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Analysis of spatial and temporal drought variability in the upper Tana River basin using Palmer Drought 
Severity Index (PDSI) was conducted. The drought is critical for formulation of mitigation measures in 
the river basin. A monthly temporal and 90-m spatial resolution was applied. This was achieved within 
ArcGIS environment. Climatic data for 1970 to 2010 was used for computation of the PDSI while the 
missing data sets were filled using Artificial Neural Networks (ANNs). The results of PDSI for dry and 
wet seasons at meteorological stations indicate that the time series plots for the PDSI values for dry 
season are generally lower than those for the wet seasons. The PDSI values for meteorological stations 
located at the lower elevation of the basin are lower than those located at higher elevation. On the other 
hand, spatially distributed drought severity based on PDSI show that the ranges of maximum and 
minimum drought severity values in 1970 are -0.868 to -0.804 and -0.675 to -0.610 respectively. These 
values of drought severity occur respectively in the north-western and south-eastern areas of the basin. 
PDSI values increased from the range -0.675 to -0.610 in 1970 and from -1.087 to 0.957 in 2010 for the 
north-eastern areas of the upper basin. The south eastern areas of the basin are more prone to drought 
risks than north-western parts. Use of the PDSI reflects the spatial heterogeneity and temporal 
variability of drought across the basin. The drought assessment offer technical approach for 
comprehensive understanding of drought for effective drought-induced disaster mitigation and its 
management, with a view to reducing adverse effects on livelihoods. 
 
Key words: Palmer Drought Severity Index (PDSI), drought severity, upper Tana River basin, monthly 
resolution, drought-induced disaster. 

 
 
INTRODUCTION 
 
Drought is a condition on land characterised by scarcity 
of water that falls below a defined threshold level. The 
term drought has been defined differently in numerous 

applications (UNDP, 2012). However, it is a challenge to 
quantitatively define the term.  Droughts may be 
expressed in terms of indices that depend on
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precipitation deficit, soil-water deficit, low stream flow, low 
reservoir levels and low groundwater level. Drought may 
be defined differently depending on the sector involved. 
For example, a hydrological-drought occurs whenever 
river or groundwater levels are relatively low. In addition, 
water-resources drought occurs when basins experience 
low stream flow, reduced water reservoir volume and 
groundwater levels. The water resources drought is 
influenced by climatic and hydrological parameters within 
a river basin and drought management practices. The 
hydrological drought, mainly deals with low stream flows. 
This drought adversely affects various aspects of human 
interest such as food security, water supply and 
hydropower generation (Karamouz et al., 2009; Belayneh 
and Adamowski, 2013). 

It is paramount to analyse and monitor drought due to 
its adverse effects. For the purpose of understanding 
drought, the hydro-meteorological variables are 
encapsulated into drought indices at river basin scales. 
These drought indices provide critical information on 
decision making (Quiring and Papakryiakou, 2003). In 
order to mitigate adverse drought impacts on water 
resources, ecosystems, economy and peoples 
livelihoods, it is paramount to undertake drought studies. 
Key drought studies should describe its characteristics 
such as temporal trends, spatial distribution of severity 
frequency and duration. Prior to formulation of drought 
mitigation mechanism in a river basin, it is essential to 
first describe its characteristics at the basin scale. 
Drought affects ecosystem response mechanisms and is 
thus perceived to influence the future of the global earth 
carbon balance (Bonal et al., 2016). 

In this study, upper Tana River basin was selected 
because it is a very important resource in Kenya. It is 
clipped from the larger Tana River basin; the largest river 
basin in the country that provide huge water resources. 
The upper Tana River basin has forest land resources 
located along the eastern slopes of Mount Kenya and 
Aberdares range which have a critical role in regulating 
the hydrology of the entire basin (IFAD, 2012). The basin 
is located within a fragile ecosystem that represents all 
agro-ecological zones of Kenya where water resource 
systems, hydro- power generation and food security are 
negatively impacted by frequent drought occurrences.  

