academic Journals Vol. 5(8), pp. 301-305, August, 2013 DOI 10.5897/JAHR2012.0222 ISSN 2141-2359 © 2013 Academic Journals http://www.academicjournals.org/JAHR ### Journal of AIDS and HIV Research Full Length Research Paper # Cryptosporidiosis in HIV infected patients with diarrhoea in Kano state, North-western Nigeria Kumurya, A. S.* and Gwarzo, M. Y. Department of Medical Laboratory Science, Faculty of Medicine, Bayero University, P. M. B. 3011, Kano, NIGERIA. Accepted 13 June, 2013 Cryptosporidium is one of the agents associated with diarrhoea in human immune deficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) patients. There is paucity of data in Northwestern Nigeria on the occurrence of this parasite among HIV patients. The study was to determine the prevalence of Cryptosporidium among HIV infected patients in Kano, Nigeria. In order to help in management of HIV related opportunistic infections. Stool samples were collected from 100 HIV positive and 50 HIV negative (control) patients presenting with diarrhoea at Murtala Muhammad Specialist Hospital, Kano (MMSH) in Northwestern Nigeria. Concentrated stool sample from each patient was screened for Cryptosporidium oocysts with the modified Ziehl Neelson method while direct sample was screened for other enteric parasites. The overall parasite prevalence rate in the diarrhoea patients is 22.7% (34/150) with Cryptosporidium spp. 4.0%, Ascaris lumbricoides 7.3%, Hookworm 3.3%, Schistosoma mansoni 0.7%, Trichuris trichura 0.7% and Entamoeba histolytica 6.7%. The parasite prevalence rate in HIV infected patients is 25% while in HIV-negative patients, the rate is 18%. The rate is significantly higher among HIV infected patients with diarrhea than among HIV negative with diarrhea (P < 0.0001). However, Cryptosporidium was found exclusively among HIV-infected patients. When Cryptosporidium prevalence was excluded from analysis, the parasite prevalence rates between the two groups was not significantly different ($X^2 = 0.8002$, df = 3, P = 0.8494). Cryptosporidium oocysts have been demonstrated in faeces of HIV infected patients attending Murtala Muhammad Specialist Hospital in Kano, Nigeria. It accounts for 6.0% of cases among this group. Hence should be considered in planning interventions aimed at optimizing management diarrhoeal diseases among HIV and other immune-suppressed patients. **Key words:** Cryptosporidiosis, human immune deficiency virus (HIV)/acquired immune deficiency syndrome (AIDS), prevalence, Northwestern Nigeria #### INTRODUCTION Cryptosporidium, an intracellular protozoan has changed from that of a rare largely asymptomatic disease to an important cause of diarrhoea in animals and humans worldwide (Flanigan et al., 1992). Reported Cryptosporidiosis prevalence is 3 to 4% in the USA (Mackenzie et al., 1994), 3.5 to 22.44% in Brazil (Rodrigues et al., 1991) and about 50% in Africa and Haiti (Colebunders et al., 1987). As in HIV infected patients, *Cryptosporidium* is the most frequent microbial cause of diarrhea, usually causing chronic bulky and intermittent diarrhoea with liquid non-bloody stools, accompanied by pain and abdominal colic, and a noticeable loss of weight (Kotler, 1995). In North-central Nigeria, Nwabuisi reported prevalence rate of 15.1% among children aged 0 to 14 years with diarrhoea (Nwabuisi, 2001) while a prevalence rate of 4.8% among malnourished children 0 to 5 years were reported (Bamwat et al., 2003). In Southwestern Nigeria, 52.7% of *Cryptosporidium* parvum was reported as the cause of diarrhoea among HIV patients (Yemisi et al., 2007). Though no case of *Cryptosporidium* oocysts were detected in 2002 in Southeastern Nigeria as the cause of diarrhoea among HIV patients (Nwokediuko et al., 2002), its role as the causative diarrhoeal agent among the