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Increasing greenhouse gas concentrations can cause future changes in the climate system that have a 
major impact on the hydrologic cycle. To realize and predict future climate parameters, the 
Atmosphere-Ocean Global Climate Models (AOGCMs) are common employed tools to predict the future 
changes in climate parameters. The statistical downscaling methods have been applied as a practical 
tool to bridge the spatial difference between grid-box scale and sub-grid box scale. This paper 
investigates the capability of Statistical Downscaling Model (SDSM) and Artificial Neural Network (ANN) 
with different complexities in downscaling and projecting climate variables in the tropical Langat River 
Basin. These two statistical downscaling models have been calibrated, validated and used to project 
the possible future scenarios (2030s and 2080s) of meteorological variables, which are the maximum 
and minimum temperatures as well as precipitation using the CGCM3.1 under A2 emission scenario. 
The statistical validation of generated precipitation as well as maximum and minimum temperatures on 
a daily scale illustrated that the SDSM is more accurate than the ANN with different learning rules. On 
the other hand, the SDSM showed more capability to catch the wet-spell and dry-spell lengths than the 
ANN model. The calibrated models show higher accuracy in simulating the maximum and minimum 
temperatures in comparison with the capture of the variability of precipitation. The trend analysis test of 
generated time series by the SDSM indicates an increasing trend by the 2030s and 2080s at most of the 
stations.  
 
Key words: Statistical downscaling, multiple linear regression, nonlinear regression, artificial neural network, 
tropical area, Malaysia. 

 
 
INTRODUCTION 
 
The studies of climate change impacts on water 
resources have become an interesting topic since the late 
twentieth century. The main source of discussion in 
assessment studies is supported by the outputs from a 
Global  Climate  Model  (GCM)  under  different  emission 

scenarios. A GCM is a three-dimensional numerical 
model of a planetary, ocean and atmosphere that 
employs many principles of physics, mathematics and 
fluid mechanics. However, the resolution of GCMs is not 
high enough to be  used  directly  in a regional study such  

 

 

 



 

 

 
 
 
 
as a hydrological simulation. In this way, downscaling 
tools are employed to localize the results of different 
GCM as an input to hydrological models. 

Among the outputs of the GCMs, the temperature and 
precipitation data were frequently used to force impact 
model such as hydrological models. In addition, both 
temperature and precipitation are the main atmospheric 
variables affected by the Greenhouse Gases (GHG) 
emissions. For instance, in the Fourth Assessment 
Report (AR4) of Intergovernmental Panel on Climate 
Change (IPCC), the climate change effect on fresh water 
systems is due to increases in temperature and sea level 
as well as precipitation variability (Fiseha et al., 2012). 
For the temperature, the report of IPCC AR4 shows the 
increase of global mean surface temperatures by 0.74ºC 
over the last 100 years (1906-2005) (Solomon et al., 
2007). 

The output of GCMs in the simulation of the climate 
system has coarse resolution that is not enough to match 
with sub-grid scale features such as topography and 
landuse. To bridge this gap, downscaling is commonly a 
method to investigate the impact of climate change on 
water resources at a regional scale. The basic assumption 
in downscaling is that the large-scale atmospheric system 
influences the local scale system considerably, but the 
inverse effects from regional scales to global scales are 
insignificant (Fowler et al., 2007; Hewitson and Crane, 
1996; Maraun et al., 2010; Teutschbein et al., 2011; 
Wilby et al., 2004; Xu, 1999). 

The existing downscaling methods have two broad 
categories, namely dynamical downscaling and statistical 
downscaling, which have been created using atmospheric 
physics and empirical statistics, respectively. The 
extensive discussion on these downscaling classes 
includes theories, application, and advantage and 
deficiency of them can be found in many previous 
research works (Hewitson and Crane, 1996; Xu, 1999; 
Wilby et al., 2004; Fowler et al., 2007; Teutschbein et al., 
2011).  

Statistical downscaling methods are used by the 
hydrologist to obtain the local-scale data as an input to 
the hydrological models. Statistical downscaling 
approach could be further categorized in weather type, 
regression method, and weather generator (Wilby et al., 
2004). The weather type technique engaged 
meteorological data to a given weather type in 
accordance with their similarity concerning synoptic 
patterns. Regression-based models involve developing a 
linear or nonlinear empirical relationship between a local 
climate variable as predictand (e.g. temperature and 
precipitation)   and    large-scale   GCM    parameters   as 
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predictors. A Weather Generator (WG) is a stochastic 
model that can be used to simulate daily weather based 
on parameters determined by historical records (Wilks 
and Wilby, 1999). Multiple regression and weather 
generator methods are more utilized than others, as they 
are computationally less demanding data, easy to apply, 
and efficient (Dibike and Coulibaly, 2005; Hashmi et al., 
2011; Semenov et al., 1998; Solomon et al., 2007; 

Tavakol‐Davani et al., 2013). Moreover, other offered 
methods, range from Markov Chain (Gregory et al., 
1993), and multiple regression (Murphy, 1999) to more 
complicated hybrid models such as Statistical 
Downscaling Model (SDSM) (Wilby et al., 1999) and 
automated regression-based statistical downscaling 
(Hessami et al., 2008). The comparison of artificial neural 
network and multiple regression (linear and nonlinear) is 
the subject of other studies in downscaling climate 
parameters (Khan et al., 2006; Schoof and Pryor, 2001). 
However, none of these downscaling methods are robust 
and precise enough to simulate the diversity in the 
climate system. Thus, a comparative study of different 
downscaling models in capturing the temporal 
characteristics of climate variable would be beneficial 
(e.g., mean, variance, wet/dry spell length) (Hashmi et 
al., 2011; Khan et al., 2006; Muluye, 2012). This study 
investigates and evaluates two statistical downscaling 
methods in regression category from multiple linear 
regression (SDSM) to fully nonlinear regression (ANN) in 
capturing the climatic characteristics in a tropical climate 
of Malaysia. 
 