A number of drought types have been recognized by 
previous researchers. According to Zoljoodi and 
Didevarasl (2013), there are four main categories of 
droughts; Hydrological, Meteorological, Agricultural and 
Socio-economic droughts. The first three types are called 
the operational droughts and can be integrated into a 
drought management process. Their relation can be used 
in development of water resources program within a river 
basin (Karamouz et al., 2003). Propagation of 
hydrological and agricultural drought starts from 
meteorological droughts induced by changing 
phenomena within the hydrological cycle (Figure 1).  

The     three    operational    types    of    droughts    are 
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interconnected. For instance, Agricultural drought links 
meteorological and/or hydrological drought to agricultural 
impact. Agricultural droughts impact negatively on 
farming systems whenever they occur. Their impacts are 
normally two-fold; environmental and economic impacts. 
The agricultural drought is a type associated with low 
agricultural production, increased food insecurity, decline 
in output from agro-processing industries and 
unemployment incidents in the agricultural sector. From 
the environmental perspective, agricultural drought is 
caused by insufficient precipitation, high temperature that 
causes elevated rates of evapo-transpiration, increased 
salt concentration in the crop root zones and soils within 
irrigation systems (Mishra and Singh, 2010). The term 
environmental drought is sometimes used to address the 
adverse effects of extremely low flows on ecosystems, and 
may be analysed in the emerging field of eco-hydrology. 

Based on purpose for research, drought indices have 
previously been developed and applied on drought 
studies. Some of the most common drought indices 
include palmer drought severity index (PDSI), 
standardized precipitation index (SPI), surface water 
supply index (SWSI), soil moisture deficit index (SMDI), 
vegetative index (VI) and stream flow drought index 
(SDI). In the present study, PDSI was used to analyse 
drought episodes in the uppar Tana River basin. 

Several coefficients which are calculated to define local 
hydrological characteristics influenced by precipitation 
and temperature are calculated for use in PDSI. These 
coefficients depend on soil water capacity of the principal 
layers. The PDSI has been applied on a number of 
catchments for detecting and planning of drought relief 
programmes (Loucks and Van Beek, 2005). In the 
present study, spatial and temporal drought variability in 
the upper Tana River basin was analysed using Palmer 
Drought Severity Index (PDSI) to detect the drought 
prone areas and the severity drought events for the 
period 1970 to 2010. 

 
 
MATERIALS AND METHODS 
 
Study area 
 
The study area; upper Tana River basin is located within latitudes 
00° 05' and 01° 30' south and longitudes 36° 20' and 37° 60' east. 
The study area covers 17,420 km2 and is illustrated in Figure 2).  

Upper Tana River basin is a portion of the Kenya’s largest rivers 
system called Tana River basin (Jacobs et al., 2004; WRMA, 2010). 
There are very important vast land and forests on eastern slopes of 
Mount Kenya and Aberdares range within the study area. The river 
basin greatly regulates the hydrological processes (IFAD, 2012) 
and as subsequently influence the hydro-electric generation. This 
basin is plays a key role in hydro-electric generation, water supply 
and agricultural production in Kenya. 
 
 

Climatic data acquisition 
 
The data, precipitation, potential, soil moisture content and
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Figure 1. Propagation of drought via hydrological cycle. 

 
 
 
temperature were used in computation and analysis Palmer 
Drought Severity Index (PDSI). The climatic data ranged from 1970-
2010 (41 years) were used in this study. Part of this data was 
available while the missing data was estimated for all variables. The 
available data was on daily time step but had to be re-organized 
into monthly average time scales for all the variables to match with 
the data requirements of the present research. The daily stream 
and monthly flow data was obtained from the Ministry of 
Environment and Natural Resources, and Water Resources and 
Management Authority (WRMA). 

In the upper Tana River basin, data from twenty four 
meteorological stations were obtained from the Ministry of Water 
and Irrigation. The stations provided meteorological; precipitation, 
temperature, evaporation data. The data were then subjected to 
exploratory data processing. It was found out that only eight 
stations had reliable and sufficient data. Where the available data 
contained less than 20% data gaps, then these data were selected 
for computation of the PDSI. The eight stations used in the study 
(Table 1) were also objectively located within the low (LE), lower 

middle (LME), middle (ME) and high (HE) elevations.  The stations 
are located at different agro-ecological zones of the basin. 

