Essay

Presentation du theorem

BARRY Louqman

Telecommunications/ICT Program, École Supérieure Multinationale et Télécommunications (ESMT), Ouagadougou, Burkina Faso.

Received 4 September, 2023; Accepted 13 September, 2023

INTRODUCTION

From Albert Einstein to theoretical physics professor Stephen Hawking, researchers have long sought to unify the infinitely small (elementary or subatomic particles) with the infinitely large (planets, galaxies, the universe, etc.). Following a need by Professor PH-Perez in the book electromagnetism in a material medium and in a vacuum, even if it means unifying the electric constant and the gravitational constant, I have developed a theorem which unifies the infinitely small with the infinitely large. The physical formula contains four constants (the Planck constant, gravitational, gravitational, and electric) and four fields (the gravitational, gravitational, electromagnetic fields, and the Higgs field which is the unification of other fields). I have been working on this theorem for six years.

DESCRIPTION OF THE THEOREM

Inventory
-P: weight vector;
-e1, e2, e3 vectors;
-P=mg;
-H0: Higgs boson defined in volts or newtons;
-μ0: vacuum magnetization;
-C: celerity;
-x(y): x to the power of y;
-£o: epsilon Zero (£0 = 1/(µ0*C^(2));

E-mail: louqmanbary55@gmail.com, Tel: +226 60106079.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
-h: Planck constant;

-h = 6.62607015.10^{-34} \text{ ds};

-Rau = bulk density;

-Nabla.E (scalar nabla the field E= divergence of the vector E);

-div (-grad.V) = -Rau/\varepsilon_0 (Rau divide by \varepsilon_0);

-E= -grad (gradient) V;

-V: voltage;

-(-i\beta): complex value of e2;

-k: electrical constant;

-Q: load;

-r^3 = volume of the cube;

-E: electromagnetic field;

-g: gravity constant;

-G: gravitational constant;

-G(M): gravitational field;

-g: gravity field;

-m: mass;

-T: the period;

-a: acceleration;

-f: frequency;

-QUAGMA: quarks, gluons, plasma

-\delta * E = hv or E=hf;

DESCRIPTION OF THE THEOREM

Description of the ore me

In the inertia theorem we have:

mg = ma => g = a

And in gravitational interactions we have:

mg = mG => g = G
so under certain conditions we:

\[a = g = G \]

Here "a" is the acceleration of QUAGMA.

The QUAGMA grows by describing successive squares of increasing size (golden figure and Fibonacci constant). However, it contains the three interactions, namely:

- the fundamental interaction;
- weak interaction;
- strong interaction;

When we bring together or unify the strong and weak interaction as well as the electromagnetic field, they combine to give the Higgs field. Therefore it is the acceleration of QUAGMA which describes the beginnings of the universe in this theorem, but in the theorem already established they are there.
In this theorem the universe is described as being a growing cube always boosted by the acceleration of the QUAGMA. For the case where we have "i" instead of "-i" we will have a negative mass therefore by

Consequently, the antimatter of the universe has negative mass (like the core of the sun).

NB: vector E * h bar /2 = E ar ^ 3 vector E * h bar/2 is not part of the Theorem.

From the parameter G we have:

G(M) = GMT/r^3; G(M) is equal to GMT divide by r cubed

The theorem is as follows:

The mass in this physical formula represents the mass of the infinitely large (stars, planets, galaxies, etc.), and q represents the electric charge of the particles.

When we take the Value of delta E in the previous equations and determine it, we have a very large, almost infinite quantity of energy. Having unified the infinitely small with the infinitely large, the planets and subatomic particles circulate in cubes (here the distribution is volumetric and not surface like in EINSTEIN's relativity where the stars circulate on a curved surface fabric, but here the stars circulate in cubes as in the figure that describes the universe) that is to say that they are quantified, they are arranged by level.

