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Over the past few years, water quality has been threatened and is vulnerable to various pollutants and 
climate variables. The deteriorating state of water resources/bodies has been further exacerbated by 
the impacts of climate change patterns in Southern Africa. Therefore, modelling and predicting the 
quality of water in sub-basins has become important in controlling water pollution. Remote sensing 
techniques gained popularity over the past few years as these techniques have been used to monitor 
water quality parameters such as suspended sediments, chlorophyll, temperature and other parameters 
in surface water bodies. Furthermore, optical and thermal sensors on aircrafts and satellites provide 
both spatial and temporal information needed to monitor changes in water quality parameters, for the 
development of management practices which seek to improve the quality of water, at sub-basin level. 
Thus, the integration of remotely sensed data, geographical information system (GIS), machine learning 
technologies and in-situ measurements provide valuable tools to monitor the impacts of climate change 
on water quality. According to literature cited in this paper, measurements and collection of water 
samples for subsequent laboratory analyses are currently used to evaluate water quality, not only in the 
South African context but in other developing countries as well. While such measurements are accurate 
for a point in time and space, they do not give either the spatial or temporal view of water quality 
needed for accurate assessments and management of water bodies. Hence, the need for and purpose 
of this study, to explore and review current methodologies and algorithms used to identify microbial 
and other pollutants that have increased above standard thresholds in sub-basins.  
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INTRODUCTION 
 
Water  is   a   widely   known    and    essential   resource, regulating  the  climate  and  profoundly influencing life on  
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earth (Gorde and Jadhav, 2013). Water quality is 
generally referred to as “the suitability of water to sustain 
various uses…it can be defined by a range of variables 
which limit water use by comparing the physical and 
chemical characteristics of a water sample with water 
quality guidelines or standards” (DEAP, 2011). Osibanjo 
et al. (2011) contended that, although climate change has 
adverse impacts on water quality of large water sources, 
it is also undeniable that one of the most critical problems 
of developing countries is the improper management of 
vast amounts of waste generated by various 
anthropogenic activities, which is then deposited into sub-
basins. Hence, there is a budding need to conserve water 
as an essential natural resource using a variety of 
traditional and contemporary methods.  

The objective of this paper is to identify and discuss 
current algorithms and methodologies used to identify 
pollutants in large water bodies. This paper is a review of 
approaches such as remote sensing and artificial neural 
networks. It will also be a comparison of the various 
algorithms under each approach and provide an opinion 
on the literature, as well as on the relevance of these 
algorithms going forward in the academic field of 
environmental management.  

Although there is a plethora of accessible knowledge, 
in the form of literature available to natural resource 
managers and decision makers, there is still a gap in how 
the impact of global climate change on water quality can 
be predicted and monitored. The 2030 agenda has 
included water and sanitation as its fundamental goal, 
with SDG 6 specifically committing to “ensure availability 
and sustainable management of water and sanitation for 
all” (Herrera, 2019). Although the sustainable 
development goals are universally applicable, each 
government has a responsibility to decide how these 
goals can be incorporated into “national planning 
processes, policies and strategies, based on national 
realities, capacities and levels of development” (Scott and 
Rajabifard, 2017). Against this backdrop, emergent 
technologies, methods, and data sharing platforms are 
being used to monitor the impacts of climate change on 
water quality. These have mainly focused on improving 
water quality in-situ testing.  

Thus, the prediction and upgraded monitoring of the 
impacts of climate change on water quality using remote 
sensing and machine learning, will reveal increasingly 
cost effective and efficient ways to meet SDG 6. Recent 
scholarly studies concur with Aldhyani et al. (2020), water 
bodies such as rivers, lakes and streams, have specific 
quality standards that indicate their quality and usage. 
Water quality for irrigation and water quality for industrial 
purposes require different quality thresholds (Rawat et 
al., 2018), noting that for the latter, “water must be neither 
too saline nor contain toxic materials that can be 
transferred to plants or soil, as this has potential to 
destroy the ecosystem” (Krenkel, 2012). In essence, the 
assessment  of   water   within   sub-basins   is  crucial  to  
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safeguard public health and the environment (Igbinosa 
and Okoh, 2009).  