 
 
Consistency test of the climatic data 

 
A double-mass curve was fitted for the collected hydro-
meteorological data to test for consistency. The homogeinity of 
climatic data time series data was conducted to detect for any 
possible errors resulting from the data measurements. In addition, 
homogeneity was used to check for the fluctuations due to climate 
changes. The cumulative total climatic variable, precipitation were 
computed for each station and then plotted against the cumulative 
total of an adjacent station (Figure 3). Any sudden change in the 
gradient of the double-mass curve was considered to indicate 
inconsistency in the data. Although there were some changes at 
some points on the curves for some stations, it was considered 
insignificant for the present study. 
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Figure 2. The location of the upper Tana River basin in Kenya. 

 
 
 

Table 1. Meteorological stations. 
 

S/No. Station name Station ID 
Coordinates 

Elevation (m) 
Longitude (Degrees) Latitude (Degrees) 

1 MIAD 9037112 37.350 -0.700 1246 

2 Embu  9037202 37.450 -0.500 1494 

3 Kerugoya DWO 9037031 37.327 -0.382 1598 

4 Sagana FCF 9037096 37.054 -0.448 1234 

5 Nyeri  9036288 36.970 -0.500 1780 

6 Maragua G. E. F. 9036212 36.850 -0.750 2296 

7 Naro-Moru F.G.P. 9037064 37.117 -0.183 2296 

8 Mangu HS 9137123 37.033 -1.100 1630 

 
 
 
Filling in missing data 
 
The meteorological stations; 9037064, 9037112, 9037031, 
9137123, 9037202, 9037096, 9036288 and 9036212 (Table 2) had 
continuous data for 26, 28, 35, 32, 40, 35, 40 and 23 years 
respectively. The data for each station was partitioned into training 
and validation data sets comprising 70% and 30% respectively of 
the total continuously recorded data. 

In this study, the ANN structure for each station was obtained by 
considering different input neurons for different time delays; t, t-1, t-

2,…, t-n, in the input layer. The number of input variables was equal 
to the input neurons. The initial number of hidden neurons of the 
ANN model architecture was determined using the procedure adapted 
from Belayneh and Adamowski (2012) where the hidden layer 
neurons were initially set at 2n+1 where n is the input neurons. The 

Hidden Neurons (HN) were then increased and decreased through 
trial and error technique for data sets at each hydrometric station. 
This resulted to an output that was taken as the estimated variable. 

The output layer comprises neurons in all the networks that are 
equal to the following month’s variable value (It+1). In this study, the
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Figure 3. Double mass curve based on precipitation upper Tana River basin. 

 
 
 
Table 2. Dominant soils for the upper Tana River basin. 
 

Elevation Dominant soil type MC at saturation % MC at field capacity % MC at wilting point % AWC (%) TAW (mm) 

HE Andosols 60 40 24 16 172 

ME Nitosols 53 31 22 9 98 

LME Cambisols 48 28 14 14 74 

LE Ferralsols 53 26 17 9 82 
 

HE, ME, LME, LE means highest elevation, middle elevation, lower middle elevation and lowest elevation respectively. Source: Hunink et al. (2009). 

 
 
 
Feed Forward Neural Network (FFNN) and Recursive Neural 
Network (RNN) were applied and tested in the model training. 
Initially three different training algorithms were applied to train the 
structures. These were the back-propagation (BP), Levernberg-
Marquardt (LM) and Conjugate Gradient (CG) algorithms. From 
preliminary results, it showed that a three-layer feed forward neural 
network with different input and hidden neurons was superior in 
performance, and that the best results were also obtained using the 
LM training algorithm. Thus the best ANN structure of three-layer 
feed forward network based on LM training algorithm was adopted 
for filling in of missing data in this study. The data was first 
normalized at each station before exporting it into the graphical 
user interface (GUI) of the MATLAB. This was done by applying the 
function given in Equation (1) which was adapted from Morid et al. 
(2007). 
 

