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This study used a microbial fuel cell (MFC) and an artificial neural network (ANN) to monitor an 
anaerobic bioreactor (ANB) treating high strength wastewater. COD removal and methane production 
were observed and varied over the course of three operating stages. COD removal efficiency increased 
from 50 to 80% when nitrogen limitations were relieved. ANN processing of the electrical signals 
permitted the construction of an ANN that precisely predicted both the COD removal and methane 
production when 70% of the measured data was used for ANN training. This finding is notable given 
that there was no direct correlation between the signal metrics and ANB performance, and it is made 
more remarkable by the fact that electrical current represented approximately 1% of the overall ANB 
COD balance. This shows that ANN processing of small amounts of current can be used to predict the 
overall performance of an anaerobic bioreactor.  
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INTRODUCTION 
 
Anaerobic bioreactors (ANBs) usage is an attractive 
option for treatment of high strength wastewaters. The 
principle reasons for this are the lower energy and sludge 
production demands relative to aerobic systems, which 
translate into significantly lower costs and potentially 
lower long term environmental impacts (Speece, 1996). 
The production of methane is another key advantage 
because it can be harvested and used as an energy 
source (Metcalf and Eddy, 2003; Speece, 1996). ANBs 
are currently used to treat high strength wastewaters 
discharged from numerous industries, including 
breweries, dairy and cheese manufacturing, pulp and 
paper mills, and soft drink manufacturing (Metcalf and 
Eddy, 2003; Speece, 1996). As water reclamation 
facilities face growing concerns related to energy, climate 
change, and fiscal stress, ANB operations will require 
optimization   in  order  to  maximize  the  aforementioned 

benefits, and to this end, careful performance monitoring 
is essential.  

ANBs can be monitored with microbial fuel cells 
(MFCs), devices that generate current and remove 
soluble organics by exploiting the activity of anaerobic 
bacteria that grow on (or near) an electrode surface. 
These anode-respiring bacteria (ARB) extract electrons 
from electron donors and donate them to the electrode 
surface. The electrons then travel through a wire and 
across an external resistor toward the cathode, where the 
terminal electron acceptor (usually oxygen) is reduced 
(Logan, 2007). Current is therefore tied to biological 
activity. Several researchers have shown that MFCs are 
appropriate biosensors (Kumlanghan et al., 2007; Di 
Lorenzo et al., 2009; Feng et al., 2011). Kumlanghan et 
al. (2007) showed that single-chamber MFCs produced a 
cell potential  that  correlate  well  with  glucose  levels  in
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water samples and Di Lorenzo et al. (2009) showed that 
an air cathode MFC produced a linear relationship 
between COD concentration and current output. MFCs 
are promising biosensors, and they can be seamlessly 
integrated into ANBs with the goal of monitoring 
bioreactor performance in real time. 

Recently, Feng and Harper (2013) used artificial neural 
networks (ANNs) to improve MFC-based biosensing. 
ANNs employ nonlinear (and sometimes linear) 
mathematical functions to map the relationship between 
input and output data. These models are especially for 
complex systems and when there are changing patterns 
(Dias et al., 2004; Yazici Ayse et al., 2007). ANNs 
connect input and output data with a series of hidden 
layers that contain neurons. Each neuron contains 
parameters that are trained with real data and then tested 
against a separate data subset. ANNs have also been 
combined with sensor arrays for detection of analytes 
(Ema et al., 1989; Gardner et al., 1990; Sundgren et al., 
1991; Li et al., 1999). Using ANNs can therefore facilitate 
real-time monitoring of bioreactors, however, these 
models have never been used for monitoring ANBs. 

The purpose of this study was to use MFC data to 
monitor the performance of an ANB. The hypothesis of 
this work is that ANNs can be used to correlate electrical 
signals with COD removal and methane production. 
 