The availability of data is a persisting challenge, which 
requires multiple stakeholder engagement, to ensure the 
preservation of water bodies in the sub-basins of South 
Africa (Giupponi et al., 2013). Luo et al. (2013) observed 
that increasing temperatures and erratic rainfall patterns 
are the main climate variables which have a significant 
impact on water quality. Current algorithms that are used 
by academics and industry practitioners must therefore 
include water quality parameters that have the most 
significant impact. These often include “temperature, 
nitrogen, phosphorus, dissolved oxygen, turbidity, 
electrical conductivity and effluent discharge” (Gorde and 
Jadhav, 2013). Algorithms which have been formulated 
and are currently being used to model and identify 
pollutants which reduce the water quality of a water 
source, have not, in retrospect taken into consideration 
the environmental conditions, which include industrial 
works, flora and fauna as well as the climatic 
characteristics of the area surrounding the water 
source/sub-basin (Kapalanga et al., 2020).   

Polluted water, by effluent or the increasing 
concentration of microbial pathogens and deteriorating 
physio-chemical parameters has led to communities 
situated downstream and those whose water is supplied 
by the polluted water source, being at high risk of 
illnesses (Almuktar et al., 2020; Greenfield, 2019). As a 
step towards finding a solution to and curbing climate 
change induced negative impacts on water quality. 
Bartram and Balance (1996) argue that it is important to 
reduce the risk of using only traditional in-situ samples for 
laboratory testing as this is not only a time-consuming 
method but is also prone to limitations and errors. Gleick 
(2000) and Biswas and Tortajada (2011) consistently 
argue and acknowledge, that in the recent years, concern 
has grown worldwide over water quality and the 
mismanagement of water resources.  

To this extent, accurate water quality monitoring has 
been a challenge in both academia and industry (Behmel 
et al., 2016), especially from the perspective of climate 
change induced impacts. Therefore, the emergence of 
geospatial and artificial intelligence modelling techniques 
and algorithms has immensely contributed to the growth 
and development of the study of geography and the 
management of environmental resources. Since the 
impact of climate change on water quality is a continuous 
challenge, which imposes danger to plant, human and 
animal life (Oliver et al., 2019), it is imperative to review, 
assess and suggest new approaches and algorithms to 
analyze and possibly predict water quality and pollutants 
which deteriorate the state and quality of water in sub-
basins.   

Thus, this paper is a review of the landscape of 
technologies, methods and approaches that have been 
and are currently used to identify pollutants in large water 
bodies, which decrease water quality levels.  
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RESULTS AND DISCUSSION  
 
Insights of traditional and emerging methodologies 
employed for the identification of water pollutants  
 
As per Gholizadeh et al. (2016), physical, chemical and 
biological properties and pollutants of water quality are 
traditionally determined by collecting samples from the 
field and then analyzing the samples in a laboratory. In as 
much as the in-situ measurements offers high accuracy, 
it is a labor intensive and time-consuming process, and 
hence not feasible to provide a simultaneous water 
quality and pollutants database on a sub-basin scale 
(Chawla et al., 2020; Georgakakos, n.d.). Furthermore, 
conventional point sampling methods are simply not able 
to identify the spatial and/or temporal variations in water 
quality which is vital for comprehensive assessment and 
management of waterbodies (Behmel et al., 2016; Cid et 
al., 2011). Therefore, these difficulties of successive and 
integrated sampling become a significant obstacle to the 
monitoring and management of water quality. Remote 
sensing is a geospatial tool that has been employed in 
the recent years, for the identification and assessment of 
climate change on natural resources such as land and 
water (Behmel et al., 2016), hence its relevance to this 
review paper.   