subjects is just emerging (Erhabor et al., 2011). In the Niger Delta of Nigeria, a prevalence of 3% was reported among HIV patients. Our study was therefore aimed at determining the prevalence and contribution of Cryptosporidiosis in HIV patients in Northwestern Nigeria in order to help in optimizing management of HIV related opportunistic infections in our environment. #### **MATERIALS AND METHODS** #### Study area The study was conducted at Murtala Muhammad Specialist Hospital Kano, a secondary health care facility of the Kano State government between July and September, 2010. HIV/AIDS patients visited GHAIN Laboratory established by the Global HIV/AIDS initiatives Nigeria (GHAIN), Kano Zone — as part of an ongoing prospective cohort study. The hospital serves a large number of HIV/AIDS patients from within and outside the metropolis. #### **Subjects** One hundred HIV-infected individuals presenting with diarrhoea were recruited among the HIV – positive patients who attended GHAIN Lab/clinic routinely at 3-monthly intervals as well as at interim visits when acutely unwell, and 50 HIV-negative individuals with diarrhoea who attended outpatients' clinics of the hospital were included as controls. Patients were counseled and recruited into the study after providing written informed consent. HIV was diagnosed using a combination of an HIV-1 enzyme-linked immunosorbent assay (ELISA) and a Western blot confirmatory technique. Diarrhoea was defined as passage of more than 3 loose or watery stools in 24 h and was acute if it lasts for less than 14 days and persistent/chronic if it lasts for 14 or more days (World Health Organization (WHO), 1991). #### Specimen collection Stool samples were collected from each subject into a clean Universal bottle and transported to the medical microbiology laboratory of Murtala Muhammad specialist Hospital, Kano for analysis. Subjects were interviewed to collect relevant demographic data. #### Parasitological techniques A direct sample of the stool was made with both saline and iodine mounts on clean grease free slides and examined under the microscope first with 10x and then 40x objective lens for ova and cysts of parasites. A sample of the stool was concentrated using formol ether method concentration technique (Cheesbrough, 1999). Detection of Cryptosporidium oocysts in the concentrated stool was done using the modified cold Ziehl Neelsen staining technique (Smith, 1995). Briefly, a concentrated smear of the stool was made on a clean grease-free slide and fixed in methanol for 3 min. The slide was immersed in cold Carbol fuchsin and stained for 15 min. It was then thoroughly rinsed in tap water and decolorized in 1% HCI (v/v) in methanol for 10 to 15 min. After rinsing again in tap water, the slide was counterstained with 0.4% malachite green for 30 s. The slide was then air-dried and observed under the compound light microscope using 40x objective lens for the presence of Cryptosporidium oocysts, which was confirmed under the oilimmersion objectives as small pink to red spherules on pale green background #### Data analysis Demographic and other data obtained were analysed with a PC containing GraphPad software (GraphPad Software Inc, San Diego, USA). Significant differences between categorical variables were determined using Chi square or Fisher exact tests, and P < 0.05 was taken as significant value. #### **RESULTS** One hundred and fifty patients with diarrhoea were investigated for cryptosporidiosis and other parasites in Murtala Muhammad specialist Hospital Kano, Northwestern Nigeria. Total of 100 (43 males, 57 females, age range 9 to 54 years, mean age 32.04 \pm 9.62) were HIV infected and 50 (22 males, 28 females, age range 9 to 56 years, mean age 28.8 \pm 11.9) were HIV negative and served as controls (Table 1). Figure 1 shows the oocysts of *C. parvum* stained by the acid-fast method. The overall parasite prevalence rate in the diarrhoea patients is 22.7% (34/150) with Cryptosporidium parvum 4.0%, Ascaris lumbricoides 7.3%, Hookworm 3.3%, Schistosoma mansoni 0.7%, Trichuris trichura 0.7% and Entamoeba histolytica 6.7% (Table 2). The parasite prevalence rate in HIV infected patients is 25% while in HIV-negative patients, the rate is 18%. The rate is significantly higher among HIV infected patients with diarrhea than among HIV negative with diarrhoea (P < 0.0001). Cryptosporidium spp. was exclusively detected among HIV- patients in the study. Thus there was no significant difference in term of parasitic infestation among the study groups if Cryptosporidium spp. was excluded from the data ($X^2 = 0.8002$, df = 3, P = 0.8494). The incidence of Cryptosporidium among HIV infected patients who had diarrhoea was 6.0%. With the highest prevalence rate in patients aged 46 to 55 years age | Age group | HIV infected patients (test patients) | | | HIV Negative patients (control patients) | | | |-----------|---------------------------------------|--------|-------|--|--------|-------| | | Male | Female | Total | Male | Female | Total | | 6-15 | 1 | 3 | 4 | 2 | 3 | 5 | | 16-25 | 10 | 12 | 22 | 9 | 8 | 17 | | 26-35 | 19 | 23 | 42 | 6 | 10 | 16 | | 36-45 | 12 | 14 | 26 | 3 | 6 | 9 | | 46-55 | 1 | 5 | 6 | 2 | 1 | 3 | | Total | 43 | 57 | 100 | 22 | 28 | 50 | **Table 1.** Age and sex distribution of patients presenting to the MMSH with diarrhea. Mean age = 28.4 ± 11.19 . Figure 1. Oocysts of *Cryptosporidium parvum* stained by the acid-fast method. group, it was also common among female patients (Table 3). #### **DISCUSSION** Diarrhoea is a significant problem in HIV infected patients in Africa (Mann et al., 1986; Mukhopadhya et al., 1999). *Cryptosporidium* is a well established cause of diarrhoea among HIV infected patients worldwide with prevalence of infection ranging from 3% in developed countries to 50% in developing countries (Goldstein et al., 1996). However, the role of this parasite in the occurrence of diarrhoea among adult patients with HIV infection in Nigeria is just emerging (Erhabor et al., 2011). Though Cryptosporidium was not detected in stool samples of 189 HIV infected and non-infected patients with diarrhea in Southeastern Nigeria (Nwokediuko et al., 2002). In Southwestern Nigeria, 52.7% of C. parvum was reported as the cause of diarrhoea among HIV patients (Yemisi et al., 2007). A 3% prevalence of Cryptosporidium spp. prevalence in HIV patients with diarrhoea was reported in Niger Delta, Nigeria (Erhabor et al., 2011). The reason for these differences can be related to the known fact that HIV opportunistic infections, cryptosporidiosis inclusive, tend to vary from one locality to another and from one country to the other depending on the level of contamination of water, foodstuff and contacts with animals, which are important factors in dissemination of the parasite (Widmer et al., 1996). Cryptosporidiosis in Nigeria has been reported from tertiary institutions mainly among children in North-central (Nwabuisi et al., 1998; Nwabuisi, 2001; Banwat et al., 2003) and South-south Nigeria (Nkanginieme et al., 1996). It is similar to rates reported from other African countries (Colebunders et al., 1987) indicating that cryptosporidiosis is an important opportunistic parasitic disease causing diarrhoea among HIV infected patients in Nigeria. This is especially so as this parasite was detected in stool samples of only HIV infected patients and this further highlights the association between immunodepression and cryptosporidiosis. Although the overall parasite prevalence rate was higher among HIV infected patients when compared to HIV negative patients with diarrhoea in this study, this was mainly due to the Cryptosporidium prevalence of 6.0% among the HIV infected patients. It is pertinent to note that Cryptosporidium was not detected among non-HIV subjects. The mechanism by which Cryptosporidium cause diarrhoea is not well known, inflammatory response to the **Table 2.** Distribution of parasites isolated from stool of patients with diarrhoea in MMSH, Kano, Nigeria. | Parasitic type | HIV – infected (n=100) | HIV – negative
