
 

Vol.14(4), pp. 163-172 October-December 2022 

DOI: 10.5897/JAERD2022.1334 

Articles Number: AFF81EA69754 

ISSN: 2141-2170  

Copyright ©2022 

Author(s) retain the copyright of this article 

http://www.academicjournals.org/JAERD 

 

 

Journal of Agricultural Extension and Rural 
Development 

 
 
 
 
 
 

Full Length Research Paper 

 

Predicting the adoption of multiple climate-smart 
agriculture technologies in Tambacounda and  

Kolda, Senegal 
 

Beckie Nantongo1,2*, Joseph Ssekandi2, Ablaye Ngom1, Birane Dieng1, Ndongo Diouf1,  
Jules Diouf1 and Kandioura Noba1 

 
1
Faculty of Science and Techniques, Département de Biologie végétale, Université Cheikh Anta Diop de Dakar,  

P. O. Box 5005, Dakar-Fann, Senegal. 
2
Faculty of Agriculture, Uganda Martyrs University, Nkozi, P. O. Box, 5498, Kampala, Uganda. 

 
Received 30 May, 2022; Accepted 22 September, 2022 

 

Uptake of farming technologies by smallholder farmers is necessary to speed up the transition to 
climate-smart agriculture so as to address the potential impacts of climate change on agricultural 
production, food security, and reduction of greenhouse gas emission. Using survey data from 341 
households, this study analyzes the factors that determine the probability and level of adoption of 
multiple climate-smart agriculture technologies. The technologies assessed were improved crop 
varieties, minimum tillage, timely planting, fertilizer and manure use, agroforestry, and diversified 
farming (crop and animal production). A multivariate probit model was applied for the simultaneous 
multiple adoption decisions and to evaluate the determinants of adoption, allowing for the examination 
of synergies and trade-offs between the technologies. The adoption of various climate-smart agriculture 
technologies and practices was interrelated. Several factors, including the gender of the household 
head, age, literacy level of the household head, land size, farmers’ group membership, access to 
extension services, access to weather information, and trust in weather information were found to 
affect the probability and level of climate-smart agriculture adoption. The study, therefore, calls for 
agricultural policy reforms so that most of the issues related to the uptake of climate-smart agriculture 
technologies can be effectively addressed. In addition, strategies that focus on building household 
resources as a pathway for improved adoption of new technologies are recommended. 
 
Key words: Climate-smart agriculture, multiple adoption decisions, multivariate probit model. 

 
 
INTRODUCTION  
 
The agriculture sector supports the livelihoods of over 1.5 
billion people worldwide and is critical in the fight  against 

extreme poverty and hunger especially in developing 
nations (World  Bank, 2009). However, changes in rainfall  
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amounts, temperature, seasonal patterns, and the 
emergency of pests and diseases attributed to climate 
change have caused fluctuation in production and a 
decline in productivity (Mburu et al., 2014). The effects of 
climate change on West African agriculture have a huge 
impact on approximately 71 to 95% of farmers (Ou et al., 
2018). Efforts to address the effects of climate change on 
agriculture, particularly among smallholder farmers, have 
sought to enhance innovation and access to technologies. 
As a result, effective practices for coping with the impacts 
of climate change and variability have been promoted 
(Beddington et al., 2011). Adoption of Climate-Smart 
Agriculture (CSA) technologies is one of the new ways 
suggested. Climate-smart agriculture is widely promoted 
as a solution to food insecurity, combating greenhouse 
gas (GHG) emissions, and improving food system 
resilience to climate change, especially amongst 
smallholder farming communities (Winowiecki et al., 
2015; FAO, 2011). Previous research by Gwambene 
(2011), Nyanga et al. (2011), and Phillipo et al. (2015), 
revealed that farmers understand their environment and 
develop practices to alleviate the impact of climate 
change. Furthermore, a study by Lobell et al. (2008) 
indicated that farmers use technologies that are deemed 
viable and capable of increasing production and food 
security. Some of the CSA technologies used by 
smallholder farmers are popular and are applied for a 
long time, while others are applied for a short time 
(Taneja et al., 2019). According to Phillipo et al. (2015) 
crop rotation is a common method applied for a long time 
and is acknowledged for enhancing smallholder farmers' 
food security and revenue. In addition, minimum tillage, 
fertilizer and water management, diverse crop 
establishment techniques, and compost integration can 
boost crop yields, nutrient and water efficiency, and 
minimize GHG emissions from agricultural activities 
(Branca et al., 2011; Sapkota et al., 2015). Similarly, ICT-
based agro-advisories, the use of improved seeds, 
rainwater harvesting, and crop/livestock insurance can 
also help farmers mitigate the impact of climate change 
and variability (Altieri and Nicholls, 2017). The many CSA 
choices, in general, blend innovation, traditional 
practices, services, and innovations that are applicable 
for a specific place in order to adapt to climate change 
and variability (FAO, 2013). Although smallholder farmers 
have evolved the ability to adapt to environmental change 
and climate unpredictability over time, climate change is 
exceeding their responsiveness. 