With advances in space science and the increasing use 
of computer applications, remote sensing techniques and 
artificial neural network algorithms have made it possible 
to monitor and identify large scale regions and 
waterbodies that suffer from both qualitative and 
quantitative problems in a more effective and efficient 
manner (Hossain and Chen, 2019; Palmer et al., 2015). 
Optical and thermal sensors on aircrafts and satellites 
provide both spatial and temporal information needed to 
monitor changes and physiochemical pollutants and 
biological water quality parameters which have exceeded 
the maximum thresholds for polluted and unpolluted 
water (de Paul Obade and Moore, 2018). The 
combination of remotely sensed data, GPS and GIS 
technologies provide a valuable tool for monitoring and 
assessing pollutants in sub-basins (Ritchie and Zimba, 
2006; Ritchie et al., 2003).  

Remotely sensed data can be used to create a 
continuous geographically located database to offer a 
baseline for future comparisons (de Paul Obade and 
Moore, 2018; Ritchie and Zimba, 2006).  Furthermore, as 
per Ritchie and Zimba (2006), substances in surface 
water can significantly change the backscattering 
characteristics of surface water. Therefore, the remote 
sensing techniques depend on the ability to measure 
these changes in the spectral signature backscattered 
from water and relate these measured changes by 
empirical or analytical models to a water quality 
parameter (Gholizadeh et al., 2016). The optimal 
wavelength used to measure a water quality parameter is 
dependent on the substance being measured, its 
concentration,   as   well   as   the  sensor  characteristics 

 
 
 
 
(Pierson and Strömbeck, 2000; Ritchie et al., 2003). 
Remote sensing tools provide spatial and temporal views 
of surface water quality parameters that are readily 
available from in-situ measurements, thus making it 
impossible to monitor the landscape effectively and 
efficiently, identifying and quantifying water quality 
parameters and pollutants (El-Rawy et al., 2019).   
 
 
Remote sensing algorithms used for the 
identification and measurement of water pollutants in 
sub-basin waters 
 
Suspended sediments 
 
Generally, empirical relationships between spectral 
properties and water quality parameters have been 
established. Scholars in the 1970s, including Ritchie et al. 
(1987) cited in Oxford (1976) formulated a pragmatic 
approach to estimate statistically, suspended sediments 
in a basin, as these also form part of pollutants which 
affect water quality (Carolita et al., 2013). The general 
form of these empirical equations is shown in Equation 1: 
 

                                      (1) 
 
where Y is the remote sensing measurement, that is, 
radiance, reflectance, energy, and X is the water quality 
parameter of interest, that is, suspended sediment, 
chlorophyll. A and B are empirically derived factors 
(Carolita et al., 2013; Ritchie et al., 2003; Schmugge et 
al., 2002).  

Schiebe et al. (1992) used this equation to estimate 
suspended sediments concentrations in Lake Chicot, 
Arkansas. According to Schiebe et al. (1992) study, it can 
be concluded that surface suspended sediments can be 
mapped and monitored in large water bodies using 
sensors available on current satellites. Figure 1 is a 
display of the Landsat TM image of Lake Chicot, Arkanas 
(left) and a derived image (right) showing categories of 
suspended sediments.  

According to the Environmental Protection Agency, 
these are the key pollutants which affect water quality, 
which estimated that at least 40% of the waters, globally, 
do not meet the minimum water quality standards 
(Kuwayama et al., 2020). Academics have, in the recent 
years assumed and concluded that suspended sediments 
are the most common pollutants in sub-basins (Hirave et 
al., 2021; Novotny and Chesters, 1989; Wilber and 
Clarke, 2001). Curran and Novo (1988), in a review of the 
remote sensing of suspended sediments, found that 
optimum wavelength was related to suspended sediment 
concentration, thus high concentration of sediments has 
adverse impacts on the water quality of a sub-basin. The 
literature showed that turbidity and/or suspended 
sediments can be measured using visual spectral bands 
and various band ratios, which are summarized in Table 
1.
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Figure 1. Landsat TM image of Lake Chicot, Arkansas (left) and a derived image (right) showing categories of 
suspended sediments mapped in Lake Chicot based on the radiance in the thematic mapper (TM) image. 
Source: Ritchie et al. (2003). 