 
Study area 
 

The study area is the Langat River Basin, which is one of 
the most urbanized catchments in Malaysia, located in 
the southern parts of Klang Valley in which the capital city 
of Kuala Lumpur is located (Figure  1). It supplies two 
third of water required for the state of Selangor for 
different water usage. This watershed experienced rapid 
development in urbanization, agriculture, and 
industrialization. The total area of the Langat River Basin 
is approximately 2,352 km

2
. It lies between latitudes 2° 

40ˊ 15ʺ to 3° 16ʹ 15ʺ N and longitudes 101° 17ʹ 20ʺ to 
101° 55ʹ 10ʺ E. The northern part of the basin is a 
mountainous area; while its central and western parts 
consist of the flat area. The mean areal annual rainfall of 
the Langat River Basin is 1994 mm, while the highest 
recorded monthly rainfall is approximately 327 mm in 
November, and the lowest is 97.6 mm in June. A 
summary    of     the      geographic     characteristics     of
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Figure 1. Geographic location and spatial distribution of stations at the Langat River Basin from the 
Department of Irrigation and Drainage (DID). 

 
 
 

Table 1. Geographic characteristics of stations for recorded precipitation and extreme temperature data. 
 

ID Longitude (E) Latitude (N) Altitude (m) Resolution Period 

1 101°32ˊ 2°49ˊ 3 Daily 1971-2001 

2 101°52ˊ 2°53ˊ 36 Daily 1971-2001 

3 101° 47ˊ 2°59ˊ˝ 39 Daily 1976-2001 

4 101°52ˊ 3°10ˊ 91 Daily 1971-2001 

5 101°23ˊ 2°55ˊ 3 Daily 1974-2001 

6 101°56ˊ 2°45ˊ 93 Daily 1971-2001 

7 101° 56ˊ 2° 43ˊ 64.1 Daily 1974-2001 

8 101° 53´ 3° 13´ 233.3 Daily 1985-2001 

9 101° 56´ 37˝ 2° 42´ 33˝ 64.1 Daily 1971-2001 

10 101° 39´ 3° 6´ 60.8 Daily 1974-2001 

 
 
 
meteorological stations within the study area is presented 
in Table 1 1. 

The climatic data used in this study were obtained from 
the Malaysian Meteorological Department (MMD) and the 
Department of Irrigation and Drainage (DID). The daily 
precipitation and  maximum  and  minimum  temperatures 

data of ten stations inside and outside the Langat 
watershed have recorded of lengths between 16 and 30 
years. The geographic location of these stations and river 
network of study area are shown in Figure  1. 

The missing values of precipitation and temperature 
were  calculated  using  two  methods of normal-ratio and
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Table 2. Definition of calibration and validation periods and the sample size for all stations in the 
Langat River Basin. 
 

Stations Calibration Testing Sample size 

1 1/7/1970-30/9/1985 1/10/1985- end of 2000 (5571,5571) 

2 1/7/1970-30/9/1985 1/10/1985- end of 2000 (5571,5571) 

3 1/5/1975-29/2/1988 1/3/1988- end of 2000 (4688,4690) 

4 1/8//1970-31/10/1985 1/11/1985- end of 2000 (5572,5541) 

5 1/1/1974-30/6/1987 1/7/1987- end of 2000 (4930, 4934) 

6 1/7/1970-30/9/1985 1/10/1985- end of 2000 (5572, 5572) 

7 1/3/1974-31/7/1987 1/8/1987- end of 2000 (4901, 4902) 

8 1/1/1985-31/12/1992 1/1/1993- end of 2000 (2922, 2922) 

9 1/3/1974-31/7/1987 1/8/1987- end of 2000 (4901, 4902) 

10 1/1/1971-31/12/1985 1/1/1986- end of 2000 (5479, 5479) 

 
 
 
Multiple Linear Regression (MLR) between existing and 
nearby stations with comparable distance and altitude. 
The NCEP/NCAR reanalysis dataset and large-scale 
predictors of the third generation of Coupled Global 
Climate Model (CGCM3.1) version T47 for baseline 
period as well as Special Report on Emission Scenarios 
(SRES) A2 were used to develop the downscaling model 
and projection of daily precipitation and maximum and 
minimum temperatures for the two future periods. On the 
list of SRES scenarios, A2 is known among the most 
severe scenario, projecting high emissions in the future 
(Nakićenović et al., 2000). 

The closest grid cell for the study area has coordinates 
of 1.86°N and 101.25°E (X=28 and Y=24). In this 
research, the current climate as the base line period was 
set for the starting date of recording until the end of the 
year 2000 (Table 2). Two projection time slices, namely 
2020-2049 (2030s) and 2070-2099 (2080s) exist, which 
allow the assessment of climate change impacts on water 
resource in the watershed. 