 
 

 minmax

minmax

min
min XX

xx

xX
XX o

n 



             (1) 

 
Where, 
Xn = normalized value 
Xmin = the selected minimum value for standardization 
Xmax = the selected maximum value for standardization 
Xo = original value 
xmin = minimum value present in the original data set 
xmax = maximum value present in the original data set. 
 
All the input and output values for ANN were normalized to range 
between Xmin of equal to 0.1 and Xmax of less  than  1.  According  to 

Morid et al. (2007), the values of the Xmin 0.1 and Xmax of 0.9 
perform best for drought indices such as SPI and EDI. Thus these 
values were adapted for this study.  After normalization, the various 
drought forecasting ranges were determined. 

For each of the ANN model run on the graphical user interface 
(GUI) of the MATLAB performance was evaluated based on the 
correlation coefficient R and Mean Square Error (MSE) criteria and 
the best model. The best ANN models were then adopted for filling 
any missing data for respective hydro-meteorological stations. The 
steps that were followed in filling the missing data are summarized 
in Figure 4. 

 
 
Computation of drought using PDSI 

 
The Palmer Drought Severity Index (PDSI) was developed based 
on a criterion for determining the beginning and end of drought or 
wet period spell (Palmer, 1965; Wang, 2010). It is a simple monthly 
water balance model which requires rainfall, temperature and 
catchment soil moisture content as input parameters. This tool 
applies a concept of supply and demand over a two-layer model. In 
this concept, the difference between the quantity of precipitation 
needed to maintain a natural water balance level and the actual 
precipitation is determined. The index does not consider stream 
flow, reservoir water balance, and other hydro-meteorological 
variables that influence the drought (Karl and Knight, 1985; Yan et 
al., 2013a; b). The index has been modified and applied by a 
number of researchers. For instance Wondie and Terefe (2016) 
used a self-calibrated PDSI to assess drought in Ethiopia for the 
period 1901 to 2014). 
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Figure 4. Flow chart of the steps used 
in filling the missing data using ANN. 

 
 
 

The Palmer Drought Severity Index (PDSI) was computed using 
precipitation, temperature and the local Available Water Content 
(AWC) of the soil as the input variables. The available water 
capacity (AWC) and Total Available Water (TAW) were estimated 
based on the dominant soil characteristics for the each elevation 
band of the upper Tana River basin. For the gauge stations within 
the four partitions of elevation bands, the AWC values adapted for 
PDSI computation were 172, 98, 74 and 82 mm which were based 
on values given in Table 2, for defined dominant soil types. Table 3 
shows some of the physical and chemical properties of the 
dominant soils. 

The PDSI was determined by getting the difference between 
actual precipitation and water deficiency or surplus in any given 
month i. This was achieved by applying the relation: 
 

iii PPd ˆ               (2) 

 
Where, di = difference between actual precipitation and pi and the 
climatically appropriate for existing conditions (mm) 
Pi = actual precipitation (mm) 

iP̂ = an indicator of water deficiency or surplus in month i. 

Wambua et al.          183 
 
 
 
The water deficiency or surplus was estimated from the relation: 
 

iiii PLPROPRPEP  ˆ            (3) 

 

Where, iP̂ = an indicator of water deficiency or surplus in month i  

(mm). 
PEi = potential evapo-transpiration of month i (mm). 
PRi = potential recharge that gives the quantity of water required to 
bring the soil to its water holding capacity (mm). 
PROi = the potential runoff (which is defined as the difference 
between the precipitation and potential recharge (mm). 
PLi = potential loss or the amount of soil moisture that could be lost 
from soil by evapo-transpiration during a zero precipitation period 
(mm). 
 
The potential evapotranspiration was estimated using Hargreaves 
method adapted from Sivaprakasam et al. (2011) given as: 
 

    5.0

minmax78.170023.0 TTTRPE meana     (4) 

 
Where, PE = potential evapotranspiration (mm/month). 
Ra = solar/extra-terrestrial radiation (MJ m-2 month-1). 
Tmean = mean monthly temperature (°C). 
Tmax = maximum monthly air-temperauture (°C). 
Tmin = minimum monthly air-temperature (°C). 
 