According to Nyanga et al. (2011) smallholder farmers' 
abilities to manage agricultural difficulties and CSA 
adoption choices differ. In most cases, farmers operating 
under low-input smallholder farming systems in the least 
developed countries consider and prioritize technologies 
that provide immediate advantages in terms of increased 
productivity, food security improvements, and adaptability 
and are less prone to embrace practices that increase 
carbon sequestration and reduce emissions (Campbell et  

 
 
 
 
al., 2014). As a result, trade-offs between adaptation and 
mitigation aims may be necessary. It is therefore critical 
to consider farmers' perceptions, the complexity of 
agricultural systems, and their ability and willingness to 
adapt for sustainability when enhancing their adaptive 
capacity (Coulibaly et al., 2015). This usually necessitates 
an assessment of the  social, cultural, socioeconomic, 
and technical components at the household level, as well 
as the biophysical conditions of a certain region, as well 
as the characteristics of technological advances (Zerssa 
et al., 2021; Deressa et al., 2011; Below et al., 2012). 

In this study, adoption of climate-smart crop 
technologies was limited to timely planting, use of 
improved crop varieties, diversified farming (crop and 
animal production), agroforestry, fertilizer and/or manure 
application, and minimum tillage. This study examines (i) 
the level of adoption of six technologies often considered 
as CSA across the regions, (ii) factors that determine the 
adoption or non-adoption of multiple CSA technologies, 
and (iii) complementarities and substitutability between 
technologies using socioeconomic data and climate 
information from the study areas. 
 
 
MATERIALS AND METHODS  

 
Study site  

 
The research was carried out in two regions of Senegal: 
Tambacounda and Kolda (Figure 1). The major economic activity in 
both regions is agriculture with millet, sorghum, maize, and 
groundnuts being the major crops grown. 

 
The mean temperature 

range of both regions is between 25
 
and 40°C, while the annual 

rainfall ranges from 700 to 1000 mm, most of which is received 
between July and October (ANSD, 2015a, b; Bakel 2011). The 
study area was chosen because it is a major agricultural zone in 
Senegal and is also a representative of many similar climate-
vulnerable locations in West Africa.  

 
 
Data collection methods  

 
Both quantitative and qualitative research designs were used in this 
study. Stratification was accomplished through the use of pre-
existing administrative areas. For this study, the two administrative 
regions were divided into seven strata. Random sampling was used 
in each stratum to select respondents. A total of 341 farming 
households were surveyed; Tambacounda (N = 170) and Kolda (N 
= 171). Respondents in each region were selected randomly with 
the help of local leaders and departmental agricultural offices with a 
focus on households that had smallholder farmers. Then, using 
proportionate sampling, each rural commune was represented 
proportionally depending on the number of smallholder farmers 
that lived there. 

Data collection was conducted by the researcher and seven 
other field research assistants who were trained before the data 
collection process. Quantitative data were gathered through a 
questionnaire administered by an interviewer that included both 
closed and open-ended questions. The questionnaire contained 
structured and short-response questions and was divided into two 
sections. The first section focused on participant demographic data 
while  the  second section consisted of questions on the adoption of  
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Figure 1. Map of the study area.  
Source: Survey data 2020 

 
 
 
CSA technologies. Qualitative data was collected through key 
informant interview guides. The questions were translated into the 
local languages for respondents who could not understand French.  
 
 
Econometric framework and estimation strategy 
 
Stata 16 software was used for data analysis. To capture farmers' 
decision-making process for the adoption of single or multiple 
technologies, a multivariate probit (MVP) model was applied. The 
MVP model was further utilized to study the interdependence of 
diverse technologies by examining their correlations, as well as to 
establish the determining factors for CSA technology adoption. This 
is because a farmer could use a combination of CSA technologies, 
and the preference to use one technology may be determined by 
decisions to use other technologies (Kassie et al., 2013; Ndiritu et 
al., 2012). This makes adoption decisions inherently multivariate. 
Using univariate approaches (univariate multinomial logit and probit 
models) in this situation could lead to biased estimates or omission 
of critical information because of the assumed independence of 
error terms of the different CSA technologies (Greene and Hensher, 
2003). Therefore, the multivariate probit model aids in the 
identification of potential complementarities (positive association) 
and substitutability (negative association) across CSA technologies. 
Household characteristics, household economic characteristics, 
information sources, input access, experience in farming, and 
access to and trust in weather information were all factors that 
could impact farmers' decisions to adopt CSA technologies (Table 
1). 