 
 
 

Table 1. Remotely sensed measurements of turbidity and suspended sediments using various spectral 
bands and their ratios. 
 

Band Combination  Sensor 
Ratio between green n (0.50-0.60 µm) and red (0.60-0.70 µm) Landsat 5 - TM 
Ratio between blue (0.40-0.50 µm) and red (0.60-0.70 µm) Landsat 5 - TM 
Ratio between near infrared (NIR) and red (0.60-0.70 µm) MODIS 
Using a single band *Near Infrared (0.75-0.90 µm) SPOT 
- Landsat     7- ETM+ 
* Red (0.60-0.70 µm) Landsat7-ETM + & Landsat-TM 
*Green (0.50-0.60 µm) Landsat 5-MSS 

 
 
 
Many studies have developed algorithms between the 
concentration of suspended sediments and reflectance 
for a specific date and geographic location (Kabir and 
Ahmari, 2020; Tavora et al., 2020; Yepez et al., 2018). 
However, few studies have further developed and used 
these algorithms to estimate suspended materials for 
future reference in time and space (Mertes et al., 1993). 
A curvilinear relationship between suspended sediments 
and reflectance has been established, the amount of 
reflected radiance tends to saturate as suspended 
sediment concentrations increase, thus identification of 
such contaminants is possible (Ritchie et al., 1990). 
 
 
Chlorophyll/algae  
 
Remote sensing has been used to spatially measure 
chlorophyll concentrations spatially and temporally. As 
with suspended sediment measurements, most remote 
sensing   studies  of  chlorophyll  in  water  are  based  on 

empirical relationships between reflectance in narrow 
bands and chlorophyll. Measurements made in situ 
Ritchie et al. (2003) show spectra (Figure 2) with 
increasing reflectance with increased chlorophyll 
concentration across most wavelengths but areas of 
decreased reflectance in the spectral absorption region 
for chlorophyll (675 to 680 nm). A variety of algorithms 
and wavelengths have been used to successfully map 
chlorophyll concentrations of sub-basin waters. Harding 
Jr and Perry (1997) cited in Ritchie et al. (2003) used the 
following algorithm, Equation 2 based on aircraft 
measurements to determine seasonal patterns of 
chlorophyll content:  
 

     (2) 
 
where a and b are empirical constant derived from in-situ 
measurements and G is [(R2)2 / (R1*R3)]. R1 is reflectance 
at 460 nm, R2 is reflectance at 490 nm, and R3 is radiance  
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Figure 2. Distribution of chlorophyll (Chl) in the Chesapeake Bay for 15 May 1990, 
determined from aircraft multispectral data. 
Source: Ritchie et al. (2003). 

 
 
 
at 520 nm.  

Previous studies have also indicated that the 
wavelength range for characterizing chlorophyll-a is 
between 400 and 900 nm (Han and Jordan, 2005). Thus, 
using this algorithm, Harding Jr and Perry (1997) mapped 
and displayed chlorophyll content as pollutants in a river 
basin. While estimating chlorophyll using remote sensing 
techniques is possible, studies have also shown that the 
broad wavelength spectral data available on current 
satellites such as Landsat and SPOT imagery, do not 
permit discrimination of chlorophyll in waters with high 
suspended sediments due to the dominance of the 
spectral signal from suspended sediments (Ritchie et al., 
2003; Kutser, 2004; Olmanson et al., 2015; Gholizadeh et 
al., 2016).  

Using this algorithm, Harding Jr and Perry (1997) cited 
in Ritchie et al. (2003), mapped total chlorophyll content 
in the Chesapeake Bay, United States of America (USA), 
as shown in Figure 2. Ritchie et al. (2003) also 
demonstrated, graphically, the relationship between 
reflectance   and   wavelength   for   different   chlorophyll 

concentrations in Figure 3.  
Thus, the ability of remote sensing to identify pollutants 

such as chlorophyll/algae is quite limited, and these 
findings suggest new approaches for the application of 
airborne and spaceborne sensors to exploit these 
phenomena to estimate chlorophyll in surface waters 
(Iriarte Ahon, 1996). Our ability as researchers and 
policymakers, to monitor chlorophyll and associated 
pollutants will improve as hyperspectral and improved 
spatial data become readily available (Chang et al., 
2015). Among other algorithms, for the identification and 
quantification of chlorophyll/algae content in sub-basins, 
band ratioing has proven to be advantageous because it 
allows for the compensation of variations from 
atmospheric influences (Han and Jordan, 2005). 
 
