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Abortive boreholes and parched wells, ascribed to the difficulty in understanding the hydrogeology of 
the aquifer by water borehole drillers, pose great concern to the people of the region. Mapping the 
spatial variability of water table depth (WTD) (m) and aquifer thickness H (m) is a vital step in optimal 
utilization of groundwater resources. Thus, the aim of this paper is to investigate the spatial variability 
of the groundwater parameters, H (m) and WTD (m) in the study area located in Nigeria, using 
geostatistical method of Ordinary Kriging, based on data estimated from interpreted results of fifty (50) 
Schlumberger Vertical Electrical Sounding (VES) curves. To attain this aim, the spatial variability of the 
groundwater parameters was analyzed. The result shows that the difference in directional behavior is 
not significant. Thus, the WTD and H were assumed as isotropic, and experimental semivariograms of 
logH and log(WTD) were calculated and modeled with the GS

+
 software. It was found that, H and (WTD) 

data are moderately spatially correlated over the study area, and the spatial structures follow 
exponential model for H and spherical model for (WTD). According to the generated maps of kriged 
estimates of logH and log(WTD), the southern part of the study area with higher prolific aquiferous 
zone, shows higher kriged H-values, relative to the  northern zone. The variation in the distribution of 
kriged WTD-values in the study region is asymmetrical. These results compare favorably in the trend 
patterns of distribution of the parameter values, with contour maps of a previous study in the region 
that indicates the distribution of H and WTD parameters. The parameters of the semivariogram models 
used for the analysis of the data, give insight into the spatial pattern of the groundwater parameters, H 
and WTD. This knowledge has improved the ability to understand the hydrogeology of the aquifer. The 
generated spatial variability maps of H and WTD will assist water resource managers and policymakers 
in the development of guidelines in judicious management of groundwater resources for drinking 
purposes in the study area.  
 
Key words: Ordinary kriging, Aquifer thickness, water table depth, semivariogram, exponential model, spherical 
model, cross-validation. 

 
 
INTRODUCTION 
 
In recent years, the importance of groundwater as a 
natural resource has been increasingly recognized 

throughout the world. But, population growth in the study 
area has resulted in expanding residential  developments  



 
 
 
 
and consequently, increased demand for water, resulting 
in lowering of the groundwater water table due to 
excessive withdrawals.  

Keeping the water table at a favorable level is quite 
significant. When a well is placed in an aquifer, lowering 
the water table will not only have an effect on the 
thickness of the aquifer, but can also cause salt water 
from the ocean to move further inland, acting as a 
contaminant to aquifers. As the water table becomes too 
low to be tapped from, the expensive wells are 
abandoned as unproductive or desiccated wells. 
Therefore, it is very important to estimate the spatial 
distribution pattern of the groundwater aquifer parameters 
in order to boost the ability to understand the fluctuations 
in water table depth due to extraction and the 
hydrogeology of the aquifer. Using geostatistics, it is 
possible to map the spatial variability of the aquifer 
parameters and improve the qualitative and quantitative 
management of water resources. This has been 
described further with literature review. For example, 
Ahmadi and Sedghamiz (2007) evaluated kriging and 
cokriging methods for mapping the groundwater depth 
across a plain in which there has been different climatic 
conditions (dry, wet, and normal). Results obtained from 
geostatistical analysis showed that groundwater depth 
varied spatially in different climatic conditions. Yang et al. 
(2008) discussed the kriging approach combined with 
hydrogeological analysis (based on GIS) for the design of 
groundwater level monitoring network.  The effect of 
variogram parameters (that is, the sill, nugget effect and 
range) on network was analyzed. In their efforts to 
analyze the spatial variability of groundwater depth and 
quality parameters, Dash et al. (2010), used ordinary 
kriging and indicator kriging to generate spatial variability 
maps in the National Capital Territory of Delhi, India. The 
results indicated that in 43% of the study area, 
groundwater depth was within 20 m. The salinity level 
was higher than 2.5 ds m

−1
 in 69% of the study area. 