To characterize the MVP model, a series of binary variables CSAi 
were used, where each technology was given a distinctive index i 
which took the values (1, 2, ……6) representing the CSA 
technologies, and X denoted a set of determining variables. 
Therefore, random variables (CSAi) represented the CSA 
technology chosen by any farming household. The assumption was 
that an individual farmer might select a combination of 
technologies, which were further assumed to be influenced by a set 
of household characteristics, household resources, social and 
institutional synergies, and other elements (X). Therefore, the MVP 
model was characterized by a set of binary dependent variables 
(CSAjpn) meaning that, 
 

                                    (1) 

 

                                             (2) 

 
In this case, CSA

*
 jpn is the latent variable while βnʹ is the 

corresponding vector of parameters to be assessed. Equation 2 
presumes that a rational farmer has a latent variable, CSA

*
 jpn, that 

captures the unobserved preferences linked with the nth choice of 
CSA technology. This latent variable was presumed to be a linear 
combination of household social characteristics, household 
economic characteristics, information sources, input access, 
experience in farming, and access to and trust in weather 
information   (Xjpn)   that    are   observed   to   be   determining   the  
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Table 1. Description of variables used in the study. 
 

Variable Description of variables Mean Std. Dev. 

Dependent variable     

Improved crop varieties Dummy = 1 if Improved seeds are used and 0 if otherwise  0.51 0.50 

Minimum tillage Dummy = 1 if Minimum tillage is practiced and 0 if otherwise 0.53 0.50 

Timely planting Dummy = 1 if Timely planting is practiced and 0 if otherwise 0.78 0.41 

Fertilizer /manure Dummy = 1 if fertilizer and/or manure are used and 0 if otherwise 0.89 0.32 

Agroforestry Dummy = 1 if Agroforestry is practiced and 0 if otherwise 0.48 0.50 

Diversified framing  Dummy = 1 if a diversified farming system is practiced and 0 if otherwise 0.72 0.52 

    

Explanatory variable     

Household (HH) characteristics   

Household head is male Dummy = 1 if the gender of the household head is male, 0 otherwise  0.70 0.46 

Age of male HH head Age of male -headed households in years 43.62 14.98 

Literate HH head Dummy = 1 if literate and 0 if otherwise 0.65 0.48 

Marital status  Dummy = 1 if married 0 if otherwise 0.92 0.27 

Household size (#) Total household members 12.25 6.34 

    

Economic characteristics   

Agricultural land (ha) Total amount of agricultural land in hectares 5.02 5.62 

Income levels  Dummy = 1 if has medium or high income 0 if otherwise 0.14 0.35 

    

Sources of information and inputs access   

Framers group membership Dummy = 1 if member of a farmers’ group 0 if otherwise 0.30 0.46 

Extension services Dummy = 1 if has access to extension services 0 if otherwise 0.48 0.50 

Input Access Dummy = 1 if has access to Agricultural inputs 0 if otherwise 0.84 0.37 

    

Farming experience, access to weather information, trust in weather forecast and peer influence     

Crop farming experience  Experience in crop farming in years 4.52 0.87 

Weather information Dummy = 1 if has access to weather information 0 if otherwise 0.76 0.43 

Trust in weather forecast  Dummy = 1 if has trust in weather information 0 if otherwise 0.77 0.42 

Peer influence  Dummy = 1 if influenced by peers to adopt CSA 0 if otherwise 0.94 0.25 
 

Source: Survey data 2020 

 
 
 
simultaneous selection of technologies, as well as the unobserved 

elements that are captured by the stochastic error term jpn. Owing 

to the nature of the latent variable, the estimations in this study 
were based on observable binary discrete variables CSAjpn, which 
indicate the adoption or non-adoptio of a particular technology by 
the farming household. 