The α, β, γ and δ are climatic coefficients which provide mean value 
averaged within the base period. These coefficients were computed 
from the following relations: 
 

PE

ET
  , 

PR

R
 , 

PRO

RO
  and 

PL

L
         (5) 

 

Where, ET = mean actual evapo-transpiration (mm). 

PE = mean potential evapo-transpiration (mm). 

R = mean actual recharge (mm). 

PR = mean potential recharge (mm). 

RO = mean actual runoff (mm). 

PRO = mean potential runoff (mm). 

L = mean water loss due to evapo-transpiration when precipitation 
is zero (mm). 

PL = mean potential water loss (mm). 
 
The values of monthly PRi, PROi and PLi were derived from the 
generated results of soil water content for every month i using the 
technique given by Yan et al. (2013a; b). These variables were 
calculated from the following relations: 

 

1 ii SWAWCPR              (6) 

 

iii PRAWCSWPRO  1
            (7) 

 

 1,min  ii SWPEPL              (8) 

 
The di was then converted into indices of moisture anomaly zi which 
was calculated using the equation: 
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Table 3. Physical-chemical properties of the dominant soils (Muchena and Gachene, 1988). 
 

Soil type 
Particle size distribution (%) 

Organic carbon content (%) Nitrogen content (%) 
Sand Silt Clay 

Andosols 5 35 60 2.20 0.66 

Nitosols 16 10 74 0.76 0.25 

Cambisols 56 22 22 5.77 1.10 

Ferralsols 35 15 49 2.3  

 
 
 

Table 4. Classification of drought based on PDSI. 
 

Value of index Drought classification 

4.00 or more Extremely wet 

3.00 to 3.99 Very wet 

2.00 to 2.99 Moderately wet  

1.00  to 1.99 Slightly normal   

-0.50  to -0.99 Incipient wet 

0.49 to -0.49 Near normal 

-0.50 to -0.99 Incipient drought 

-1..00 to -1.99 Mild drought 

-2.00 to -2.99 Moderate drought 

-3.00 to -3.99 Severe drought 

-4.00 or less Extreme drought 

 
 
 

ii dkz  1              (9) 

 
Where, kc = climatic characteristic that was estimated using the 
relation: 
 

 
 LP

RPE
k




1

            (10) 

 
The PDSI function was used in this study is of the form: 
 

1

1897.0
C

Z
XPDSI i

ii  
                          

(11) 

 
Where, PDSI = The PDSI for the ith month 
Xi-1 = previous months PDSI 
Zi = Palmer Moisture Anomaly Index (PMAI) 
 

The value of PDSI for the initial month of was taken as equal to

1C

Z i . 

The Zi (PMAI) is expressed as: 

 

ii d
kD

DC
Z 


12

1 2

2
           

(12) 

 
Where, k2 = weighting factor 
d = water deficiency (mm) 
c2 = conceptual parameter 
D = absolute value of d 
In this study, a C2 value of 438.91 adapted from Yan et al. (2013a; b)  

was used. The k2 which is a function of average water demand and 
supply (Barua, 2010; Yan et al., 2013a; b; Zoljoodi and Didevarasl, 
2013) was estimated using the relation: 
 

 
  41032 log C

DLP

RORPE
Ck 



















            

(13)

 

 

 

Where, D = mean of the absolute values of d 
The conceptual parameters C3 and C4 were equated to 1.2459 

and 3.3684 respectively adapted from Yan et al. (2013a; b). The 
computed PDSI values were used to classify drought conditions 
based on the threshold levels given in Table 4 which was adapted 
from Palmer (1965) and Castano (2012). The drought severity was 
computed for 1970 and 2010 based on the severity equation. The 
area for each severity class was captured using the ArCGIS and 
summarized in Table 5. 
 
 
Computation of drought severity 
 

Evaluation of spatial distribution of drought severity 
 

The sum of drought severity (DId) values below zero during each 
year for the study period was calculated. The probability P of 
drought occurrence was determined by dividing the number of 
months that had DI values less than zero by 12 months of the year. 
The drought severity was then computed at each station using the 
relation: 
 





N

N

d PDIS
1

               (14) 
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Table 5. Drought Category-Area-Distribution (CAD) as detected using PDSI for October in 1970 and 2010. 
 