While the original predictor dataset of NCEP/NCAR 
contained 26 daily predictors (describing atmospheric 
circulation, thickness and moisture content at the surface, 
geopotential heights at 850 and 500 hPa), the candidate 
predictors are only eight predictors in Malaysia. This 
limitation is for an area near the equator (this study area) 
where Coriolis forces tend to be zero (Predictors, 2008). 
The candidate lists of large-scale predictor variables from 
NCEP/NCAR and CGCM3.1 used in downscaling the 
climate variables are presented in Table  3. The values of 
predictors were normalized by their respective mean and 
standard deviation. 
 
 
METHODOLOGY 

 
Downscaling model description and setup 
 
In this study, two statistical downscaling models including Statistical  

Downscaling Model (SDSM), and Artificial Neural Network (ANN) 
were used in downscaling the local hydrological variables on a daily 
scale (precipitation, maximum and minimum temperatures) using 
the large-scale predictors. Seven stations were selected for 
precipitation, while three stations were selected for temperature 
(TMax and TMin). Some primary process steps such as quality control 
and screening the predictors are taken to create a common dataset 
for these statistical downscaling methods. In this study, the fourth 
root transformation has been conducted for precipitation, which is 
usually skewed climatic variable as preprocessing for the 
application of the SDSM model (Chen et al., 2011). 
 

 
Statistical downscaling model 

 
The Statistical Downscaling Model (SDSM) uses of a hybrid of 
stochastic weather generator and multiple linear regression 
techniques in downscaling the climate variables. This technique 
permits the spatial downscaling through daily predictor-predictand 
relationship using multiple linear regressions and generates 
predictands which represent the local weather. This statistical 
downscaing model is a combination of a stochastic weather 
generator technique and a transfer function model (Wilby et al., 
2002) which needs two types of daily data. the local predictands of 
interest (e.g. temperature and precipitation) is the first and the data 
of large-scale predictors (NCEP and GCM) of a grid box closest to 
the study area is the second type of data sets (Wilby et al., 2002). 
Wilby et al. (2002) described seven major steps for developing the 
best execution of the multiple linear regression equation for the 
downscaling process, including quality control and data 
transformation; screening of predictor variables; model calibration 
weather generation (using observed predictors); statistical analyses 
graphing model output and finally scenario generation (using 
climate model predictors). Unlike the simple multiple linear 
regression, the temperature and precipitation variables are modeled 
as an unconditional and conditional process, respectively. In the 
conditional method, the large-scale circulation behavior as well as 
atmospheric moisture parameter is utilized to linearly condition 
local-scale weather generator variables like precipitation 
occurrence and also the intensity (Wilby et al., 2002). Then, the 
generated daily time period was adjusted for its mean and variance 
by using bias correction and variance inflation factors, respectively, 
with regard to reach a better agreement with observed data, which 
are set to 12 and 1, respectively, in the calibration period as 
proposed by Hessami et al. (2008). 
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Table 3. Summary of predictors of daily reanalysis from NCEP/NCAR. 
 

Code Abbreviation Predictor Code Abbreviation Predictor 

1 MSLP Mean Sea level pressure 5 S500 500 hPa specific humidity 

2 P500 500 hPa geopotential height 6 S850 850 hPa specific humidity 

3 P850 850 hPa geopotential height 7 SHUM Near surface specific humidity 

4 PRCP Accumulated precipitation 8 TEMP Mean temperature at 2m 

 
 
 
Artificial neural network 
 
The second downscaling method is the Artificial Neural Network 
(ANN) under the Multilayer Perceptron (MLP) architecture with 
variation of learning algorithms, transfer functions, and number of 
neurons. The ANN is a nonlinear regression type which the network 
learned by supervised and unsupervised learning to create a 
developed relationship between a few selected large-scale 
atmospheric predictors and basin scale meteorological predictands. 

The MLP is one of the most popular neural network, which 
consists of three layers of neurons namely, input, hidden and output 
layer. The information flows in the forward direction and network 
trained using a back propagation learning algorithm to minimize the 
least square error (LSE) between realized and target outputs. As 
weights in MLP computed by a developed back-propagation 
learning algorithm, these networks are the most popular among 
researcher and users of ANNs (Jain et al., 1996). The Multi-layer 
perceptron with one hidden layer and three learning algorithms 
include Momentum (M) (Harpham and Wilby, 2005), Levenberg-
Marquardt (LM) (Govindaraju and Rao, 2010), and Conjugate 
Gradient (CG) learnings (Charalambous, 1992) which were 
investigated for downscaling the precipitation, maximum and 
minimum temperatures at 10 stations. The transfer functions in 
hidden layer were Sigmoid (Sig) and Hyperbolic Tangent (HT) and 
also linear transfer function in the output layer. The numbers of 
hidden layer neurons were found through simple trial-and-error 
method in all applications. Then, the performances of different 
networks were examined using correlation coefficient (R), and MAE. 
 
 
Validation of models 
 
The parameters established during the calibration process that 
explain the statistical agreement between observed and simulated 
data were then used for the model validation and for daily and 
monthly time scales. 

The performance of downscaling models in generating the mean 
daily precipitation, mean dry spell and wet spell length for 
precipitation in a month and mean daily and variance for 
temperature in a month were examined using the Standard Error 
(SE), Mean Absolute Error (MAE), and Root Mean Square Error 
(RMSE) as follows: 
 

   √
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     √
 

 
∑             (3) 

Where, yobs is the observed data, ysim is the simulated value, k is the 
number of independent variables, and n is the number of recorded 
data in the validation dataset. The y refers to daily maximum 
temperature, minimum temperature and precipitation at each 
station. In this study, a dry day is defined as a day with an amount 
of less than 1 mm precipitation during a day (Deni et al., 2010). 
 