In the multivariate probit model where a choice of adopting 
multiple CSA technologies is possible, the error terms jointly follow 
a multivariate normal distribution (MVN) with zero conditional mean 
and variance normalized to unity (for identification of the 
parameters) where (μy1, μy2, μy3, μy4….) MVN ~ (0, Ω) and the 
symmetric covariance matrix Ω is given by: 

 

                  (3) 

where  indicates the pair-wise correlation coefficient of the error 

terms corresponding to any two CSA technologies. If these 
correlations in the off-diagonal elements in the covariance matrix 
become non-zero, it justifies the application of a multivariate probit 
instead of a univariate probit for each CSA technology.  
 
 

Description of data and variables 
 
Table 1 shows the definitions and descriptive statistics for all of the 
variables utilized in the analysis. Technologies and practices are 
classified as dependent variables while determinants (factors 
defining adoption) are categorized as explanatory variables. For 
this study, six technologies were investigated. Their levels of 
adoption, complementarities, substitutability, and factors influencing 
adoption were all examined. We hypothesize that adoption 
decisions for these CSA technologies are interconnected. If the 
error terms of several decision equations are significantly 
correlated, then this hypothesis holds. These six technologies were 
chosen depending on preexisting beliefs that they could each 
achieve  one  or even more CSA goals, as well as their relevance to  
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Table 2. Pair-wise correlation coefficients across CSA technologies for MVP regression equations. 
 

CSA technologies  Minimum tillage Timely planting Fertilizer/manure Agroforestry Diversification 

Improved crop varieties   -0.406 (0.514) 0.046* (0.687) 1.832*** (0.413) 0.258 (0.436) 0.498** (0.212) 

Minimum tillage   1.773*** (0.407) 0.547 (0.643) 0.318 (0.458) -0.354* (0.188) 

Timely planting    0.230 (0.719) 0.102 (0.401) 0.358* (0.193) 

Fertilizer    -0.138 (0.360) 0.526*** (0.194) 

Agroforestry     0.609*** (0.135) 
 

Likelihood ratio test of rho21 = rho31 = rho41 = rho51 = rho32 = rho42 = rho52 = rho43 = rho53 = rho54 = 0: 2(10) = 10.2196,  Prob > 

2 = 0.0042. *, **, and *** refer to significant at 90, 95 and 99% confidence level; standard errors are reported in parentheses.  
Source: Survey data 2020 

 
 
 
the farming systems in the study area. In responses to yes or no 
questions, respondents indicated whether they had adopted a 
practice. 

 
 
RESULTS  
 
Adoption of multiple CSA adoption 
 
The results show that smallholder farmers in 
Tambacounda and Kolda have adopted several CSA 
technologies simultaneously, suggesting a correlation 
between decisions they have made about their CSAs 
preferences. Pair-wise correlation coefficients across the 
residuals of the multivariate probit model are used to 
assess this hypothesis. Eight pair-wise correlation 
coefficients across the residuals of the multivariate probit 
model were statistically significant (at P<0.01, 0.05, and 
0.1), among the 15 pairs of CSA technologies (Table 2). 
There is a correlation between error terms in multiple 
decision equations, according to the results. Based on 
the likelihood ratio test, the null hypothesis of zero 
covariance of the error terms across equations is rejected 

(2(10) = 10.2196; Prob > 2 = 0.0042). Minimum tillage 
and diversification were shown to be significantly and 
inversely correlated (Coef. = -0.354*) (Table 2), indicating 
that farmers regard these CSA technologies to be 
substitutes or incompatible. For other CSA pairings such 
as improved crop varieties and timely planting (Coef. = 
0.046*), improved crop varieties and fertilizer and/or use 
(Coef. =1.832***), improved crop varieties and 
diversification (Coef. = 0.498**), minimum tillage and 
timely planting (Coef. = 1.773***), timely planting and 
diversification (Coef. = 0.358*), fertilizer and/or manure 
use and diversification (Coef. = 0.526***), agroforestry 
and diversification (Coef. = 0.609***), farmers primarily 
see them as complements, as evidenced by their strong 
and favorable association. 

 
 
Multiple CSA adoption determinants  
 
The results  of  the  multivariate  probit  model  generated 

using the maximum likelihood method are shown in Table 

3. The Wald test (Wald 2(84) = 249.32; Prob > 2 = 
0.000) rejects the null hypothesis that all regression 
coefficients in each equation are jointly equal to zero, 
indicating that the model fits the data well. This 
demonstrates the model's relevance in accounting for 
unobserved correlations between preferences to 
implement a combination of CSA technologies. The 
findings reveal that depending on the CSA technology, 
the effects of the explanatory variables on the likelihood 
of adoption differ significantly. 