Also, Andarge et al. (2013), estimated transmissivity 
using empirical and geostatistical methods in the volcanic 
aquifers of Upper Awash Basin, Central Ethiopia. They 
performed linear and logarithmic regression functions and 
it was found that the logarithmic relationship predicting 
transmissivity from specific capacity data has a better 
correlation (R = 0.97) than the linear relationship 
(R = 0.79). Masoomeh et al. (2013), investigated the 
spatio-temporal variability of groundwater quality 
parameters (Electrical Conductivity, Sodium Adsorption 
Ratios, Total Dissolved Solids, and Sodium content) 
using geostatistics and GIS in Shiraz City, South Iran. 
Results revealed that ground water quality data are 
strongly spatially correlated over the study region.  
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Pradipika and Surya (2014) studied the spatial variability 
of ground water depth and quality parameter in Haridwar 
District of Uttarakhand, using ordinary kriging. It was 
observed that the semivariogram parameters fitted well in 
the spherical model for water depth, and in the 
exponential model for water quality parameter. Both 
parameters followed a log-normal distribution and 
demonstrated a moderate spatial dependence according 
to the nugget ratio. Other similar studies have shown that 
geostatistical approach is a suitable method for 
estimation of aquifer hydraulic properties (Doctor and 
Nelson, 1981; Sophocleous et al., 1982; Nunes et al., 
2004a; Arslan, 2012, 2013; Rawat et al., 2012; 
Varouchakis et al., 2012; Delbari, 2013). Thus, to achieve 
the purpose of this study, the core objectives consists of 
variographic analysis of the spatial variability of 
groundwater parameters H and WTD, the generation of 
maps of kriged estimates of logH and log(WTD), and 
back transforms of logH and log(WTD) to H and WTD to 
assess the H and WTD fields.  
 
 
Description of study area 
 
The study area falls within Southeastern Nigeria in the 
Afikpo Basin, bounded by Long. 7° 45′E to 8° 00′E and 
Lat. 5° 43′N to 5° 57′N (in Nigerian local datum) and 
traverses two regions; the Ohaozara area and Afikpo 
province-consisting of Amasiri, Ozziza, and Unwana, 
covering an area of about 607.75 km

2
 (Figure 1). The 

area lies mostly in the (Eboine) River Basin and the 
Cross River plains on the south-eastern flank of the 
Abakaliki-Benue anticlinorium (Figure 2a). The area has 
an undulating terrain and an elevation of about 170 m 
above mean sea level. Remarkably, sandstone forms its 
ridges and the shale forms the valley. The shale unit 
underlies the bioturbated sandstone. These bioturbated 
sandstones have very high altitude; this is possibly 
because they have less period of exposure to erosion. 
 
 
Geology and hydrogeology of the study area 
 
Geologically, the area falls within the Cretaceous 
Abakaliki-Benue Rift (Figure 2a), and is underlain by the 
Asu River Group (Albian), the Turonian Eze-Aku formation 
and the (Late Campanian-Early Maastrichtian) Nkporo 
formation. The Turonian Amasiri sandstone of the Eze-
Aku group is a highly consolidated, well cemented, 
subangular to subrounded, poorly sorted, very fine to 
medium grained feldspathic arenite with poor reservoir 
quality (Okereke, 2012). This unit dominates the northern
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Figure 1. Showing the study area with access roads, VES stations, and Borehole points  (Iduma et al., 2016). 

 
 
 
parts of the study area. Local geology of the study area 
indicates that extensive marine transgression and 
regression occurred in the Turonian followed by the 
period of Orogeny during the Coniancian, especially the 
Santonian. Contemporaneous with the Orogeny was the 
intrusion of the igneous bodies described as dolerite sills, 
into the Eze-Aku Shale (Okonkwo et al., 2013; Obiora, 
2002). The geological map of the study area is as shown 
in Figure 2b.  

The Nkporo Formation is the basal lithostratigraphic 
unit of the Afikpo sub-basin and comprises dominantly of 
dark grey to black shales, sandstone, minor limestone 
and oolitic ironstone beds. In the Campanian-
Maastrichtian, there was subsidence and a marine 
regression resulted in the deposition of a lateral 
equivalent to Nkporo Formation named Afikpo 
Sandstone. Simpson (1954), Reyment (1965) and 
Whiteman (1982) reported the presence of an angular 
unconformity between the Campanian-Maastrichtian 

Afikpo Sandstone and the Turonian Eze-Aku group. The 
Afikpo Sandstone is the youngest sedimentary unit in the 
study area. Its relatively loose structure, coarse grains, 
sorting enables it to be porous and permeable. The 
formation covers most parts of Afikpo town, hence the 
name, Afikpo Sandstone.  