 
MATERIALS AND METHODS 
 
Bioreactor operating conditions 
 
The bioreactor was operated under anaerobic conditions, and it 
included a submerged MFC module and membrane filtration (Figure 
1). The bioreactor had a 15 L of working volume. Dewatered sludge 
from an anaerobic digester was used as the inoculum for the MFC. 
The system was fully automated, with peristaltic pumps used to 
control the flow of influent, effluent, and backwash water. The pH 
was maintained between 7.0 to 7.2 using an automated controller 
(pH/ORP Controller, EUTECH Instruments Pte Ltd, Singapore) and 
pH electrode (Thermo Orion Glass pH electrode, Orion Research, 
INC. Beverly, MA). Alkalinity was added in the form of 1 M NaOH. 
The basin was mixed by re-circulating sludge with pneumatic 
pumps. The dissolved oxygen concentration in the basin was 
checked with a D.O. probe (ORION, Model 97-08-00) to confirm 
anaerobic conditions. The HRT was 15 days, the organic loading 
rate (OLR) was 1680g/m3/day, and the SRT was 30 days. The 
temperature was typically 28°F, as confirmed with a thermometer. 
The influent COD was 25.2 g/L, and the primary substrates were 
acetate (19.5 g/L) and glucose (10.5 g/L). This feed solution was 
selected because many industries produce wastewaters with COD 
levels in this concentration range and because fermentable 
substrates are common (Hung et al., 1982; Hung, 1982; Kumaran 
et al., 1983; Luthy, et al., 1983; Satyawali and Balakrishnan, 2008). 
Nitrogen was added as NH4Cl (44 mg/L as N, except during Stage 
2 when N was added at 3.5 g/L as N). Phosphorus was added as 
KH2PO4 (10 mg/L as P). Additional minerals were added as 
CaCl2∙2H2O (8 mg/L), Yeast extract (200 mg/L), FeCl3∙6H2O (2 
mg/L), CoCl2∙6H2O (2 mg/L), MnCl2∙2H2O (0.5 mg/L), CuCl2∙2H2O 
(0.03 mg/L), ZnCl2 (0.05 mg/L), H3BO3 (0.05 mg/L), (NH4)6(Mo7O2)4 
(0.09 mg/L), NiCl2∙6H2O (0.05 mg/L), EDTA (1 mg/L), HCl (36%) (1 
mL/L). This feed composition imposed both macro- and micro- 
nutrient limitations that were expected  to  limit  both  COD  removal 

 
 
 
 
and methane production. The ultrafiltration membrane (ZeeWeed®-
1 (ZW-1) Zenon Environmental) had 0.047 m2 surface area, 0.04 
µm pore size, and the operating flux was approximately 0.9 L/m2/h. 
The pressure drop across the membrane was typically 0.5 psi or 
less. The membrane was backwashed four times daily using treated 
effluent. The air cathode MFC was submerged in the membrane 
reactor. The graphite anode was exposed to the anaerobic basin, 
while the cathode was exposed to a sealed, air-filled chamber 
which was separated from anaerobic basin by a cation exchange 
membrane (CEM) and the chamber walls.  
 
 
Analytical methods 
 
Soluble chemical oxygen demand was determined on aqueous 
samples according to Standard Methods (APHA, 1992). Samples 
were filtered using 0.45 µm glass microfiber filters (934-AH 
Whatman). Biogas was collected and measured by routing the gas 
stream into a water column and by measuring the displacement of 
the solution (Perez et al., 2001). The methane content of the biogas 
was measured by a GC/TCD (8500 Perkin Elmer) (APHA, 1992). 
The voltage associated with the MFC was measured using an 
autoranging multimeter (Sears, Roebuck, and Co., Model 82175, 
Hoffman Estates, Ill.). The external resistor was 1 k ohm. The 
current (mA) was calculated using ohms law, and the values were 
normalized (e.g. mW/m2) using the cathode surface area.  
 