The results show that among the household 
characteristics, male-headed households were more 
inclined to adopt timely planting (Coef. = 0.363*). In 
addition, older household heads were more inclined to 
use improved crop varieties (Coef. = 0.009*), use 
fertilizers and/or manure (Coef. = 0.023***), had a 
diversified farming system (Coef. = 0.011*), and practiced 
agroforestry (Coef. = 0.011**). Households belonging to a 
literate head were more likely to use improved crop 
varieties (Coef. = 0.298*) and had a diversified farming 
system (Coef. = 0.346**) but were less likely to adopt 
minimum tillage practices (Coef. = -0.493***). Concerning 
household resources, the larger the agricultural land, the 
more the likelihood of adopting fertilizer and/or manure 
use (Coef. = 0.149***), while reducing the probability of 
adopting agroforestry (Coef. = -0.031**). For information 
sources, farmers belonging to village groups and 
cooperatives had a higher probability of adopting 
minimum tillage (Coef. = 0.281*) and use improved crop 
varieties (Coef. = 0.331*). Additionally, farmers with 
access to extension services were more inclined to use 
improved crop varieties (Coef. = 0.459***), use fertilizers 
and/or manure (Coef. = 0.237***), and had a more 
diversified farming system (Coef. = 0.406**) but were less 
inclined to adopt minimum tillage (Coef. = -0.728***) and 
agroforestry (Coef. = -0.316**). Farmers with access to 
inputs were less inclined to adopt minimum tillage (Coef. 
= -0.494*). Farmers with access to weather information 
had a higher probability of using improved crop varieties 
(Coef. = 0.834***), fertilizers and/or manure (Coef. = 
0.755***), adopt minimum tillage (Coef. = 0.601***), 
timely planting  (Coef. = 0.870***), had diversified farming  
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Table 3. Estimates of the multivariate probit model of explanatory variables and adoption of CSA technologies. 
 

Variable Improved crop varieties Minimum tillage Timely planting Fertilizer/Manure Agroforestry Diversification 

Household characteristics       

Gender (1=Male)  0.123 (0.178) -0.062 (0.178) 0.363* (0.189) -0.253 (0.242) -0.058 (0.170) 0.106 (0.183) 

Age (Years) 0.009* (0.005) -0.001 (0.005) -0.001 (0.006) 0.023*** (0.008) 0.011** (0.005) 0.011* (0.006) 

Education (1=Educated) 0.298* (0.156) -0.493*** (0.156) -0.059 (0.174) 0.139 (0.207) 0.048 (0.150) 0.346** (0.162) 

Marital status (1=Married) -0.212 (0.289) 0.319 (0.299) -0.084 (0.313) -0.702* (0.389) -0.374 (0.275) -0.200 (0.305) 

Household size (#) -0.011 (0.012) 0.006 (0.012) -0.004 (0.013) -0.012 (0.016) 0.014 (0.012) -0.000 (0.012) 

       

Economic characteristics       

Agricultural land (ha) -0.014 (0.014) -0.017 (0.014) -0.022 (0.016) 0.149*** (0.048) -0.031** (0.014) 0.018 (0.018) 

Income levels (1=Medium and high) -0.083 (0.214) 0.030 (0.204) 0.089 (0.243) 0.074 (0.317) -0.123 (0.205) -0.128 (0.227) 

       

Sources of information and inputs access      

Framers group membership (1=Member) 0.331* (0.170) 0.281* (0.166) -0.195 (0.182) 0.301 (0.251) 0.107 (0.162) -0.221  (0.179) 

Extension services (1= Has Access) 0.495*** (0.159) -0.728*** (0.163) 0.087 (0.182) 0.237*** (0.235) -0.316** (0.157) 0.406** (0.179) 

Input Access (1= Has access) 0.186 (0.215) -0.494** (0.228) -0.202 (0.238) 0.266 (0.257) 0.022 (0.204) 0.106 (0.213) 

       

Farming experience, access to weather information, trust in weather forecast and peer influence  

Crop farming experience (Years) 0.027 (0.083) -0.027 (0.085) 0.055 (0.096) 0.075 (0.120) -0.075 (0.082) -0.024 (0.093) 

Weather information access (1=Access) 0.834*** (0.189) 0.601*** (0.190) 0.870*** (0.191) 0.755*** (0.223) 0.429** (0.182) 1.002*** (0.182) 

Trust in weather forecast (1= Has trust) 0.147 (0.178) -0.085 (0.173) 0.400** (0.187) -0.129 (0.262) -0.197 (0.168) 0.052 (0.185) 