 
Temperature 
 
Thermal pollution exists when biological activities are 
affected  by the changing temperature of a water body by  
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Figure 3. Relationship between reflectance and wavelength for different 
chlorophyll concentrations. Based on measured made in situ with a high spectral 
resolutions (1-nm) spectroradiometer at 1 m over a large tank.  
Source: Ritchie et al. (2003)   

 
 
 
anthropogenic activity (Caissie, 2006). Thermal plumes in 
rivers and lakes can be accurately estimated by remote 
sensing techniques. Mapping of absolute temperature by 
remote sensing provides spatial and temporal patterns of 
thermal releases. Caissie (2006) further posits that, 
aircraft mounted thermal sensors are especially useful in 
studies of thermal plumes because of the ability to control 
the timing of data collection. Seasonal changes in the 
temperature of surface waters can be expected. Such 
seasonal changes of rivers and sub-basin surface 
temperatures have been routinely monitored using the 
AVHRR, which is the Advanced Very High Resolution 
Radiometer, a  radiation detection imager that can be 
used for remotely determining cloud cover and the 
surface of the earth as well as the surface of a body of 
water (Gitas et al., 2004). This leads to new insights into 
the role which rivers and lakes play in regulating weather 
and climate (Cairns Jr, 1971; Ritchie and Schiebe, 2000; 
Ritchie et al., 2003). Miller and Rango (1984) used a 
Heat Capacity Mapping Mission (HCMM) data to map 
emitted thermal energy and algae concentration in the 
Great Salt Lake, Northern Utah, in the United States.  

A positive correlation during the day and a negative 
correlation at night between emitted energy and algal 
concentration was established (Ritchie et al., 2003). 
Ritchie et al. (1990) estimated surface temperatures of 
lakes along the Mississippi River using thermal data from 
Landsat Thematic Mapper. Thermal remote sensing is a 
useful tool for monitoring freshwater systems to detect 
thermal changes  that  can  affect  biological  productivity. 

These techniques allow the development of management 
plans to reduce the effect of man-made thermal releases. 
The following equation was used by Ling et al. (2017), to 
estimate and determine surface water temperature for 
thermal pollution identification in sub-basin waters. Digital 
numbers (DN) for each water pixel in the band 6 (low 
gain) of Landsat ETM+ scenes were then used to derive 
water surface temperatures. First, digital numbers were 
converted to Top of Atmospheric (TOA) spectral radiance 
by applying the gain and bias coefficients as indicated in 
Equation 3 provided along with Landsat ETM+ scenes 
(Ritchie et al., 2003): 
 

 
 
where Lλ is the TOA spectral radiance at λ wavelength in 
W·m2 · sr · mm, DN is the digital number in the scene, 
and gain and bias are calibration parameters, and are set 
to be 0.067087 and −0.07 for the band 6 (low gain) of 
Landsat 7 ETM+ images (Ritchie et al., 2003). 

Long term in-situ water temperature records were a 
popular method to evaluate the influence of thermal 
pollution caused by climate change. In-situ records are 
always measured only at sparse certain locations and 
cannot provide detailed spatial information for thermal 
pollution assessment (Ling et al., 2017). By contrast, 
Landsat ETM+ and the advanced very high-resolution 
radiometer (AVHRR), thermal infrared imagery can 
provide long term spatially continuous water temperatures 
(Politi  et   al.,  2012),  which  could  then be  used  as  an  
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Figure 4. Surface temperatures of Lake Baikai derived from the Advanced Very High-Resolution 
Radiometer band 4 for 04 September 1991. 
Source: Ritchie et al. (2003). 