Shale and sandstone are the two major lithologic units 
in the area. The sandstone units constitute the permeable 
and saturated aquifers. The dominant lithology in the 
southern zone of the study is the Afikpo sandstone. 
Almost, the entire northern area is underlain by well 
compacted, hard Amasiri Sandstone of the Santonian 
Eze-Aku group. The nature of this unit obviously reduces 
infiltration unless in parts that are fractured or deeply 
weathered. It is possible that the regional Cretaceous 
tectonic activity shattered the rocks of the area after the 
deposition of the sediments. Hence, places that exhibit 
intense fracturing yield water at shallow depth (Simpson, 
1955). 
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Figure 2. (a) Map of Nigeria showing the distribution of cretaceous sediments; (b) Map showing geological 
map of the study area (Iduma et al., 2016). 

 
 
 
METHODOLOGY 
 
The geostatistical study is based on data estimated from interpreted 
results of fifty (50) Schlumberger Vertical Electrical Sounding (VES) 
curves with maximum current electrode spacing of AB/2 = 681 m. 
The details of the geoelectrical data acquisition, processing, and 
interpretation methods, are contained in Iduma (2014). For effective 
use of the geoelectrical data in the geostatistical study, the validity 
of the resistivity data was tested in a borehole-lithology and 
geoelectrical-column correlations. The H and WTD data values 
computed from the VES data are shown in Table 1. The procedures 
adopted in the correlation attempt are explained in Iduma et al. 
(2016).   

Most often, skewed or erratic data can be made more suitable for 
geostatistical modeling by appropriate transformation. Ordinary 
kriging is well-known to be optimal when the data have a 

multivariate normal distribution. Transformation of data therefore 
may be required before kriging to normalize the data distribution, 
suppress outliers and improve data stationarity (Deutsch and 
Journel, 1992; Armstrong, 1989). The estimation then is performed 
in the Gaussian domain before back-transforming the estimates to 
the original domain. The Gaussian distribution has the advantage 
that spatial variability is easier to be modeled because it reduces 
the effects of extreme values providing more stable variograms 
(Goovaerts, 1997; Armstrong, 1989). In this study, geostatistical 
analysis of the data is accomplished using the software GS

+
 Ver. 

10.0 (Gamma Design Software, Plainwell, USA). Fifty (50) aquifer 
thickness (H) and water table depth (WTD) data (Table 1), 
estimated from the interpretation of VES data were used as input 
data for the geostatistical study. Kriging represents variability only 
up to the second order moment (covariance), so the random field of 
the transformed variable must therefore be Gaussian to derive
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Table 1. Interpreted results of vertical electrical sounding in the study area. 
 

VES No. Easting (mE) Northing (mN) H (m)
 

WTD (m)
 