In mathematics, multiplying the two members of an equation by the same term does not change the equation. This is the case with h bar scalar E. To have the constant gravitational in the theorem we draw the distance r in the following parameter:

G(m) = GMT/r ^ 3

we now draw the distance we will have:

GMT = G(m) * r ^ 3 => r = cube root of (GMT/G(m))

And here is the gravitational constant which contained in the distance r
\[\frac{1}{2} \dot{E} \left(\frac{1}{2} m v^2 + \frac{1}{2} \frac{3}{4} m v^2 \right) = \frac{3}{4} m v^2, \text{ avec } t = \frac{1}{2} \]

et

avec \(v = \dot{a} \), \(a \) : acceleration ; \(r \) : côte du vide

Multiplions les deux membres de l'équation par \(\frac{1}{2} \)

\[\frac{1}{2} \dot{E} \left(\frac{1}{2} m \frac{3}{2} \dot{h}^2 + a r t \frac{1}{2} m \frac{3}{2} \dot{h}^2 \right) = a r t \frac{1}{2} \dot{h} \dot{E} m \frac{3}{2} \]

\[a r t \frac{1}{2} \dot{h} \dot{E} \]

\[\dot{h} \dot{E} \]

\[\dot{h} \dot{E} \quad \text{art} = \frac{\dot{h} \dot{E}}{2} \quad \text{art} \]

\[a = g = 6 \quad \text{avec} \quad g(m) \quad \text{m} \quad \text{divisé par} \quad \frac{G M^2}{r^3} \]

\[E = E' \quad ; \quad E = k \sum_{i=1}^{n} \frac{1}{r_i} \]

et \(E' = \frac{P}{E_0} \)

\[\frac{\dot{h} \dot{E}}{2} \rightarrow \text{art} + \frac{\dot{h} \dot{E}}{2} \text{art} = \frac{\dot{h} \dot{E}}{2} \text{art} ; \text{art} \]

\[\frac{\dot{h} \dot{E}}{2} \rightarrow \text{art} + \frac{\dot{h} \dot{E}}{2} \text{art} = \frac{\dot{h} \dot{E}}{2} \text{art} ; \dot{h} \dot{E} : \text{infiniment petit} \]

\[\text{ou il y'a } g \quad \text{or } g = a = 6 \quad ; \quad \frac{\dot{h} \dot{E}}{2} \text{art} + \frac{\dot{h} \dot{E}}{2} \text{art} = \frac{\dot{h} \dot{E}}{2} \text{art} \]
more condensed the size of the matter (particles, atoms, molecules, etc.), the longer the Higgs Boson has a lifetime.

For example in the atmosphere of the planet Earth the matter is neither large nor condensed, on the other hand in the
universe the matter is large and condensed therefore the Higgs Boson will have a long lifespan thus giving rise to matter
condensed and large which is nothing other than dark energy.
This theorem describes the beginnings of the universe and its expansion to the present day, just as Gaussian expansionary theory describes the beginnings of the universe.
Dans la suite de mes travaux, dans l'infiniment petit en la présence d'une particule sans masse d'où le boson de Higgs. La démonstration est:

$$P = -i \hbar \frac{\hat{E}}{\hat{p}}$$

$$\hat{p} = \frac{m \hat{g}}{-i \hbar} \Rightarrow \hat{p} = \frac{m \hat{g} x \varepsilon_0}{i \hbar}$$

Calcul de dimension

$m : \text{kg}$, et $g = N/\text{kg} \equiv \text{N}. \text{kg}^{-1}$

On aura:

Soit x la résultante du calcul de dimension

on a:

$$x = \frac{kg \times N}{kg} \quad \text{ou} \quad x = kg \times N \cdot \text{kg}^{-1}$$

$$\Rightarrow x \in N \quad \text{ou} \quad x = kg \cdot N \Rightarrow x = \frac{kg}{N} \cdot x = A \cdot N$$

La masse est inexistante pour au dans l'infiniment petit qui, dont la particule n'est rien d'autre que le boson de Higgs.
Dimension calculation

We will have the Higgs boson multiplied by the unit of farad / by meter / by volume. The dimension calculation is as follows:

\[\text{Ho} = \text{the Higgs boson is expressed in newtons here with the symbol } N \]
\[\varepsilon_0 = \text{is expressed in farad/meter with the symbol } F/m \]
\[1/Rau = \text{the inverse of the volume is expressed here in } 1/\text{volume with the symbol } 1/l \text{ or } (1/m^3) \]

The dimension will be: \([N][F]/[m^4]\]

CONCLUSION

The design of this theorem will make it possible to solve many problems in the field of physics. However, it can be used in the field of health and many other areas.