 
 
 
alternative dataset to assess the thermal pollution for 
large rivers and sub-basins, as presented in Figure 4. 
Surface temperatures of Lake Baikai derived from the 
Advanced Very High-Resolution Radiometer band 4 for 
04 September 1991 (Figure 4).  
The spatial resolution of thermal imagery is a crucial 
factor that affects the accuracy of the estimated water 
temperature from thermal imagery (Anderson et al., 
2012). In general, in order to estimate river water 
temperature accurately, the rivers should be as large as 
three pixels in the thermal infrared imagery (Sentlinger et 
al., 2008; Ling et al., 2017). However, if image 
sharpening methods are applied, water temperatures in 
the rivers narrower than the pixel size may also be 
estimated and used to identify the along-stream 
temperature pattern (Ling et al., 2017). Landsat ETM+ 
thermal images, which have a spatial resolution of 60 m, 
are suitable to be applied to estimate the water 
temperature (Handcock et al., 2006). In other cases, if 
Landsat 5 TM thermal imagery with a spatial resolution of 
120 m or the Landsat 8 thermal imagery with a spatial 
resolution of 100 m, are used, or the river width is not 
large enough, these advanced water temperature 
algorithms should be used to improve the accuracy of 
results (Handcock et al., 2006; Ling et al., 2017). 
 
 
Selected remote sensing techniques/algorithms for 
pollutant identification 
 
While current remote sensing technologies have many 
actual  and   potential   applications  for  assessing  water 

resources and for monitoring water quality, limitations in 
spectral and spatial resolution of current sensors on 
satellites currently restrict the wide application of satellite 
data for monitoring water quality  and precisely identifying 
and measuring pollutant distribution in sub-basins 
(Glasgow et al., 2004; Sheffield et al., 2018). In hindsight, 
the equations which assist in pollutant identification would 
work well if they can be incorporated with land use/land 
cover thematic maps as this would assist in identifying 
the distribution, pattern and direction of the pollutants, 
such as suspended sediments. However, this would be 
difficult in this case of thermal pollution where the 
temperature of the water is relatively high and changes 
the physio-chemical parameters and elements of water.  

Therefore, the strength of remote sensing techniques 
remains in their capacity to deliver both spatial and 
temporal views of surface water quality parameters that is 
typically not possible from in situ measurements 
(Giardino et al., 2010; Ritchie and Schiebe, 2000). 
Remote sensing makes it possible to monitor the 
landscape effectively and efficiently, identifying water 
bodies with significant water quality problems. The 
Landsat 7 ETM sensor offers several enhancements over 
the Landsat 5 TM sensor (Chen et al., 2003), including 
increased spectral information content, improved 
geodetic accuracy, reduced noise, reliable calibration, 
improved spatial resolution of the thermal band from 120 
to 60 m, and double thermal bands in the 10.40 to 12.5 
mm window: band of 10.3 to 11.3 mm and band 11.5 to 
12.5 mm (Chen et al., 2003; Wulder et al., 2019). The 
thermal data of Landsat 7 is expected to improve the 
accuracy  of  thermal  pollution  investigation  and provide  
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Figure 5. Variations of the observed dissolved oxygen concentrations (all implies 
all the water quality parameters as inputs).  
Source: Ouma et al. (2020). 

 
 
 
more detailed distribution pattern of thermal pollution. 
 
 
Artificial neural networks for water pollutant 
identification in sub-basins  
 
Dissolved oxygen  
 
Identification and quantification of dissolved oxygen (DO) 
profiles of river is one of the primary concerns for water 
resources managers, hence is a water quality parameter 
and pollutant which requires artificial neural networks for 
identification, quantification and analysis (Najah et al., 
2013). Several DO models such as deterministic and 
stochastic models have been developed in order to 
manage the best practices for conserving the DO in water 
bodies (Wen et al., 2013). Most of these models are 
complex and need several different input data which are 
not easily accessible, making it a very expensive and 
time-consuming process (Wen et al., 2013). Artificial 
neural networks (ANNs) are flexible modelling tools with 
the capability of learning the mathematical mapping 
between input and output variables of nonlinear systems 
and generalizing the processes of control, classification, 
and prediction (Govindaraju, 2000; Maier and Dandy, 
2000).  