 
Uncertainty analysis 
 
In the statistical downscaling, confidence intervals in the estimates 
of means and variances provide special view about uncertainty in 
the estimates of mean and variances (Khan et al., 2006). In the 
current study, the most commonly used non-parametric technique, 
bootstrapping has been applied to obtain the confidence intervals of 
means and variances. The main part of bootstrapping is to 
resample a large number of new data sets with replacement from 
the original data set. The algorithm for uncertainty analysis in this 
study includes the following steps: 
 
1. Draw a new sample of size n with replacement from the original 
sample. 
2. Compute the mean or variance of the new sample. 
3. Repeat steps 1 and 2, 1000 times, and calculate the mean and 
variance. 
4. Plot the distribution of these 1000 sample means or variances. 
5. Compute the 95% confidence interval for the mean or variances 
by finding the 2.5th and 97.5th percentiles of this constructed 
distribution. 

 
 
RESULTS AND DISCUSSION 
 

Selection of Predictors 
 

The selection of predictors mainly ascertains the 
character of the downscaled climate scenario. As the 
correlation analysis between the predictands of the 
Langat River Basin and the NCEP/NCAR re-analysis 
predictors was discovered to have extremely poor results, 
an offline statistical analysis was carried out to improve 
the correlations between predictand and predictors 
(Hashmi et al., 2011). A Cross Correlation Analysis 
(CCA) between each pair of predictands and the 
NCEP/NCAR predictors is an attempt in this regard to 
find the optimum lags, which correspond with maximum 
correlation between each pair of predictand-predictors. 

The correlation amounts before and after CCA at six 
out of 10 stations are shown in Figure  2 as an example. 
While for  many  of  the  NCEP/NCAR  predictors   at  the
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Figure 2. Examples of correlation between predictors and predictand before and after cross-correlation analysis for daily 
precipitation and extreme temperature. 

 
 
 
stations, the CCA improved the correlation between the 
large-scale predictors and local-scale predictand, few of 
the NCEP/NCAR predictors did not show any lag for the 
improvement of the correlation. The examination of the 
results of the CCA indicates that improvements in the 
predictors include MSLP, P500, and P850, which were 
more than that for S850, SHUM, and TEMP. The 
comparison between predictand-predictors correlation 
shows that the correlation coefficient for maximum and 
minimum temperatures are higher than that for daily 
precipitation as a predictand. This lagged NCEP/NCAR 
predictors and the local precipitation as well as maximum 
and minimum temperatures are then employed to screen 
the predictors as a process in the calibration of the 
statistical downscaling models. 

The stepwise regression with both directions (backward 
and forward) was adapted to screen the predictors and 
select the best combination of them by reaching the 
smallest Akaike Information Criterion (AIC) (Hessami et 
al., 2008; Tavakol‐Davani et al., 2013). Table 4 shows 
the identified significant NCEP/NCAR predictors for 
predictand and stations at the significant level of p <0.001 
under consideration. 

From the selected predictors in Table 3, it was 
discovered that the local variables were controlled by 
non-atmospheric parameters. For instance, both of 
temperature  and  precipitation  are  sensitive to pressure 

fields at geopotential heights of 500 hPa, and near 
surface specific humidity. 

While, the Mean Sea Level Pressure (MSLP) is a 
measure control variable for temperature, it was not a 
significant predictor for precipitation in all sites. The mean 
temperature at 2 m height (TEMP) controls both the 
maximum and minimum temperatures and precipitation 
observed at each station except minimum temperature at 
Station 9. 

The selected predictors at all stations were used for the 
calibration and validation of different downscaling models 
including SDSM version 4.2.9 (Wilby et al., 2002), and 
artificial neural network with different structures. The 
observed historical dataset until the year 2001 was split 
into two equal parts of the calibration and validation 
processes of the downscaling methods as defined in 
Table 2. The calibration of two statistical downscaling 
approaches was carried out for every single site during 
the calibration period and validated through the data 
outside the calibration period. 
 
 
Comparisons of model performance 
 
Two downscaling approaches were examined in 
simulating the predictand time series during the validation 
period (independent  data  set)  as  described  in  Table 2  
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Table 4. Summary of selected predictors and respective predictands at different stations at the Langat River Basin. 
 

Station ID Predictand Selected predictors AIC P-value 

1 

Precipitation 

P500, P500, P850, S850, SHUM, TEMP 51989.1 0.00* 

2 MSLP, P500, S500, S850, SHUM, TEMP 59494.1 0.00* 

3 MSLP, P500, S500, S850, SHUM, TEMP 52983.5 0.00*
 

4 P500, S500, S850, SHUM, TEMP 60377.2 0.00*
 

5 MSLP, P500, S500, S850, SHUM, TEMP 54613.7 0.00* 

6 P500, S500, S850, SHUM, TEMP 59707.4 0.00*
 

7 P500, P850, S500, S850, SHUM, TEMP 55967.9 0.00*
 

8 
TMax MSLP, P500, P850, PRCP, S500,S850, SHUM,TEMP 4803.3 0.00*

 

TMin MSLP, P500, P850, S500, S850, TEMP -356.8 0.00* 

9 
TMax P500, P850, PRCP, S500, S850, TEMP 5835.6 0.00* 

TMin MSLP, P500, P850,PRCP,S850,SHUM -3523.3 0.00*
 

10 
TMax MSLP, P500, PRCP, S500, S850, TEMP 6980.7 0.00* 

TMin MSLP, P500, PRCP, SHUM, TEMP -3824.1 0.00*
 

 

*Significant at the 95% confidence level. 