(n=50) | Total (%)
(n=150) | |----------------------|------------------------|--------------------------|----------------------| | Cryptosporidium spp | 6 | 0 | 6 (4.0) | | Ascaris lumbricoides | 8 | 3 | 11 (7.3) | | Hookworm | 3 | 2 | 5 (3.3) | | Schitosoma mansoni | 1 | 0 | 1 (0.7) | | Trichuris trichura | 1 | 0 | 1 (0.7) | | Entamoeba | 6 | 4 | 10 (6.7) | | Total | 25 | 9 | 34 (22.7) | Fisher exact P < 0.0001. $X^2 = 0.8002$, df = 3, P = 0.8494 (Minus *Cryptosporidium* prevalence). **Table 3.** Distribution of *Cryptosporidium* by age and sex. | Age group | Male | | | Female | | | |-----------|--------------|---------|----------------|--------------|---------|----------------| | | No. examined | No. +ve | Prevalence (%) | No. examined | No. +ve | Prevalence (%) | | 6-15 | 1 | 0 | 0 | 3 | 0 | 0 | | 16-25 | 10 | 0 | 0 | 12 | 0 | 0 | | 26-35 | 19 | 1 | 5.3 | 23 | 1 | 4.3 | | 36-45 | 12 | 1 | 8.3 | 14 | 2 | 14.3 | | 46-55 | 1 | 0 | 0 | 5 | 1 | 20.0 | | Total | 43 | 2 | 4.7 | 57 | 4 | 7.0 | Mean age = 28.4 ± 11.19 . infection is variable and may be modified by copathogens such as *Cytomegalovirus*. However, histological evidence of gastrointestinal mucosa injury has been reported with clinical manifestations influenced in part by the anatomic distribution of the infection with extensive infections involving both small and large intestines producing the most severe illness (Lumadue et al., 1998). Higher prevalence of *Cryptosporidium* was observed in females than in males. This may be attributed to higher prevalence of HIV-1 in females than males as reported elsewhere (Atzori et al., 1993) which reported females acquiring HIV-1 infection at a younger age than males. The relatively high prevalence of HIV/AIDS in women of child-bearing age is of particular concern, given the possibility of vertical transmission from mother to child and the strong association between HIV/AIDS and cryptosporidiosis. However, in other studies, the prevalence of Cryptosporidium was reported to be higher in males than females (Onah et al., 1998; Akujobi and Ogunsola, 2005). The study has several limitations because only a single stool specimen was examined; the prevalence of the infection may have been underestimated (Blanshard et al., 1996). Furthermore, the role of bacterial and viral pathogens was not addressed. Finally, CD_4 cell count and HIV viral load was not determined and therefore the true level of immunosuppression is unknown. #### CONCLUSION Cryptosporidium oocysts have been demonstrated in faeces of HIV infected patients attending Murtala Muhammad Specialist Hospital in Kano, Nigeria. It accounts for 6.0% of cases among this group. It is therefore suggested that this should be considered in planning interventions aimed at managing diarrhoeal diseases among HIV and other immune-suppressed patients. #### **ACKNOWLEGDEMENTS** We are grateful to the entire staff of the GHAIN Laboratory of the Murtala Muhammad Specialist Hospital, Kano who facilitated collection of stool samples from the patients. We thank Dr. S. A. Opaluwa of the Ahmadu Bello University Teaching Hospital, Zaria for proposing the topic to us. #### **REFERENCES** - Akujobi CN, Ogunsola FT (2005). Prevalence of Cryptosporidium specie in patients with Human immunodeficiency Virus (HIV) / Acquired Immunodeficiency Syndrome (AIDS) presenting with diarrhoea in Lagos. NQJHM 15 (3):119-122. - Atzori C, Bruno A, Chichino G, Cevini C (1993). HIV-1 and parasitic infections and rural Tanzania. Annals of Tropical Med. and Parasitol. 