In a study conducted in China by Wen et al. (2013), 
river water quality was tested using artificial neural 
network algorithms for the identification and quantification 
of dissolved oxygen. In view of the requirements of the 
neural computation algorithm, the raw data of both the 
input  and   output  variables  must  be  normalized  to  an 

interval by transformation. All the variables were 
normalized ranging from -1 to 1 using Equation 4 (Wen et 
al., 2013): 
 

                                  (4) 
 
where xn and xi  represent the normalized and original 
training, test, and validation data; x min and x max denote 
the minimum and maximum of the training, test, and 
validation data (Wen et al., 2013).   

River and sub-basin dissolved oxygen concentration 
can be defined as a complex phenomenon affected by 
factors that are ever changing (Moridi, 2019; Ouma et al., 
2020), some of which may not entirely be captured by 
traditional laboratory measurement techniques. Dissolved 
oxygen concentration in rivers was not constant even 
under the most stable atmospheric conditions such as 
temperature, rainfall, and wind velocity, among others 
(Du and Shen, 2015; Whitehead et al., 2009). 

Therefore, increasing the water quality parameters 
under consideration improves the artificial neural network 
model performance by bringing into view other factors 
that may not have been considered before (Alizadeh and 
Kavianpour, 2015). From the moving average trend line 
in Figure 5, there is an indication that the general trend in 
the DO concentration within the basin is decreasing.  

The study results showed that in the prediction of DO 
using water quality parameters, optimal results were 
obtained by combining temperature, electric conductivity, 
total  phosphorus,  pH,  and  total nitrates as the predictor  
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variables for ANN models, with correlation coefficients R 
= 0.8425 and R = 0.5703, respectively (Ouma et al., 
2020). 
 
 
Conclusion 
 
From the available literature, a pertinent deduction is that 
various space and airborne sensors can measure water 
quality parameters and pollutants in sub-basins with 
reliable precision. In most cases, managers and policy 
makers without technical expertise typically lack the 
knowledge to understand technical descriptions, abilities 
and limitations of remote sensing-based techniques and 
algorithms, as well as that of artificial neural networks. 
Therefore, this paper has a significant contribution to the 
study of remote sensing and artificial neural network 
methodology and the ability of these methodologies to 
identify and quantify pollutant distribution in sub-basins. It 
is highly recommended that researchers, who work in the 
field of optics and remote sensing, continue to 
communicate more with water resource management 
agencies on using appropriate and available tools to 
address important water quality monitoring requirements. 
The equations presented in this paper, have in common 
the fact that, although developed some years ago, they 
are still relevant to the studies and application of water 
quality and pollutant identification.  
The equations are of benefit to both academia and 
industry as they provide a way to synthesize various 
factors, indicating the identification, distribution, and 
quantification of microbial and physio-chemical pollutants 
in large water bodies.  

Literature presented in this paper argued that in some 
cases, technologies, methods and algorithms are proven 
and readily available for use, however, in other cases, 
emergent technologies and approaches hold promise but 
require further field evaluation and cost reductions. It is, 
therefore, of critical importance to review and consider 
effective emergent technologies which will most 
effectively monitor progress towards the SDG 6 and 
water quality holistically. This will assist stakeholders to 
identify which kinds of policies and programs are working 
well collaboratively with water quality testing and the 
identification of pollutants in a basin, and which require 
corrective measures. Both remote sensing and artificial 
neural network-based algorithms, play a significant role in 
academic as well as in the field of work for the 
identification and quantification of pollutants in large 
water bodies. However, it would be of great benefit, to the 
community as well as to policy makers and water 
resource managers, to have simplified versions and 
explanations of pollutant identification and quantification 
equations, as this would encourage keeping sub-basin 
waters relatively clean and reduce reliance on chemicals 
for the purification of large water bodies for domestic, 
industrial and other uses.  
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