 
Electrical signals and response metrics  
 
In an effort to use the signals as a monitoring tool, each signal was 
described by two response metrics, the peak current (PC) and the 
pre-peak slope (PPS), which is a measure of how the current has 
changed in one day (Figure A.1). Each point on the electrical profile 
was used to calculate these two metrics in an effort to use them as 
input to the ANN.  
 
 
Artificial neural network 
 
ANNs were used to relate COD removal and methane production to 
the electrical response metrics. ANNs are mathematical models 
used to develop relationships between input and output data sets. A 
neural network is composed of an interconnected group of artificial 
neurons, where a neuron represents a point at which data is 
processed and then further propagated. A supervised, feed-forward 
network was customized with one-way connections between the 
input layer, the hidden layer(s), and the output layer. The neurons 
used the hyperbolic tangent sigmoid transfer function. Measured 
data was used for training. The Levenberg-Marquardt algorithm 
(LMA) was used (Marquardt, 1963). See Appendix B for more 
information about ANN structure and training. 
 
 
Calculations of interest 
 
The COD balance was calculated based on the following 
relationships: 
 
COD rec = COD eff+ COD sludge + COD methane, gas +COD methane, water 
+COD current 
 
where, CODrec is the mass of COD recovered (this should, in 
principle, be close to the influent COD), CODeff is the effluent COD, 
CODsludge is the COD associated with the sludge withdrawn from the 
reactor, CODmethane, gas is the COD for gaseous CH4. CODmethane, water 
is the COD for methane dissolved in water (as estimated using 
Henry’s Law), CODcurrent is the COD converted to the current. 
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Figure 1. (a) Anaerobic membrane bioreactor with microbial fuel cell module (b) microbial fuel cell module. 
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The Coulombic efficiencies (CEs) (%) are calculated as follows: 
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Where F is Faraday’s constant, vAn (L) is the working volume of the 
anode, ∆COD (mg/L) is the COD removed, t is hydraulic retention 
time of the bioreactor. 
 
 
RESULTS 
 
Stage 1 
 
The first operating stage corresponded to the operating 
period immediately following the initial inoculation of the 
MFC (Figure 2). During the first 10 operating days, the 
current density varied greatly, and on day 10 the current 
density decreased dramatically. At this point, the mixing 
intensity was improved, the electrodes were reinserted, 
and then the current density gradually increased. From 
day 11 to day 61, the current density increased from 
approximately 20 to 25 mA/m

2
. This amounted to a 25% 

increase in current density. The COD removal efficiency 
during this stage was 60 to 80%, and the highest removal 

efficiencies occurred later in the operating period. 
Overall, gradual improvements in current density and 
COD removal were observed during Stage 1. The 
material balances retrieved during this operating period 
show that approximately 50% of the COD was recovered 
as methane, while effluent COD and withdrawn sludge 
accounted for the second and third largest COD sinks 
respectively (Figure A.2). Total recovery average 
approximately 90%. Current production accounted for < 
1% of the recovered COD.  
 
 
Stage 2 
 
Stage 2 was the operating period immediately preceding 
and following nitrogen addition (Figure 3). After additional 
nitrogen was added, COD removal increased quickly 
from 50 to 80% over the course of 3 days. The gas 
generation also increased quickly from 2000 ml to 6000 
ml. The current generation did not sharply increase, but 
there were incremental improvements in MFC output that 
were observed during the 3-day transient period and 
during the days that followed the nitrogen addition. The 
current density gradually increased by 25% after nitrogen 
addition. The coulombic efficiency (CE) decreased from 4
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Figure 2. Performance and Current Generation, Stage 1. 
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Figure 3. Performance and Current Generation,Stage 2. 



