
which is used to assess the network performance and is 
given as: 
  

 M

)dy(

MSE

M
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2
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                                   (1) 
 
where, ym and dm are the network output, and the desired 
output at any sample ‘m’ respectively; and M is the length 
of the investigated data sets. 
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Figure 4. Prediction Accuracy versus number of trials with different hidden neurons for 
90:05:05 ratio set 

 
 
 
Table 1. Performance evaluation of training, validation and testing for 90:05:05 ratio set. 
 

Number of hidden 
layer neurons 

Operation MSE Best MSE Worst 
MSE 

Average 
R Best R Worst 

R 
Average 

Standard 
deviation MSE 

Standard 
deviation R 

2 Training 9.67E+01 1.49E+02 1.24E+02 8.68E-01 6.46E-01 7.40E-01 2.41E+01 9.09E-02 

2 Validation 2.34E+00 4.07E+02 1.06E+02 1.00E+00 1.00E+00 1.00E+00 1.71E+02 5.48E-07 

2 Testing 1.14E+00 1.76E+02 5.14E+01 1.00E+00 1.00E+00 1.00E+00 7.28E+01 4.47E-07 

3 Training 4.59E+01 1.53E+02 8.13E+01 9.87E-01 7.20E-01 8.84E-01 4.44E+01 1.02E-01 

3 Validation 5.01E+00 3.80E+01 2.00E+01 1.00E+00 1.00E+00 1.00E+00 1.26E+01 4.47E-07 

3 Testing 1.06E+00 3.44E+01 1.74E+01 1.00E+00 1.00E+00 1.00E+00 1.29E+01 5.48E-07 

4 Training 6.04E+00 6.75E+01 2.76E+01 9.94E-01 9.26E-01 9.75E-01 2.63E+01 2.80E-02 

4 Validation 1.81E+00 3.06E+01 1.44E+01 1.00E+00 1.00E+00 1.00E+00 1.13E+01 0.00E+00 

4 Testing 4.46E-01 5.96E+01 1.98E+01 1.00E+00 1.00E+00 1.00E+00 2.64E+01 4.47E-07 

5 Training 4.27E-01 8.51E+01 2.07E+01 1.00E+00 8.44E-01 9.65E-01 3.61E+01 6.78E-02 

5 Validation 1.63E-01 6.06E+01 1.86E+01 1.00E+00 1.00E+00 1.00E+00 2.41E+01 5.48E-07 

5 Testing 4.24E-01 8.87E+01 2.98E+01 1.00E+00 -1.00E+00 6.00E-01 3.55E+01 8.94E-01 

 
 
 
The standard deviation of a sample of observations is the 
square root of the average of the squared deviations 
about their mean (James et al., 1994)  M

)y-(y

deviation  Standard

M

1m

2
m∑

=
=

                                              (2) 



Yadav et al.    35 
 
 
 

 
 
Figure 5. Regression plots for actual and forecasted results by feed-forward neural network model for training, 
validation, testing samples and all data set for 90:05:05 ratio set. 

 
 
 
The standard deviation is a measure that summarizes the 
amount by which every value within a dataset varies from 
the mean. Effectively, it indicates how tightly the values in 
the dataset are bunched around the mean value. When 
the values in a dataset are pretty tightly bunched 
together, the standard deviation is small. When the 
values are spread apart, the standard deviation will be 
relatively large. The standard deviation is usually 
presented in conjunction with the mean and is measured 
in the same units. In Table 1, standard deviation and 
correlation coefficient R values provide how well model is 
close to actual values. In other words, it provides a 
measure of how well future outcomes are likely to be 
predicted by the model. Hence, it is desired that 
correlation coefficient R, values to be very high that is, 
close to 1. The performance was evaluated in terms of 
the correlation coefficient R, computed as  
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where, my = the observed dependent variable,  m
ŷ =  the  

fitted dependent variable for the independent variable
mX  

=y mean, 
mX = the independent variable in the m 

th
 trial, 

∑
=

−

M

1m

2
m )yy(  represents total sum of squares, while, 

∑
=

−

M

1m

2

mm
)ŷy( represents residual sum of squares 

 

Correlation coefficient R, is a measure of the explanatory 
power of the model. Here for best model chosen values 
of R is 0.9999, 0.72332 and 0.99751 for training, 
validation and testing respectively as shown in Figure 5. 
As per the model, 99% of variation in dependent variable 
has been explained by independent variable. In Figure 5, 
the dashed line is the perfect fit line where outputs and 
targets are equal to each other. The circles are the data 
points and the coloured line represents the best fit 
between outputs and targets. Here, it is important to note 
that circles gather across the dashed line therefore, the 
outputs are not far from targets. Figure 6 depicts the 
training, validation and testing mean square error values 
for Levenberg-Marquardt algorithm with 5 number of 
neurons in the hidden layer. In this network, minimum 
MSE for best model in case of training is 0.427453, 
validation is 14.6178 and for  testing  is  0.423842.  Here, 
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Figure 6. Training, validation and testing mean square errors for Levenberg-Marquardt algorithm with 5 neurons 
for 90:05:05 ratio set 

 
 
 
the training set is used for computing the gradient and the 
neural network weights. The errors obtained from the 
validation set are monitored during the training. In this 
work, the number of input-output data pairs in the valida-
tion set is chosen to be 5% of the full training set (Jason 
et al., 2009; Erik et al., 2010). When the network is 
starting to over fit the data from the training set, the errors 
obtained from the validation set usually start to increase. 
When the validation error has increased for a specified 
number of iteration, the training stops and the weights 
and biases at the minimum of the validation error is 
returned, whereas testing provides an independent mea-
sure of network performance during and after training. 
For updating Levenberg-Marquardt algorithm, the scalar 
quantity µ called adaptive parameter has been used. 
Also, performance function which is the sum of squared 
errors between the target outputs and the network's 
simulated outputs (as is typical in training feed forward 
networks) is proportional to µ (Hagan and Menhaj, 1994). 