 
 
 

Table 5. The characteristics of Artificial Neural Network with the best performance results for stations in the Langat 
River Basin. 
 

Station ID Predictand Learning rule Transfer function Hidden nodes 

1 

Precipitation 

CG Sig 65 

2 LM HT 60 

3 LM HT 60 

4 LM Sig 70 

5 CG Sig 55 

6 CG HT 60 

7 LM HT 55 

8 
TMax LM Sig 60 

TMin CG Sig 50 

9 
TMax LM Sig 50 

TMin LM Sig 55 

10 
TMax CG HT 50 

TMin LM HT 55 
 

CG: Conjugate Gradient; LM: Levenberg-Marquardt; M: Momentum; Sig: Sigmoid; HT: Hyperbolic Tangent. 

 
 
 
and Table 5 at all stations in the Langat River Basin. The 
performance results of the validation criteria include the 
SE, RMSE, and MAE of the satisfactory calibrated 
downscaling models, which are presented in Table 6. The 
results of the validation analysis indicated that the SDSM 
technique performed lower value of error (SE, RMSE, 
and MAE) in reproducing the observed time series of 
temperature and precipitation than the ANN model. 
Therefore, the SDSM model was more efficient in 
reproducing the inter-annual variability (less error value) 
of the mean daily precipitation and daily maximum and 
minimum  temperatures   compared   to  the  other  model 

(Sachindra et al., 2013). The result also showed less 
error values in downscaling the maximum and minimum 
temperatures than the precipitation by the two models. It 
is noted that the lower error (SE, RMSE, and MAE) 
values during the calibration and validation lead to the 
better performance of the model. 

The results of the Kolmogorov-Smirnov (KS) test in 
Table 6 indicated no significant difference between the 
produced mean values of precipitation by SDSM and the 
observed values at the 95% confidence level. The only 
acceptable modeling by the ANN was produced at 
Station 10 in  downscaling  the TMin  during  the validation
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Table 6. Model evaluation statistics during validation period for different downscaling methods for daily precipitation and 
temperature at the Langat River Basin. 
 

Station ID 
SDSM ANN 

SE MAE RMSE KS P-value SE MAE RMSE KS P-value 

1 7.45 3.75 4.81 0.79 12.91 8.14 8.33 <0.001* 

2 5.52 2.75 3.56 0.43 14.2 8.95 9.17 <0.001* 

3 4.56 2.34 2.94 0.19 12.9 8.17 8.33 <0.001* 

4 3.29 3.14 3.68 0.43 11.99 9.19 9.49 <0.001* 

5 5.69 3.19 3.64 0.43 14.71 9.19 9.36 <0.001* 

6 5.15 2.17 2.32 0.43 13.29 8.35 8.48 <0.001* 

7 6.89 3.68 4.43 0.43 11.62 7.10 7.50 <0.001* 

9 (TMax) 1.44 0.63 0.72 0.19 1.30 0.57 0.65 0.02* 

9 (TMin) 0.37 0.21 0.24 0.78 0.38 0.22 0.25 0.02* 

10 (TMax) 0.36 0.17 0.23 0.99 0.75 0.39 0.49 0.19 

10 (TMin) 1.27 0.66 0.83 <0.001* 0.6 0.29 0.39 0.43 

11 (TMax) 0.25 0.14 0.16 0.99 0.46 0.26 0.30 0.43 

11 (TMin) 0.64 0.44 0.45 0.02* 0.79 0.53 0.56 <0.001* 
 

KS: Kolmogorov-Smirnov test. 
 
 
 

Table 7. Statistical properties of downscaled rainfall (mm) for validation period at stations of the Langat River Basin. 
 

Station 
Ratio of simulated dry days Mean, SD 

SDSM ANN Observation SDSM ANN 

1 0.2 0.01 4.1, 10.4 6.4, 5.5 6, 2.1 

2 0.22 0.02 4.9, 11.6 6.5, 5.7 6.1, 2.4 

3 0.19 0.05 5.7, 12.8 8.1, 6.9 7.4, 3.4 

4 0.25 0.01 5.5, 12.8 6.1, 5.5 6.3, 2.9 

5 0.19 0.02 4.1, 11.1 6.2, 5.4 5.5, 1.8 

6 0.17 0.01 5.3, 12.1 7.2, 5.9 6.6, 2.6 

7 0.22 0.04 6.2, 13 8, 7.2 7.4, 3.3 

 
 
 
period. The results of KS test also showed that none of 
these downscaling models were capable to reproduce the 
mean monthly TMin at Station 11. 

The statistical characteristics of daily precipitation time 
series are important for the future projection of 
downscaling models. Table  7 illustrates the statistical 
characteristics of downscaled precipitation including the 
ratio of dry days, which were bracketed by downscaling 
models as well as mean and standard deviation (SD) in 
the validation period at the stations of the Langat River 
Basin. In addition to the better accuracy of the SDSM in 
simulating the historical observed time series, its skill in 
reproducing the number of dry days (P <1 mm) and SD of 
time series was more acceptable. In comparison, in these 
two downscaling techniques, it seems that the SDSM is 
more capable in simulating the number of dry day, wet 
day and SD of rainfall data. 