 
 
 
 
to 1%. CE is related to the fraction of treated COD that is 
converted into current, and in this case, it decreased 
because the increase in COD removal did not translate 
into a proportional increase in current density. These 
results suggested that dramatic improvements in COD 
removal can have a gradual and modest impact on the 
output of the MFC. The material balances (Figure A.3) 
showed that nitrogen addition caused methane to 
become the most abundant COD sink, followed by 
effluent COD, and withdrawn sludge (current was a very 
low COD sink). 
 
 

Stage 3 
 

During stage treatment gradual treatment process 
deterioration was observed (Figure A.4). The COD 
removal efficiency decreased from 70 to 50% over a 
period of 80 days. The current density varied between 26 
to 31 mA/m

2
, but there were three notable current density 

measurements that were less than 25 mA/m
2
. The 

measured gas generation also gradually decreased from 
6000 to 4000 ml. The slow decline in COD removal, 
along with the relatively stable MFC output, caused the 
coulombic efficiency to increase from 1 to 3%. The 
process decline impacted the material balances (Figure 
A.5). Effluent COD initially accounted for approximately 
25% of the COD balance but this fraction increased to 
40%. The methane fraction decreased from 58 to 23% of 
the material balance. Withdrawn sludge accounted for 8 
to 20% of the COD balance.  
 
 

ANN modeling 
 

The electrical signals were used to determine PC and 
PPS values. Neither of these two electrical metrics can 
be directly correlated to either COD removal or methane 
production because the relationships between these 
parameters involves many factors and is highly complex 
(Figure A.6 and A.7). However, ANNs are used to 
construct complex relationships. The trained ANN was 
used to predict the COD removal and methane 
production associated with a test data subset. The 
success of the ANN model depended on the amount of 
data used for ANN training (Figure 4). For example, when 
70% of the experimental data was used for ANN training, 
the ANN precisely predicted the COD removal with just 
one hidden layer of neurons. The coefficients of 
determination (R

2
) between the targets (that is, the actual 

measured COD removal percentages) and the ANN 
outputs (that is, the ANN-derived COD removal 
percentages) were 1. When 50 or 60% of the data was 
used, the ANN model performed very poorly and there 
were some ANN model outputs that were negative. 
Similar results were retrieved when the ANN model was 
used to predict methane production (Figure A.7). When 
70% of the measured data is used, the correlations were 
precise, but when 50% or 60% of  the  data  is  used,  the 
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correlations were very poor. These findings show that 
electrical signals retrieved from a built-in MFC can be 
used to monitor the performance of an anaerobic 
bioreactor, and this success can be realized even when 
current represents a very small fraction of the COD 
balance. 
 
 

DISCUSSION 
 
The fundamental connection between methanogenesis 
and MFC activity has been the subject of previous 
research. When anodic electrodes are introduced into 
anaerobic bioreactors, the fate of the COD is impacted 
(Lee et al., 2008; Freguia et al., 2007). The effects 
documented by Lee et al. (2008) and Freguia et al. 
(2007) were more dramatic than those shown in the 
current study, because electrical current accounted for a 
large fraction of the electron equivalent sink. The current 
work departs from these previous studies by feeding a 
higher substrate concentration into a larger bioreactor 
volume (15 L, which yielded a smaller cathode surface 
area/reactor volume ratio, 0.04 cm

2
/cm

3
). In this case, 

current was a small fraction of the overall COD balance 
and the interactions between ARB, methanogens, and 
fermenting bacteria were more subtle as evidenced by 
the operational data. However, the ANN was used to 
unravel and then utilize the complexity of these ecological 
and biochemical relationships. Successful biosensor-
based process monitoring can be accomplished using 
MFC current even when it is a small energy pool. 
Facilities should strongly consider augmenting anaerobic 
systems with MFCs to monitor process performance. 