Consequently, µ is decreased after each successful 
step (reduction in performance function) and is increased 
only when a tentative step would increase the 
performance function. In this way, the performance 
function is reduced at every iteration of the algorithm. 
This algorithm appears to be the fastest method for 
training  moderate-sized  feed  forward  neural  networks.  

Variation of the gradient error, value of µ and validation 
error are shown in Figure 7. Moreover, stopping of 
training process is shown here at epoch 15, along with 
gradient as it reaches to minimum. Error plot between 
actual and predicted results by neural network model has 
been shown in Figure 8. It is seen that 96% of the errors 
accumulate between -2 and +2, and most of them are 
smaller than 2%. This indicates that, the network is 
performing very well. In general, the location of the error 
is dependent on the data used to train the network and 
on the initial conditions of the output layer (Haykin, 1994).  
 
 
Comparison of forecast made by ANN prediction 
models with three different proportions of data ratio 
 
In order to choose the best prediction model for 
forecasting, three different proportions of data ratio 
60:20:20, 80:10:10 and 90:05:05 were considered. Five 
different random trials with two, three, four and five 
number of neurons in the hidden layer have been 
conducted by using Levenberg-Marquardt algorithm in 
nftool box in MATLAB 7.8. Throughout the analysis, 
where training, validation and testing was performed 
several times to choose the best model with best fit and 
minimum MSE. Each of the training session  was  carried 
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Figure 7. Variation of the gradient error, µ and validation error for 90:05:05 ratio set. 
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Figure 8. Error plot between actual and predicted flow results by neural network model for 90:05:05 ratio set 
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Figure 9. Comparison of best forecast results given by three different proportions of ratio with five neurons in the hidden layer. 

 
 
 

Table 2. Various percentage of forecast errors in ANN models with three different proportions of ratio. 
 

Ratio PME (%) PMAE (%) PMSE (%) PRMSE (%) Accuracy (%) 

60:20:20 -0.07548477 5.62249E-05 0.004103 0.064051 67.3111 

80:10:10 -0.05354715 3.98847E-05 0.002064 0.045436 87.3334 

90:05:05 0.001448051 0.025580012 1.51E-06 0.001229 97.1651 

 
 
 
out with different initial weights and in each of the cases 
best prediction was obtained with 5 neurons in the hidden 
layer. Stream flow forecast results for 2 years with three 
different proportions of data ratio, that is 60:20:20, 
80:10:10 and 90:05:05 have been shown in Figure 9. 
Table 2 presents various percentage forecast errors in  
ANN models with three different proportions of ratio as 

illustrated subsequently. If tz$ is forecast data and i
z

 is 

actual data, then forecast error is ti i
e z z= −

$

. Here n is the 
length of investigated data for 2 years. Different types of 
forecast error: 
 

1. Percentage mean error   
1

1
100

n

i

i i

e
PME

n z
=

 
= × 
 
∑  

2. Percentage mean absolute error 

1

1
100
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i i
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PMAE
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= × 
 
∑  

3. Percentage mean squared error 
2
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e
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=
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∑

 
 

5. Accuracy = 100-Sum (abs (actual data-forecast data) / 
actual data*100) / n 
 

The forecast error is less in lower proportion ratio of ANN 
prediction model as compared to other ratios. Though the 
selected model has been applied to forecast the inflows 
into Sewa River emanating from Himalayan region, yet 
this model can easily be modified to forecast the inflows 
into any reservoir system. This long-term forecasting of 
inflows would be of help in evaluating the performance of 
different operating policies for their adaptability and to 
check their suitability. Also, these long-term forecasts can 
be used as an effective input to the decision support for 
real-time operation of reservoir systems. Thus the ANN 
prediction model helps in effective utilization of available 
water, especially in a multipurpose perspective. Since it 
was found that, there is no need for frequent updating of 
the parameters, it can be used for forecasting the 
seasonal  flows  as  well.  The  comparison  between  the  
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Figure 10. ANN prediction model obtained from 90:05:05 data set ratio by applying Levenberg-Marquardt algorithm. 
 
 
 

forecasted inflows with that of the actual flows has been 
shown in Figure 10 which clearly reveals that neural 
network model has tracked the actual historical inflows 
data closely. 
 
 

Conclusions 
 

Stream flow forecasting in long term reservoir operation 
scheduling has been presented in this paper and the 
study indicates that, ANN prediction model has been 
found to be the workable tool for forecasting the inflows  
correctly especially in the long-term. In order to check the 
sensitivity of the ANN prediction model, three different 
proportions of ratio were analyzed, that is 60:20:20, 
80:10:10 and 90:5:5 for training cross validation and 
testing. It was found from the experiment that lower 
proportion of ratio gives better result with higher 
accuracy. The data for training, validation and testing are 
chosen randomly from the given data set. Predicted flow 
results are quite cohesive to the exact data flows. The 
forecast inflows would be of help in evaluating the optimal 
real time reservoir operation policies and the generated 
synthetic series of ten days inflows can be used to 
provide a probabilistic framework for reservoir design and 
also can be used as an effective input to the decision 
support system for real-time operation of reservoir 
systems that results in increased power production and 
enhanced revenue earnings in the process of planning 
and management of a water resources system.  
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