Drought category Drought criterion 
1970 2010 

Area (km
2
) % Area (km

2
) % 

Extreme drought -4 or less 3758.01 21.57 4540.36 26.06 

Severe drought -3 to -2.99 1784.90 10.25 2537.551 14.57 

Mild drought -2.00 to -2.99 2062.56 11.84 1675.444 9.62 

Slight drought -1.00 to -1.99 2643.58 15.18 1824.072 10.47 

Normal  0.49 to -0.49 1946.48 11.17 1964.556 11.28 

Slightly wet 2.00 to 2.99 1782.32 10.23 1893.08 10.87 

Moderate wet 3.00 to 3.99 1681.05 9.65 1420.637 8.16 

Extremely wet 4.00 or more 1761.10 10.11 1564.297 8.98 

 
 
 

 
 

Figure 5. Time series of PDSI for dry seasons of at MIAD meteorological station. 

 
 
 
Where, S = annual drought severity for a defined year 
DId =The sum of drought severity values below zero during a 
particular year 
P = probability of drought occurrence for the defined year 
N=period in months in the year (=12 months in this case). 
 
The resulting data was then used to estimate spatial distribution of 
drought severity using the Krigging estimator in the ArcGIS 10.1. In 
this study, sixteen hydrometric stations within the upper Tana River 
basin were used for hydrological evaluation. These stations have 
unique geographical location and their spatial extent was created 
through the application GIS. The GIS tool was used to compute and 
present the spatial distribution, variation and trends of droughts for 
PDSI. 

 
 
RESULTS 
 
Temporal drought patterns of the PDSI 
 
Figures 5 and 6 illustrate the frequencies and duration  of  

integrated seasonal droughts and wet spells as detected 
by the PDSI. For Figures 5 to 8, within the four decades, 
moderate (PDSI=-2.00 to -2.99), severe (PDSI=-3.00 to -
3.99) and extreme (PDSI=-4 or less) droughts were 
detected using the PDSI during the dry season in the 
MIAD station. 

For the Naro-Moru meteorological station, moderate 
(PDSI=-2.00 to -2.99), severe (PDSI=-3.00 to -3.99) and 
extreme (PDSI=-4 or less) droughts were detected during 
the dry season.  Figures 7 and 8 that the PDSI time 
series values for MIAD meteorological station (ID 
9037112) located at the lower elevation of the upper 
Tana River basin are lower than those for the Naro-Moru 
station (ID 9037064). 

Results of the mean monthly temporal PDSI values 
indicate that March and April exhibit moderate (PDSI=-
0.200) and extreme (PDSI=-4.00) droughts respectively. 
For the months of September, October and November 
extreme (PDSI<-4.00), incipient (PDSI=-0.5) and extreme
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Figure 6. Time series of PDSI for wet seasons at MIAD meteorological station. 

 
 
 

 
 

Figure 7. Time series of PDSI for dry seasons at Naro-Moru meteorological station. 

 
 
 
(PDSI=-0.400) droughts are detected annually. 

The rest of the months have positive PDSI values 
indicating wetness of different magnitudes in the river 
basin (Figure 9). 

The area under extreme and severe droughts are 
3758.01 (21.57%) and 1784.90 (10.25%) respectively for 
the year 1970 while the values for 2010 are 4540.36 
(26.06%) and 2537.55 (14.57%) respectively as given in 
Table 6. 
 
 
Spatially distributed drought severity based on PDSI 
 
The results of spatially distributed drought severity based  

on PDSI show that the ranges of maximum and minimum 
drought severity values in 1970 are -0.868 to -0.804 and -
0.675 to -0.610, respectively. 
 
 
DISCUSSION 
 
The spatial and temporal drought was found to 
significantly change for the period 1970 to 2010. The 
temporal variability of drought from 1970 to 2010 is 
described by negative values that indicate droughts of 
different severity and duration while the positive ones 
correspond to wet conditions. The findings indicate that 
extreme drought occurred twice in the four decades. It is
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Figure 8. Time series of PDSI for wet seasons at Naro-Moru meteorological station. 
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Figure 9. Monthly average PDSI for the period 1970 to 2010. 