It is not unusual to receive negative  precipitation  value  

forecasts from the ANN models (Muluye, 2012). From 
this point of view, while the SDSM model was smart in 
generating non-negative values, the ANN technique 
performed negative values in daily rainfall during the 
validation period, respectively. 

For the maximum and minimum temperatures, while, 
the performance of the ANN method was acceptable in 
reproducing the mean observed values, the SDSM model 
produces qualified time series in reproducing the 
standard deviation of the observation (Table 8). 

As the average length of monthly dry-spell and wet-
spell length and variance of temperature are essential 
analysis measures, which are widely used to evaluate the 
reliability of the downscaled precipitation. In addition to 
considering the verification of mean monthly precipitation, 
a comparative plot of observed and downscaled variables 
is shown in Figure  3 as an example of all stations in the 
Langat   River   Basin.   These   results   showed   that  in
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Table 8. Mean and standard deviation of generated maximum and minimum 
temperatures (OC) during validation period. 
 

Station 
Mean, SD 

Observation SDSM ANN 

8 (TMax) 31.8, 1.53 31.2, 0.93 31.3,0.51 

8 (TMin) 21.5, 0.611 21.65, 0.94 21.7, 0.54 

9 (TMax) 31.8, 1.5 31.75, 0.74 31.77, 0.54 

9 (TMin) 23.6, 0.77 22.97, 0.44 23.4, 0.30 

10 (TMax) 32.72, 1.55 32.85, 0.86 32.64, 0.8 

10 (TMin) 24.1, 0.98 23.6, 0.51 23.53, 0.34 

 
 
 

comparison to the generated downscaled time series for 
precipitation and temperature and their observed 
counterparts, the SDSM model generated comparable 
results for mean, dry spell, wet spell length, and variance 
of maximum and minimum temperatures at all sites in the 
Langat River Basin. A dry and wet spell length was 
presented as the maximum number of consecutive dry 
and wet days in a month, respectively, which is computed 
for different downscaling models in the validation period 
as well as future projection periods (2030s and 2080s). 
While, the ANN model underestimated the mean daily 
rainfall, their performances were, however, reasonably 
better in simulating the monthly mean of the minimum 
and maximum temperatures. 

The performance of the ANN models in downscaling 
the mean, dry spell, and wet spell length behavior shows 
that these models are poor in generating the precipitation 
statistics that have been reported by Khan et al. (2006). 
In other words, these models overestimate the wet spell 
length, and underestimate the mean monthly precipitation 
and dry spell length in comparison to the SDSM 
technique (Figure  3). The poor performance may be due 
to the fact that these models tend to simulate the low 
value of precipitation even in dry days. In addition, the 
reasonable performance of the SDSM may be due to the 
use of conditional process in modeling the precipitation in 
time series. Therefore, the complexity of the regression 
models (ANN) alone is not sufficient in simulating the 
time series of climate parameters specially rainfall. 
Finally, the two downscaling models were applied to 
generate the future scenario (2030s and 2080s) of the 
rainfall, maximum and minimum temperatures as regional 
climatic variables at all stations. 
 
 
Generation of future climate scenarios 
 
Here, the future climate scenarios are generated for daily 
precipitation; mean daily minimum and maximum 
temperatures by two calibrated downscaling models 
including the SDSM, and ANN models in single site 
approach. In  all  of  these  downscaling  models,  the  A2 

emission scenario from CGCM3.1 T47 was used to 
produce the future climate scenario for 2030s (2020-
2049) and 2080s (2070-2099) periods. 
 
 
Projected daily precipitation 
 
The precipitation daily scenarios for the two future 
periods of 2030s and 2080s were generated at all 
stations in the Langat River Basin. The results of monthly 
mean precipitation and temperature, dry spell and wet 
spell length of the generated scenario of the climate 
variables in the 2030s and baseline periods are shown in 
Figure  4. 

It is indicated that while the mean monthly rainfall 
generated by SDSM technique, predicted an increase in 
the mean monthly rainfall at most of the stations, the 
other downscaling technique, anticipated a decrease in 
this value in two future projected periods compared to the 
current period (Figure  6). The average percentage of the 
change of mean monthly precipitation in the 2030s 
predicted by the SDSM, and ANN models at different 
stations varies between 34 to 113, and -70.9 to -48.4%, 
respectively. Therefore, the SDSM and ANN models 
predicted increasing and decreasing changes in mean 
monthly precipitation for the 2030s, respectively. The 
changes predicted by these models at different stations 
by the 2080s period are in the ranges between 25 and 
254 and -78.7 and -7.1%, respectively. As observed, the 
ranges of the variation of mean monthly rainfall at 
different stations by 2080s period are wider than those in 
the 2030s. The results of the box-Whisker statistics are 
shown in Figure  conform to this reality. The results of the 
SDSM show an increase in the values of rainfall through 
the southwest monsoon rainfall by 2030s compared to 
the baseline period. The comparative plots of monthly dry 
spell and wet spell lengths between the current period 
and downscaled daily precipitation in the 2030s period 
using two downscaling methods are shown in Figure  4 
for Stations 1 and 4 as an example.  

The results of the trend analysis using the Mann-
Kendall  and  Theil-Sen's Slope method for annual rainfall
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Figure 3. Examples of performance of two statistical downscaling models in monthly scale during validation period in 
the Langat River Basin. 