Peer influence to adopt CSA (1= presence of influence) -0.010 (0.289) -0.350 (0.283) -0.485 0.374) -0.035 (0.398) -0.284 (0.278) 0.454 (0.286) 

Constant -1.583** (0.634) 0.994 (0.629) 0.352 (0.723) -0.459 (0.877) 0.339 (0.597) -1.361** (0.656) 

Observations 341 341 341 341 341 341 
 

Likelihood ratio test of rho21 = rho31 = rho41 = rho51 = rho61= rho32 = rho42 = rho52 = rho62 = rho43 = rho53 = rho63 = rho54 = rho64 = rho65 = 0: Log likelihood = -985.2079; Wald 2(84) = 249.32; 

Prob > 2 = 0.000. *, **, and *** refer to significant at 90, 95 and 99% confidence level; standard errors are reported in parentheses. 
Source: Survey data 2020 

 
 
 
systems (Coef. = 1.002***), and engage in 
agroforestry (Coef. = 0.429**). On the other hand, 
those farmers that had trust in the weather 
forecasts received were more likely to adopt 
timely planting (Coef. = 0.400**).  
 
 
DISCUSSION 
 
The study findings show that farmers adopted 
several  CSA   technologies   simultaneously,  this 

indicates an association among the multiple CSA 
technologies. Other studies of similar design by 
Aryal et al. (2018) and Kurgat et al. (2020) have 
also produced similar results. The study findings 
emphasize the need of appreciating the potential 
interconnection in multiple technology adoption 
decisions while establishing the elements that 
drive technology adoption. 

The study indicates that male household heads 
are more inclined to adopt timely planting. 
According   to  Mutoko   et   al.  (2015)   males  as 

household heads are the de facto owners of 
production resources making them the major 
decision-makers on how the various factors of 
production are to be allocated especially when it 
comes to technology acquisition, therefore the 
power they have is a major determinant or barrier 
to the adoption of CSA technologies. Additionally, 
heads of households who are older were more 
inclined to utilize improved crop varieties and 
fertilizers, adopt a diversified farming system as 
well   as   practice   agroforestry.  The  age  of  the 



 
 
 
 
household is considered a strong determinant in 
adoption. Older people usually have adequate access to 
physical assets (agricultural lands), capital resources 
(borrowed funds), human and social resources (farm 
experience, technical know-how, loyalty, trust), and 
technological resources (access to technologies). These 
factors have an impact on the adoption of CSA 
technologies (Akrofi-Atitiant et al., 2018). According to 
Mwongera et al. (2017) older household heads practices 
diversification because they have the resources to meet 
the labour requirement for management of various 
agricultural enterprises e.g. weeding and harvesting 
especially when some crops mature faster than others. 
Additionally, studies by Hassan et al. (2016), Tamirat 
(2020), and Zerssa et al. (2021), indicate that older 
farmers have a high concern about how to deal with 
insufficient food for their households and the effects of 
the changing climate especially in third world countries, 
therefore, engaging in diversified farming and 
agroforestry allows them to combine the production of 
diverse products and services inorder to meet a wider 
range of needs. This is supported by  Kassie (2016) and 
Amare et al. (2019) whose studies indicate that adopters 
of agroforestry had a 17% increase in yields and a 7% 
increase in revenue compared to non-adopters. This 
means that agroforestry presents opportunities for food 
security because some tree species can withstand 
stressful climates and can produce fruits because of the 
ability through their deep root systems, to absorb 
moisture from subsurface water sources. The various 
fruits produced become a source of additional food and 
revenue for households of smallholder farmers (Tamirat, 
2020; Hassan et al., 2016). Mwongera et al. (2017) argue 
that agroforestry usually requires specific knowledge 
regarding methods of combining different plants, their 
compatibility, and effects on each other; such knowledge 
is normally available with older people because of the 
vast experience they have acquired over time. 
Furthermore, older farmers are more likely to be 
members of cooperatives and farming organizations; 
through these organizations, farmers are linked to 
training on land management practices (use of organic 
matter), can easily access agricultural inputs (improved 
crop varieties, fertilizers, and tree seedlings), and are 
linked to markets for their agricultural products  (Shames 
et al., 2016). 