1 589069.364 225241.733 89.78 2.43 

2 597541.102 228572.138 40.3 7.42 

3 598036.634 226470.968 39.99 32.56 

4 590068.517 225145.188 23.83 12.35 

5 600242.627 219835.01 61.11 15.79 

6 600625.099 210096.49 61.67 8.06 

7 602315.315 208958.34 47.7 8.62 

8 603111.515 210993.516 27.43 4.52 

9 605233.508 211476.439 36.09 40.12 

10 606828.818 213691.99 38.63 11.81 

11 605754.414 209670.17 50.17 3.73 

12 606688.941 209294.541 71.00 21.21 

13 607615.361 209993.765 154.1 8.22 

14 607167.925 208535.525 29.38 1.6 

15 606588.987 207749.96 37.37 2.55 

16 605958.003 207331.47 112.72 10.14 

17 608534.698 206725.36 54.55 4.12 

18 609298.081 204264.789 113.9 13.4 

19 607606.803 207629.151 45.08 9.15 

20 607160.08 206871.084 139.58 17.82 

21 606594.353 204049.471 49.59 2.9 

22 607167.245 201825.528 68.28 2.65 

23 606765.319 199789.908 151.68 18.52 

24 607499.532 198870.958 130.6 34.3 

25 608059.173 207898.935 157 7.61 

26 608993.471 207246.962 147.45 46.35 

27 609629.732 206871.68 52.48 35.59 

28 608821.836 207842.893 33.11 6.2 

29 608733.068 208264.006 58.71 5.59 

30 607392.706 208793.254 43.9 3.86 

31 607971.364 209262.519 30.66 31.47 

32 608057.208 208998.332 40.02 3.42 

33 607832.145 208448.862 45.94 11.9 

34 608671.909 208613.847 59.52 9.23 

35 608531.455 209627.396 64.98 32.66 

36 608112.219 208654.331 47.81 16.49 

37 608536.7 208798.238 162.1 31.59 

38 609099.843 209064.847 37.79 9.41 

39 609250.253 208776.03 32.2 9.12 

40 609628.906 209156.451 41.27 1.77 

41 610891.026 207214.397 100.47 11.79 

42 609738.962 208487.157 28.34 8.92 

43 610339.756 209597.968 57.9 7.46 

44 610889.469 208789.781 165.9 91.48 

45 609857.616 207172.407 52.29 25.79 

46 611578.48 208911.957 35.29 4.03 

47 612322.756 208938.89 44.64 5.2 

48 612315.856 208143.529 32.7 1.39 

49 612060.318 207852.033 38.68 4.48 

50 611643.342 209203.632 51.74 1.55 
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Table 2. Summary statistics of groundwater parameters, H and WTD. 
 

Parameter Mean Minimum Maximum Standard deviation Skewness coefficient 

H (m) 66.748 23.83 165.90 42.164 1.25 

LogH 4.041 3.17 5.11 0.541 0.68 

WTD (m) 14.367 1.39 91.48 16.011 2.63 

Log (WTD) 2.191 0.33 4.52 0.992 0.09 

 
 
 

 
 

Figure 3. Frequency distribution of (a) non-transformed and (b) transformed aquifer thickness H(m). 

 
 
 
unbiased estimates at non-sampled locations (Deutsch and Journel, 
1992; Goovaerts et al., 2005). A non-linear normalizing data 
transformation (log transformation) is applied in union with kriging 
for the accurate prediction of spatial variability of the groundwater 
parameters under study. A cross-validation (Isaaks and Srivastava, 
1989) approach is used to assess the performance and 
interpolation errors of ordinary kriging in the estimation of 
groundwater parameters (H and WTD). The comparison criteria 
used are coefficient of determination (R

2
) and residual sum of 

squares (RSS). For appropriate estimator, R
2 

should be close to 1 
and RSS should be as small as possible (Robertson, 2008). In this 
study, it is assumed that: (1) all values of (H) and WTD data, in the 
study area are the results of a random process, with dependence 
(spatial autocorrelation) and (2) the variance of the difference is the 
same between any two points that are at the same distance apart 
and direction, no matter which two points are chosen (stationarity 
assumption). 

The theory of geostatistics and principles of kriging have been 
well documented previously (Isaaks and Srivastava, 1989; 
Goovaerts, 1997; David, 1977; Journel and Huijbregts, 1978; 
Kitanidis, 1997) and will not be repeated in this paper. Interested 
readers are referred to these cited references. More advanced 
treatment of the subject can also be found in Webster and Oliver 
(2001).  

 
 

RESULTS  
 

Statistical analysis of H and WTD data has been 
presented. Spatial variability analysis and model fitting 
have been done. The results also include cross-validation 
and spatial prediction of H and WTD data, and mapped 
values of H and WTD with estimation variance maps. 
 
 
Statistical analysis of H and WTD data 
 
Table 2  provides  descriptive  statistics  for  H  and  WTD  

data. The available raw data range between 165.90 to 
23.83 m and 91.48 to 1.39 m for H and WTD data, 
respectively, straddling several orders of magnitude. The 
mean values of H and WTD data are correspondingly, 
66.748 and 14.367 m. To preserve a certain continuity of 
the data, some data values (outliers) were isolated 
relative to the entire data, in the cross-validation 
procedure. Figures 3b and 4b show the frequency 
distributions of logH and log(WTD), respectively, and 
indicate a fairly normal distribution relative to the 
untransformed, H and WTD  data. The frequency 
distribution of the untransformed data is shown in Figures 
3a and 4a. The frequency distribution of the transformed 
data is positively skewed with a symmetrical form. The 
skewness coefficient of transformed data (Table 2, 
column 6) is much less than those of real data. So, the 
data are transformed using a log transformation function. 
A comparison of standard deviation for log transformed 
data with the untransformed data for both parameters 
indicates that a reduction in prediction standard deviation 
would occur if log transformed H and WTD values are 
estimated against the untransformed data.  
 