124:459-468. - Banwat EB, Egah DZ, Onile BA, Angyo IA, Audu ES (2003). Prevalence of *Cryptosporidium* infection among undernourished children in Jos, Central Nigeria. Niger Postgrad Med. J. 10:84-87. - Blanshard C, Francis N, Gazzard BG (1996). Investigation of chronic diarrhoea in Acquired Immunodeficiency Syndrome. A prospective study of 155 patients. Gut 39:824-832. - Cheesbrough M (1999). District Laboratory Practice in Tropical Countries. Part I. Cambridge University Press 193-208. - Colebunders R, Francis H, Mann JM (1987). Persistent diarrhea, strongly associated with HIV infection in Kinshasa, Zaire. Am. J. Gastroenterol 82:859-864. - Erhabor O, Obunge O, Awah I (2011). Cryptosporidiosis among HIV-infected persons in the Niger Delta of Nihgeria. Niger J. Med. 20 (3):372-375. - Flanigan T, Whalen C, Turner J (1992). Cryptosporidium infection and CD₄ counts. Ann. Intern. Med.116:840-842. - Goldstein ST, Juranek DD, Ravenholt O (1996). Cryptosporidiosis: an outbreak associated with drinking water despite state-of-the art water treatment. Ann. Intern. Med. 124:459-468. - Kotler DP (1995). Gastrointestinal manifestations of human immunodeficiency virus infection. Adv. Intern. Med. 40:197-242. - Lumadue JA, Manabe YC, Moore RD, Belitsos PC, Sears CL, Clark DP (1998). A clinicopathologic analysis of AIDSrelated cryptosporidiosis. AIDS.12:2459-466. - Mac Kenzie WR, Hoxie NJ, Proctor ME (1994). A massive outbreak in Milwaukee of Cryptosporidium infection transmitted through the public water supply. N. Engl. J. Med. 331:161-167. - Mann JM, Francis H, Quinn T (1986). Surveillance for AIDS in a central African city, Kinshasa, Zaire. JAMA 255:3255-3259. - Mukhopadhya A, Ramakrishna BS, Kang G (1999). Enteric pathogens in Southern Indian HIV infected patients with or without diarrhoea. Indian J. Med. Res. 109:85-89. - Nkanginieme KEO, Chira FW, Oruamabo RS (1996). Cryptosporidiosis in undernourished under five children with diarrhoea at the University of Port Harcourt Teaching Hospital in Nigeria. Niger Postgrad. Med. J. 3:5-9. - Nwabuisi C (1998). Cryptosporidiosis among diarrhoea patients in Ilorin, Nigeria. Niger. Med. Pract 35:39-41. - Nwabuisi C (2001). Childhood cryptosporidiosis and intestinal parasitosis in association with diarrhoea in Kwara State, Nigeria. West Afr. J. Med. 20:165-168. - Nwokediuko SC, Bojuwoye BJ, Onyenekwe B (2002). Apparent rarity of cryptosporidiosis in human immunodeficiency virus (HIV)-related diarrhoea in Enugu, South-Eastern Nigeria. Niger. Postgrad. Med. J. 9: 70-73 - Onah JA, Idiong DU, Bello CSS (1998). Cryptosporidiosis in Jos, Nigeria. The Nigeria J. Parasitol. 19:45-50. - Opaluwa SA, Ibrahim A, Olayinka AT (2005). *Cryptosporidium* in HIV/AIDS patients attending Ahmadu Bello University Teaching Hospital, Zaria. Proceedings of ABUTH Clinical Meetings 3 (2):5-9. - Rodrigues JLN, Leser P, Silva TMJ (1991). Prevalência da criptosporidiose nasíndrome diarréica do paciente HIVpositivo. Rev. Assoc. Med. Brasil 37:79-84. - Smith HV (1995). Intestinal Protozoa. In; Gillespie SH, Hawkey PM eds. Medical Parasitology. A Practical Approach. Oxford University Press, New York 79-118. - Widmer G, Carraway M, Tzipori S (1996). Waterborne Cryptosporidium: a perspective from the U SA. Parasitol Today 12: 286-290. - World Health Organization (1991). Global Programme on AIDS. Guidelines for the clinical management of HIV infection in adults. - Yemisi OA, Rofiat OL, Samuel ST,Sunday AF, Oluwaseyi AA (2007). Cryptosporidiosis in HIV infected patients with diarrhoea in Osun State Southwestern Nigeria. Eur. J. Gen. M 4(3):119-122.