 
 
 
in two future periods are shown in Table  9. It illustrates 
that significant increasing trends exist in two future 
periods. The rate of changes in significant trends for the 
2080s  period  was  higher  than  that  in  the  2030s. The 

projected annual rainfall for two future periods at Stations 
2 and 3 did not indicate any significant trend for the two 
future periods at the 5% significance level. 

It  was   found   that    the    ANN    downscaling   model
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Figure 4. Examples of monthly indexes of precipitation and temperature for the 2030s period at three out of 10 stations of the Langat 
River Basin. 



 

 

Amirabadizadeh et al.          131 
 
 
 

Table 9. The Mann-Kendall and Theil-Sen's Slope method trend test results for annual rainfall and maximum and 
minimum temperatures generated by the SDSM during the 2030s and 2080s periods. 
 

Station Parameter 
S-value P-value Theil-Sen's Slope 

2030s 2080s 2030s 2080s 2030s 2080s 

1 

Precipitation 

81 245 0.15 <0.001* +11.4 +70 

2 137 215 0.014* <0.001* +30.4 +37.9 

3 -25 97 0.67 0.08 -3.5 +7.3 

4 103 103 0.07 0.07 +14.7 +10.3 

5 165 197 0.003* <0.001* +18.8 +66.7 

6 225 269 0.001* <0.001* +50.3 +94.1 

7 73 277 0.2 <0.001* +11.9 +140.3 

8 
TMax 57 55 0.31 0.34 +0.002 +0.002 

TMin 311 361 <0.001* <0.001* +0.031 +0.038 

9 
TMax 221 289 <0.001* <0.001* +0.01 +0.014 

TMin 335 359 <0.001* <0.001* +0.02 +0.026 

10 
TMax 269 273 <0.001* <0.001* +0.022 +0.028 

TMin 343 347 <0.001* <0.001* +0.021 +0.03 
 

*: Significant at the 95% confidence level. 
 
 
 

anticipated a decrease in dry spell and an increase in wet 
spell lengths in the 2030s and 2080s periods. Thus, this 
model predicted an increase in the number of rainy days 
and a decrease in the daily rainfall amount for this river 
basin in the 2030s and 2080s compared to the current 
period. As discussed in the calibration section, the ANN 
model showed poor estimation of dry and rainy days, 
therefore, its projection of dry spell and wet spell lengths 
for future periods are weak in comparison to the 
projection of the SDSM. This is the reason that the rate of 
changes, which predicted the ANN in the 2030s and 
2080s compared to the current period, is unrealistic and 
extremely high. On the other hand, the SDSM simulations 
of these statistics fluctuate in different months and 
stations. 

The analysis of generated precipitation time series by 
these models indicated that the predicted trend, which was 
generated for the 2030s, also continues in the 2080s period. 

The rate of change for dry spell and wet spell lengths by the 

SDSM is less than that of the other downscaling model. 
As mentioned before, the SDSM generated more 

reliable results during the validation period. Therefore, 
the maps of change percentage during the two monsoons 
seasons for the two future periods were created using the 
IDW technique for the study area (Figure  5). As can be 
seen, the flat area of the basin shows more change than 
the mountainous area in the future periods. In addition, 
the area close to cities illustrated higher percentage of 
change than area with forest land cover. 
 
 

Maximum temperature 
 

The projected mean maximum  daily  temperature  in  the  

month during the 2030s and 2080s under the A2 emission 
scenario (Figure 4 and Figure 6) were generated using 
two statistical downscaling methods. The downscaling 
results of the models indicated that most of sites in the 
river basin experience an increase in TMax during two 
future periods. The rate of change was positive in the 
southwest monsoon months (May to August) and slight 
declines were there in the northeast monsoon months 
(November to February). It can be seen that the results of 
the two models are consistent in predicting the positive 
and negative changes of TMax. In general, the SDSM, and 
ANN models predicted an increase in monthly TMax by 
0.37 and 0.62°C, respectively. Therefore, the SDSM 
projection illustrated smaller changes in TMax by the 
2080s period in comparison with the ANN model. The 
rate of future change produced by the SDSM, predicted 
lower change at Station 8 in comparison with other 
stations (Figure  6). As shown in Figure  1, this station is 
located in a mountainous area and forest land cover. The 
variance of generated daily maximum temperature during 
the first future period under the A2 emission scenario at 
Station 8 is illustrated in Figure  4. It shows that the 
variance of generated time series by the ANN model has 
less fluctuation over month during the 2030s period 
related to the SDSM. The SDSM model attempts to 
replicate the variance of maximum temperature in the 
current period for the 2030s and 2080s periods as the 
variance inflation adjustment in the calibration process of 
SDSM forced the model to follow the observed data 
(Wilby et al., 2002). 

The results of trend analysis indicated that, while there 
was a significant trend in the predicted annual TMax at 
Stations  9,  the  trend  test  did  not detect any significant 
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Figure 5. The percentage change of mean monthly precipitation during monsoons seasons in 2030s (a, c) and 2080s (b, d) 
periods predicted by SDSM. 

 
 
 
trend for two future periods at the 95% confidence level. 
The rate of changes in the significant trends obtained by 
Theil-Sen's test in the 2080s period was larger than that 
in the 2030s period. 