ANNs have been widely applied to map numerical 
relationships across a broad range of applications. These 
models enable predictive power in complex systems 
where the detailed mechanisms responsible for the 
relationships are usually poorly understood. As a result, 
there are many previous examples that show how ANNs 
have been used to map relationships between data sets 
that do not exhibit direct correlations (Dias et al., 2004; 
Yazici Ayse et al., 2007; Kumar et al., 2011). For 
example, ANNs can be used to predict evapotranspora-
tion (ET) using atmospheric data like temperature, 
relative humidity, wind speed, and solar radiation, even 
though ET does not correlate well with any of the 
aforementioned parameters. Similar success has been 
realized with respect to the modeling of vehicular air 
emissions (Sharma et al., 2005) and renewable energy 
systems (Kalogirou et al., 2001). The current work falls in 
line with these previous efforts, because complex 
relationships were successfully mapped. 
 
 
Conclusions 
 
An ANB was augmented with a microbial fuel cell in order 
to monitor process performance with  electrical  data  and
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ANNs. COD removal and methane production were 
observed and varied over the course of three operating 
stages. COD removal efficiency was generally between 
50 to 80%. Material balances showed that most of the 
COD was recovered as either methane or effluent COD. 
Current represented a small fraction of the recovered 
COD, but ANN processing of these small electrical 
signals allowed for precise correlations between process 
performance and ANN-derived predictions. This shows 
that ANBs can be accurately monitored with MFCs and 
ANNs. 
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Figure A.4: Performance and Current Generation, Stage 3
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Figure A.4. Performance and Current generation (Stage 3). 



530          Int. J. Water Res. Environ. Eng. 
 
 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80

C
O

D
 F

ra
ct

io
n

Day of Operation

Figure A.5: Material balance during Stage 3
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Figure A.5. Material balance during Stage 3. 
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Figure A.6: Correlations between COD Removal and the Response Metrics

peak current

PPS

There is no direct correlation between
COD removal and any of the three
metrics. R2 < 0.01 for each of
the 3 data sets.

 
 

Figure A. 6. Correlations between COD Removal and the Response Metrics. 
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Figure A.7: Correlations between Methane Production and the Response 

Metrics
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There is no direct correlation between
methane production and any of the three
metrics. R2 < 0.25 for each of
the 3 data sets.

 
 

Figure A. 7. Correlations between Methane Production and the Response. 

 
 
 
APPENDIX B 
 
Supplemental information related to the artificial neural network: The Artificial Neural Network correlated COD 
removal and methane production to two metrics (that is, peak current, pre peak slope) related to the electrical signals. In 
general, the ANN has an input layer, output layer, and at least one hidden layer. 
 

Inputs

(PC, PPS)

Output 

(COD 
removal, 
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production)

 
 

Figure B.1. Artificial neural network schematic: Each layer is composed of neurons. Each neuron uses a transfer function, 
numerical weights, and biases to propagate data through the network. During training, the proper weights and biases are determined 
for each neuron.  
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Figure B.2. Schematic of a neuron and the mathematical components: For the current work, the transfer 
function was the hyperbolic tangent sigmoid function. This function uses input data to compute the 
corresponding hyperbolic tangent according to the following: tansig(xi) = 2/[1 + exp(-2 * xi)) -1. The hyperbolic 
tangent sigmoid function is one of the default functions available on the MATLAB platform. 

 
 
 

 
 

Figure B.3. The hyperbolic tangent sigmoid function: During training, 
the MATLAB interface reveals the performance of the system, as a function 
of the updated weights and biases associated with each neuron. During the 
training phase, the program first takes the input and propagates data 
forward to generate output. Then, there is back-propagation of the training 
pattern input in order to generate delta functions associated with the output 
and hidden neurons. The weights and biases are updated, and the 
propagation of data is repeated until #1) network performance (i.e. 
performance coefficient) is optimized, #2) the change in the network 
performance (i.e. the gradient coefficient) is minimized, #3) the number of 
iterations reached a maximum value, #4) the number of validation checks 
reaches a maximum value, #5) the network training method parameter (μ) 
reaches a maximum. The value of μ increases in value when there are 
large errors. 

 
 
 
 
 
 
 