The results further indicate that households belonging 
to an educated head are more prone to utilize improved 
crop varieties and have a diversified farming system but 
are less inclined to adopt minimum tillage practices. The 
level of education and the number of school years have 
continually determined the desire to adopt CSA 
technologies or become a barrier among smallholder 
farmers. Studies show that heads of households with at 
least a primary education level have opportunities to 
obtain additional revenue from off-farm employment 
which increases their ability to purchase  inputs  and  hire  
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extra labour to incorporate farming techniques like farm 
diversification (Aryal et al., 2018; Branca and Perelli, 
2020; Bagagnan and Barry, 2017; Peterson, 2014). 
According to Marenya et al. (2017) and  Etim and Udoh 
(2019) farmers with more school years are more inclined 
to utilize complex practices due to their ability to obtain, 
synthesize and utilize information and experiment with 
novel innovations. Therefore, the education level of the 
household head may have an impact on the decision to 
adopt new technologies meaning that the more illiterate 
household heads have fewer chances of adopting CSA 
technologies.  

The results also show that respondents with larger 
agricultural land had a higher probability of utilizing 
fertilizer and/or manure, while the odds of adopting 
agroforestry were low. Adoption of organic manure use 
might be credited to the fact that the area of study is 
immensely engaged in livestock keeping while fertilizer 
use could be attributed to the presence of government 
subsidies in Senegal. The government involvement was 
brought about by the world food crisis of 2007-2008 that 
affected the Senegalese economy immensely, the 
government thereafter decided to improve the agricultural 
production efficiency through the provision of fertilizer 
subsidies up to 50% with a focus on farmers that have an 
average plot size above the 2.5 ha (Seck, 2016). A study 
in Nigeria by Etim and Udoh (2019) indicated that the 
farm size has a positive and considerable impact on the 
decision to use fertilizer efficiently. The study further 
showed that the probability of choosing efficient fertilizer 
use rose by 3.08% when the farm area was increased by 
1 ha. However, Donovan (2004) suggests that subsiding 
and utilization of fertilizers can compel farmers to 
abandon land-use practices like minimum tillage and low-
input agroforestry, which are more sustainable and 
profitable. A study in Ethiopia by Zerssa et al. (2021), 
indicated that the less likelihood of adoption of 
agroforestry could be as a result of rising fuelwood 
demand, unsecured land tenure, and labor shortage to 
carry out the laborious and expensive de-stamping task. 
Other reasons may include difficulty in accessing the 
seeds, insufficient knowledge of the tree types to use, the 
inability of the trees to provide quick tangible benefits to 
the farmers since they may take a long time to mature. 
This is because farmers are usually constrained 
financially, therefore most of them will need to see quick 
results from a particular technique (Mohammed, 2016; 
Mwongera et al., 2017). Consequently, agroforestry tends 
to be less preferred than other CSA technologies. 

Farmers belonging to farmers’ groups and village 
cooperatives were more inclined to adopt minimum tillage 
and use improved crop varieties. Additionally, farmers 
with access to extension services were more inclined to 
utilize improved crop varieties, have a more diversified 
farming system, use fertilizers and/or manure but were 
not likely to adopt agroforestry and minimum tillage. 
Farmer  groups  and  extensionists  serve  as channels of  
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information for CSA adoption. Agricultural support from 
various entities including the government is usually 
extended to organized farmer groups through the field 
officers or government extension workers. According to 
Jasmine and Wright (2020) and Seck (2016) the 
government of Senegal through its agricultural 
enhancement campaign provides subsidies (75% on 
improved seed, 50% on fertilizer, and rudimentary tools 
e.g., seeders, hoes, plows, and carts) to farmers’ 
cooperatives through the extension workers at the 
departmental level. This means that such benefits can 
easily be accessed by farmers who are members of 
organized farmer groups. In Nigeria,  a study by Etim and 
Udoh  (2019) indicated that farmers associated with 
agricultural cooperatives were more inclined (8.18%), to 
choose improved high-yielding varieties. This is because 
such farmers accessed vastly different ideas, information, 
and training which eventually change their attitude toward 
innovation positively. The same study further indicated 
that one additional extension visit increased the likelihood 
of utilizing enhanced high-yielding cultivars by 17.20% 
while the overall probability of choosing to adopt any CSA 
technology due to extension contact increased by 
28.10%. Therefore, successful agricultural technology 
adoption necessitates an appreciation of the need to 
adopt, knowledge of available options, the ability to 
analyze those options, and the ability to select and 
implement the most appropriate solutions from the 
available options. 