 
Spatial variability analysis and model fitting  
 
To investigate the spatial variability of groundwater 
parameters, experimental semivariograms of logH and 
log (WTD), are calculated for four directions (0, 45, 90 
and 135°) with an angle tolerances of 22.5°. The results 
(Figure 5a and b), did not show any significance 
differences, that is, no significant anisotropy, hence, the 
investigated parameters are assumed to be isotropic, and 
omnidirectional semivariograms is calculated for  each  of  
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Figure 4. Frequency distribution of (a) non-transformed and (b) transformed water table depth WTD(m). 

 
 
 

A 

B  
 

Figure 5. (a) Anistropic variograms for logH data showing spatial variability analysis 
for four directions; (b) Anistropic variograms for log(WTD) data showing spatial 
variability analysis for four directions. 

 
 
 
them. Then the best semivariogram model is fitted to the 
experimental data. The model depends on the choice of 
three parameters: nugget, sill, and range parameters. The 
model fitting is done by defining a curve that provides  the 

best fit through the points in the empirical semivariogram 
graph by ensuring that the squared difference (RSS) 
between the data points and the curve is minimum 
(Robertson, 2008). Spherical, Exponential, and Gaussian 
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Table 3. Characteristics of semivariogram models for groundwater parameters. 
 

Parameter Model type C0
 

C0 + C
 

(C0 / C0 + C )
 Range 

parameter 
Coefficient of 
variation (CV) 

R
2 RSS 

H 

Exponential 0.2300 0.8020 0.2867 31100 0.327 0.572 0.0637 

Gaussian 0.0783 0.33660 0.2326 600 0.008 0.089 .0939 

Spherical 0.0504 0.33680 0.1496 1230 0.008 0.089 0.0939 

         

WTD 

Exponential 0.1430 1.04100 0.1374 500 0.381 0.617 0.2050 

Gaussian 0.1840 1.03000 0.1786 540 0.378 0.615 0.2060 

Spherical 0.2360 1.03600 0.2278 1370 0.392 0.626 0.2010 

 
 
 

A 

B  
 

Figure 6. (a) Fitted model (Exponential model) to logH exponential 
semivariogram; (b) Fitted model (Spherical model) to log(WTD) 
exponential semivariogram. 

 
 
 
functions were fitted, one at a time, to the empirical data 
for evaluation. The best model, in bold letters (Table 3, 
column 2), is the one that has the least RSS and largest 
coefficient of variation (C.V), which is the square of 
correlation coefficient (R

2
). Semivariogram model 

characteristics for each parameter (H, WTD) are shown 
in Table 3. The fitting models to logH and log WTD 
experimental semivariograms are as shown in Figure 6a 
and b, respectively. As recommended by Mehrjardi  et  al. 

(2008), when the ratio C0 / (C0 +C) in Table 3, is less than 
0.25, the variable has a strong spatial correlation, if the 
ratio C0 / (C0 +C) is greater than 0.25 and less 0.75, the 
variable has a moderate spatial correlation, but, when the 
ratio C0 / (C0 +C) is greater than 0.75, the variable is said 
to have a weak spatial correlation.  

The results indicate that spatial structure of both 
variables, H and WTD, are moderate and follow an 
exponential model for the H data and spherical model  for  
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B  
 

Figure 7. (a) Cross-validation graph of actual vs. estimated values of H(m) data; (b) Cross-validation graph of actual vs. 
estimated values of WTD(m) data. 

 
 
 

the WTD data. 
 