 
 
 
observed that for dry seasonal PDSI, the values in the 
months of January to March (J-M) are constantly higher 
than the ones for July to September (J-S). By comparing 
the time series PDSI values for dry and wet seasons for 
the meteorological stations, it can be seen that the time 
series plots for the PDSI values for dry season are 
generally lower than those for the wet seasons. The PDSI 
time series values for meteorological stations located at 
the lower elevation of the upper Tana River basin were 
lower than those for the stations which located at higher 
elevation.  Thus, the PDSI results indicate that the areas 
within the lower elevations are more prone to drought 
risks than those in higher elevations. From the results of 
spatially distributed drought magnitude, there is a general 
increase in area under the extreme and severe drought 
as given by PDSI from 1970 to 2010. The distribution of 
extreme and severe drought categories dominate in the 
south-eastern parts of the upper Tana River basin while 

extreme wet and moderate wet conditions dominate the 
north-western areas. Thus, south-eastern parts of the 
basin have the highest risk of experiencing high drought 
magnitudes (Figure 10). However, the north-western areas 
have the lowest drought risks. Comparing the findings 
with similar research by Yan et al. (2013a; b) in Luanhe River 
basin, showed that the lowest PDSI values (PDSI< -4.00) 
are persistently observed in the north-western areas of 
Luanhe basin. On the other hand, the south-eastern areas 
of the upper Tana River basin exhibit similar lowest values 
of PDSI (PDSI< -4.00). The drought severity gave maximum 
and minimum drought severity values occurring respectively 
in the north-western and south-eastern areas of the basin. 
The maximum and minimum severity values increased 
from -1.478 to -1.348 and from -1.087 to -0.957 in 2010 
as presented in the results. There was an increase in 
drought severity over the years of record (Figure 11). The 
trend  in  spatial  PDSI  severity  values  over  time
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(a). PDSI-based drought for the year 1970 

 
(b) PDSI-based drought for the year 2010  

 

Figure 10. Spatially distributed magnitude of PDSI-based drought in October. 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(b) Drought severity for 1990 

 

(c) Drought severity for 2000 

 

(d) Drought severity for 2010 

 

(a). Drought severity for 1970 

 
 

Figure 11. Spatially distributed PDSI-based drought severity. 



 
 
 
 
compared closely with the spatial patterns trend 
explained as by Zoljoodi and Didevarasasl (2013). For 
instance, these authors showed that the PDSI severity 
values increased from -1.28 (1951-2005) to -7.68 (1999-
2002) in Iran. In comparison with the present study, the 
results show that the PDSI increased from the range -
0.675 to -0.610 in 1970 and from -1.087 to 0.957 in 2010 
for the north-eastern areas of the upper Tana River 
basin. Thus, the findings can be used in decision making 
especially in prioritized drought mitigation measures 
within the river basin. 
 
 
Conclusion 
 
Spatial distribution of drought indicates that south-eastern 
parts of the basin are the most susceptible to droughts 
while the north-western areas are least prone to the 
droughts. From the results of spatially distributed drought 
magnitude, it can be seen that there is a general increase 
in area under the extreme and severe drought as given 
by PDSI from 1970 to 2010. The application of the PDSI 
reflects the spatial heterogeneity and temporal variability 
of drought across the upper Tana River basin. The 
drought assessment from this study offer technical 
approach for comprehensive understanding of drought for 
effective drought-induced disaster mitigation and its 
management, with a view to reducing adverse effects on 
livelihoods in the river basin. The findings show that the 
lowest PDSI values (PDSI< -4.00) are persistently 
observed in the north-western areas of upper Tana River 
basin. On the other hand, the south-eastern areas of the 
upper Tana River basin exhibit similar lowest values of 
PDSI (PDSI< -4.00). By comparing the time series results 
of PDSI for dry and wet seasons indicate that the 
temporal drought detected by PDSI values for dry season 
are generally lower than those for the wet seasons. The 
results of the study can be incorporated in drought early 
warning system and reduce adverse impacts of drought 
on water resources, ecosystems and peoples livelihoods. 
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