Minimum temperature 
 
The scenario outcome of the two downscaling models 
has  not shown a unique increasing or decreasing pattern 
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Figure 6. The Box-Whisker plot of future change for precipitation and maximum and minimum temperatures in 
2030s and 2080s at the Langat River Basin. 
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in the minimum temperature at the Langat River Basin. 
While the SDSM model expects a decrease in the mean 
values of TMin for the southwest monsoon months, the 
other downscaling model predicted increasing changes 
by the 2030s and 2080s periods. Almost both of the 
generated downscaling time series under the A2 
emission scenario showed the highest rate of change 
percentage by the 2030s and 2080s at Station 8, where 
located in a mountainous area in comparison with the 
stations in flat areas (Figure  1). 

The Box-Whisker of downscaled minimum temperature 
at the stations of this basin explored more variability in 
the generated minimum temperature than the maximum 
temperature time series. The downscaling results of TMin 
by the SDSM, and ANN models predicted a mean 
increase of 0.83 and 0.75°C at the stations of this basin 
by the 2030s, respectively. These rates were 2.2 and 
0.84°C for the 2080s period. As illustrated, both of the 
models forecasted an increase in TMin in both of the two 
future periods. 

The downscaled minimum temperature projected by 
the ANN model indicated the lower rate of variance at the 
stations of the Langat River Basin by 2030s in 
comparison with the SDSM. These results also indicated 
the mean variance of TMin by 1.0, and 0.16 in projected 
time series generated by the SDSM, and ANN models for 
the 2080s period. The Mann-Kendall test analysis 
detected an increasing trend in the annual TMin generated 
by The SDSM for the two future periods at all stations of 
the Langat River Basin. The Theil-Sen's Slope method 
obtained higher increasing rates in the annual TMin for the 
2080s than the 2030s period. The difference of change 
slopes in the 2030s and 2080s in predicted annual rainfall 
was higher than that for the annual maximum and 
minimum temperatures (Table  9). 
 
 
Conclusions 
 
This study examined the effects of the complexity of 
regression models in downscaling the climate variables in 
a tropical watershed in Malaysia. The performance of a 
multiple linear regression, called SDSM, and non-linear 
regression, called artificial neural network with three 
significant learning rules were evaluated in simulating 
presence and projecting the two future periods (2020-
2049, 2070-2099) of daily precipitation, maximum and 
minimum temperatures under the A2 emission scenario 
using CGCM3.1. The three learning algorithms were 
Momentum, Levenberg-Marquardt, and Conjugate 
Gradient. The daily precipitation, maximum and minimum 
temperatures from the beginning of recording period were 
used as weather inputs to the downscaling model. These 
two downscaling models were calibrated and validated 
using large-scale predictors NCEP/NCAR reanalysis data 
and   regional   climate   variables.   The   comparison   of  

 
 
 
 
generated time series illustrated that the SDSM was 
more accurate than the ANN model. While the SDSM 
showed more ability to catch the wet-spell and dry-spell 
length, the other model overestimated the wet-spell 
length, and underestimated the mean monthly 
precipitation and dry-spell length. The calibrated models 
for precipitation and temperature devised here performed 
relatively better in simulating the temperature, but 
relatively poor to capture the variability of precipitation. 

The SDSM predicted an increase in the mean monthly 
precipitation, while, the other model anticipated a decline 
in this value by the 2030s period. The range of these 
rates was wider for the 2080s than the 2030s period. The 
results of the SDSM showed an increasing change in 
rainfall through the southwest monsoon season rainfall in 
the 2030s compared to the baseline period. The time 
series of daily precipitation in the two future periods 
generated by the ANN downscaling model indicated a 
decrease in the dry spell and an increase in the wet spell 
length in the 2030s and the 2080s, which did not conform 
to the SDSM results. The downscaling models indicated 
that most of the sites in the river basin experience an 
increase for TMax during the two future periods, but the 
rate of change is more during the southwest monsoon 
month (May to August) and slightly less during the 
northeast monsoon (November to February). Therefore, 
warmer weather conditions in the two future periods were 
predicted by the downscaling models. The results of the 
SDSM and other downscaling model found different 
expectations in the prediction of TMin for the southwest 
monsoon season months. 

The SDSM predicted a decrease and the other 
downscaling model predicted an increasing trend by the 
2030s and the 2080s periods. Almost all the generated 
downscaling time series under the A2 scenario showed 
the highest rate of change percentage by the 2030s and 
the 2080s at Station 8, which located in a mountainous 
area in comparison with the stations in flat areas. 

The uncertainty in the estimation of means of the 
observed and downscaled daily precipitation as well as 
daily maximum and minimum temperatures has been 
measured by estimating confidence intervals about 
means and variance at different stations (Figure7). The 
uncertainty analysis of the estimates of mean and 
variance is performed by calculating the 95% non-
parametric bootstrap confidence intervals of these 
variables using the available data (Table 2). The 
uncertainty of mean and variance of the observed daily 
precipitation as well as maximum and minimum 
temperatures have been compared with the uncertainty 
of the downscaled mean and variance daily precipitation 
and maximum and minimum temperatures. The graphical 
plots of those uncertainty estimates are shown in Figure 
7. In the case of daily precipitation downscaling, This 
figure indicates that the ANN model variability is not close 
enough  with   the   observed   variability   but  the  SDSM
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Figure 7. The mean and variance confidence interval (C.I.) of downscaled precipitation as well as maximum and minimum 
temperatures at the stations of the Langat River Basin. 

 
 
 

variability are closer to the observed variability at all 
stations. The uncertainty of ANN and SDSM models 
indicated that the variability between the observed and 
simulated daily maximum and minimum temperatures 
cannot be considered equal at most of stations. 
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