 
Cross-validation and spatial prediction of H and WTD 
data 
 
The semivariogram model characteristics shown in Table 
3 are used in ordinary kriging to interpolate the 
groundwater parameters, logH and log(WTD) in the study 
area. The performance of the kriging-based geostatistical 
models is optimized by using the leave one out cross 
validation technique that is usually applied in small 
datasets (Witten et al., 2011). So, the models in Table 3 
are further validated by a process of cross-validation. In 
the cross-validation procedure, each observed data point, 
one at a time, (leaving the model otherwise unaltered) is 
removed and the predicted value is computed at these 
points. In  order  to  select  the  most   valid   model,   this 

process is carried out for each of the three models. Each 
of the models (Gaussian, Exponential, and Spherical) 
was fitted, one at a time, on the logH and log(WTD) 
omnidirectional experimental semivariograms for 
appraisal. The true and estimated values of the cross-
validation are compared using statistical measures. The 
best model is the one that has the highest regression 
coefficient (Robertson, 2008), in a cross-validation graph 
(graph of actual versus estimated values of the 
groundwater parameters, H and WTD). Regression 
coefficient represents a measure of the goodness of fit for 
the least-squares model describing the linear regression 
equation. A perfect 1:1 fit would have a regression 
coefficient (slope) of 1. The cross-validation graphs 
(Figure 7a and b), which compare the actual with the 
estimated values of H and WTD, respectively, indicate 
that exponential model with the highest regression 
coefficient  (0.514),  revealed  in  Figure  7a,  is  the   best
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Figure 8. (a) Map of Kriged estimates of aquifer thickness obtained 
by a back transform of logH to H; (b) Map of Kriged standard 
deviation (SD) of aquifer thickness. 

 
 
 

semivariogram model for the prediction of H data set, 
while the spherical model, with the highest regression 
coefficient (0.336), as shown in Figure 7b, is the best 
semivariogram model for the prediction of WTD data set 
in the study region.  

The general approach that is used for interpolation 
applies a normalizing transformation followed by ordinary 
kriging on the transformed variable, and finally the 
predictions are back-transformed. In the kriging scheme, 
active lag distance of 12989 and 6500 m for H and WTD 
parameters, respectively, were specified with a minimum 
of 30 sample pairs (Istok and Copper, 1988), assured by 
identifying eight and ten as the minimum and maximum 
number of neighbors. The kriging system is completed 
within a round-shaped search neighborhood radius of 
18.876 km (approximately half the maximum distance 
between sample points). The chosen semivariogram 
models shown in Figure 6a and b and described in Table 
3, with the available log H and log(WTD) sample data  were 

used to perform kriged estimation of logH and log(WTD) 

over the study area. Kriging system also calculates 

estimation variance or estimation standard deviation. 
 
 

Mapped values of H and WTD data with estimation 
variance maps 
 

The   kriged   logH   and    log(WTD)    maps    are    used  

subsequently, to make an estimation of H and WTD 
values over the study area through a back-transform of 
logH and log(WTD) to H and WTD. The maps of kriged 
estimates of H and WTD values which provide an 
assessment of the H and WTD values over the whole 
study region, are shown in Figures 8a and 9a, 
respectively. The estimation standard deviation maps in 
Figures 8b and 9b, corresponding to H and WTD values, 
present zones of weak and strong values, and indicate 
the quality of estimates. The smaller the standard 
deviation value, the higher the exactness of estimates. 
Due to border effect and the presence of zones where 
data points are deficient, highest values of standard 
deviations of estimates are found towards limits of the 
study area.  
 
 
DISCUSSION 
 
The ranges of experimental variograms of logH and 
log(WTD) are equal to 31.1 and 1.37 km, respectively 
(Table 3). These distances which indicate the scale of the 
spatial structure of the variables are significant. It means 
that two points in the field separated by a distance less 
than the range remain correlated with each other. For 
example, the distance 31.1 km, is the maximum distance 
over which the  spatial  dependence  of  the  (H)  variable
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Figure 9. (a) Map of Kriged estimates of water table depth obtained by a back 
transform of log(WTD) to WTD; (b)  Map of Kriged standard deviation (SD) of 
water table depth. 

 
 
 
becomes uncertain, hence, is a measure of the length of 
influence. The ratio of the nugget variance to the sill 
represents the importance of this influence (Holawe and 
Dutter, 1999). These large and small correlation lengths 
may be explained by patterns of undulation of the terrain 
in the study region. Of significance in this study is the 
large nugget effect (measurement error or error at small 
scale variability), which, in this case, indicates that spatial 
correlations between individual H and WTD parameters 
are not strong, but moderate, even at short distances. In 
practice, the nugget effect is the level of variability at 
dimensions less than the minimum sample spacing. So, 
the recognition of the level of nugget effect in association 
with the spatial range of influence has implications for 
prospective modelers in the study region. It becomes 
imperative that the potential modelers gain insight into 
the scales of spatial variation that might interest them 
before data collection. This is because variations at micro 
scales smaller than the sampling distances will appear as 
part of the nugget value. 