Farmers with access to weather information were more 
inclined to utilize improved crop varieties, use fertilizers 
and/or manure, adopt minimum tillage, and timely 
planting, have diversified farming systems, and engage in 
agroforestry. On the other hand, those farmers that had 
trust in the weather forecast received were more likely to 
adopt timely planting. A report by FAO (2015) indicated 
that access to weather forecasts by farmers facilitates 
long-term decisions for example a choice to cultivate a 
certain type of crop, investing in technologies like water 
management systems, buying agricultural machinery, 
and increasing agricultural land. Furthermore, access to 
weather information aids farmers in the management of 
their daily activities (e.g., planting and fertilizer or manure 
application) plus other critical considerations like crop 
variety selection, input utilization intensity, crop diversity, 
field selection, and off-farm operations. Weather 
information is also important when making strategies for 
diversifying incomes, managing risks, and limiting climate 
change's negative effects. DeLonge et al. (2016) assert 
that the most underlying factor that has highly affected 
the adoption of CSA technologies lies in the acceptability 
of weather information, or what most scholars call trust. 
This is supported by a study conducted by Kniveton et al. 
(2014) in Tanzania which indicated that following the 
explanation of scientific weather forecasts and the 
opportunity to test their reliability over two seasons, the 
participating farmers'  groups  relied  heavily  on  them  to  

 
 
 
 
guide their agricultural activities. By the end of the 
second season, it was evident that farmers had 
developed trust in scientific weather forecasts. The study 
also indicated that farmers had an increment greater than 
15% in their maize production in a single season which 
was attributed to the trust they had in the weather 
forecasts. This is because they considered the weather 
forecasts relevant to their production process and were, 
therefore, able to use them to choose the best feasible 
option like the use of Crop varieties that mature early, 
employed agricultural approaches that have the ability to 
with-stand short rain periods, use of contour bunds and 
channeling rainfall into cultivated areas. 
 
 
Conclusion  

 
This study was conducted to examine the adoption of 
multiple CSA technologies and the drivers of adoption of 
six CSA technologies in two regions in Senegal to better 
understand the mechanisms and barriers that can 
prevent the widespread acceptance of new agricultural 
technologies. Eight pair-wise correlation coefficients 
across the residuals of the multivariate probit model were 
statistically significant, out of the 15 pairings of CSA 
technologies. Several patterns emerge when considering 
adoption determinants across the six technologies. First, 
10 of the 14 variables examined significantly facilitate or 
hinder adoption. Secondly, only access to weather 
information significantly influenced adoption for all the six 
technologies.  

Thirdly, access to extension services significantly 
influenced the adoption of five out of the six practices 
while the age of the household head and literacy level of 
the household head significantly influenced the adoption 
of four and three out of the six technologies, respectively. 
The other 6 of the 9 significant factors influenced only 
one or two technologies. The study underscores that the 
policies and programmatic efforts that affect the adoption 
of one CSA technology may also influence the adoption 
of others because trade-offs and complements exist 
between these technologies. This suggests a need to 
focus on agricultural policies and programs that can 
accelerate the dissemination and adoption of multiple 
CSA technologies to help safeguard agricultural 
production and food security. Additionally, local factors 
must be considered and solutions must be designed in 
conjunction with the communities where programs and 
policies are implemented. Therefore, for CSA to have the 
desired impact, (i) mitigation of GHGs, (ii) increased 
productivity, and (iii) resilience of agricultural systems of 
the agricultural sector, it must be applied across a 
multitude of geographical, social, economic, and political 
contexts. It is therefore essential to understand obstacles 
and enablers of CSA adoption in order to design and 
formulate meaningful interventions. As a result, CSAs will 
be widely  disseminated,  agricultural production and food  



 
 
 
 
security will be improved and environment conservation 
will be attained.  
 
 
Recommendation  
 
There is a need for government collaboration with the 
private sector, including farmers, private traders, and 
agricultural research centers, to scale-out CSA 
technologies. Furthermore, CSA training for farmers, 
government extension personnel working with local 
communities, and the utilization of efficient communication 
techniques to disseminate and promote knowledge on 
CSA use are crucial in the fight against the global 
challenge of climate change. Policymakers at all levels 
must recognize that CSA adoption is influenced by a 
variety of factors, including institutional support, farmer 
capabilities, resource endowment, and knowledge and 
skills. The incorporation of these factors at the local level 
during the planning phases of agricultural activities and 
programmes can address complexity issues appropriately 
thus enabling climate change adaptation and food 
security. Although the Senegalese government is 
applauded for its efforts in providing fertilizer subsidies to 
the agricultural community there is a need to promote 
balanced use and site-specific nutrient management so 
as to increase nitrogen use efficiency in order to 
substantially reduce emissions from agriculture. 
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