According to the generated maps, the southern part of 
the study area shows relatively higher kriged H-values. 
That may possibly, be attributed to the existence of 
Nkporo Formation which is comparatively the higher 
prolific aquiferous zone. The northern part of the region, 
underlain by a well compacted, hard Turonian Amasiri 
Sandstone of the Eze-Aku group is characterized by 
water scarcity, hence, the presence of relatively lower 
kriged H-values (Figure 8a). The variation in the 
distribution of kriged WTD-values in the study region is 
asymmetrical (Figure 9a). The irregular stretch of kriged 
WTD-values in the study region may plausibly, be 
ascribed to the undulating nature of the terrain (Hesse 
and MacDonald, 1975).  

The geostatistical procedure produced satisfactory 
distribution of high and low values of H and WTD in the 
study area, similar to available knowledge. In a previous 
study (Iduma et al., 2016) undertaken in the area, the 
contour maps (Figures 10a and 11a) of H and WTD, 
respectively,  indicate  similar   distribution   patterns.   An
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Figure 10. (a) Aquifer thickness-H (m) contour map; (b) Aquifer thickness profile (A-B) (Iduma et al., 2016). 

 
 
 

 
 

Figure 11. (a) Water table Depth-WTD (m) contour map; (b) Water table Depth-profile (B-C); (c) Watere table Depth-profile (C-D) (Iduma et 
al., 2016). 

 
 
 
isopach map of the aquiferous layer (Figure 10a) shows 
that aquifer thickness is highly variable, revealing a 
relatively progressive decrease in values of the aquifer 
thickness H, in the south-north direction. This condition is 
confirmed by the longitudinal profile A-B (Figure 10b), 
which shows a progressive decrease in values of the 
aquifer thickness H, in the south-north direction. Although 
the depth to water table tends to be low in some regions, 
and high in some other parts of the area, generally, the 
variation in the distribution of the WTD in the study area 
is irregular as shown in Figure 11a, and illustrated  in  the 

longitudinal profiles, BC and CD (Figure 11b and c, 
respectively).  

A comparison of the maps of kriged estimates of H 
(Figure 8a) and WTD (Figure 9a) with the contour maps 
(Figures 10a and 11a) from previous study, indicates 
good agreement in the trend patterns of distribution of 
these parameter values in the study area. On this basis, 
the kriged estimates of the H and WTD data-values of the 
region could be understood to demonstrate coherence, 
and therefore prove to be reliable. It is pertinent to know 
that the logarithmic transforms of H and WTD to logH and 
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log(WTD) are non-linear transforms. So, when the kriged 
unbiased estimates logH and log(WTD) are back-
transformed, their unbiased properties are lost, and the H 
and WTD values estimated using this procedure are no 
longer unbiased. 
 
  
Conclusions 
 

Generally, results of this study showed that ordinary 
kriging which is best linear unbiased estimator, is the 
suitable method for estimation of groundwater 
parameters, H and WTD. By providing the variance of the 
estimation error, the method gives the quality of the 
estimation. The variographic analysis of both variables 
indicates that logH and log (WTD) are stationary 
variables, characterized by significant nugget effects 
(discontinuity at the origin of the variogram). Also, it could 
be concluded that the parameters of the semivariogram 
used for the structural description, give insight into the 
spatial pattern of the groundwater parameters, H and 
WTD. This knowledge has improved the ability to 
understand the hydrogeology of the study area. 
Additionally, this study has shown that ordinary kriging 
constitutes a reliable method to appraise the spatial 
autocorrelation of groundwater aquifer thickness and 
water table depth data in interpolation studies. The 
kriged-H and log(WTD) values are spread over several 
orders of magnitude, revealing the strong heterogeneity 
of these parameters in the study region. The generated 
spatial variability maps of H and WTD will assist water 
resource managers and policymakers in the development 
of guidelines in judicious management of groundwater 
resources for agricultural and drinking purposes in the 
study area.  
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