In the present study, a total of 56 isolates were isolated from different root vegetables. Out of these, 17 isolates were identified as *Leuconostoc* spp. All the 17 isolates were checked for antibiotic sensitivity against different antibiotics. Results revealed that majority of the isolates were resistant to Penicillin G, Vancomycin, Oxacillin and Ceftazidime. Four isolates (S-9, S-13, S-37 and S-42) were resistant to methicillin. However, all the isolates were highly sensitive to Imipenum. Carbenicillin and Amoxicillin sublactam showed antibacterial sensitivity against all the isolates except S-13 and S-B2C2, respectively. Electrophorogram revealed that among the different 17 *Leuconostoc* isolates, S-B2C2 showed the presence of multiple plasmids (six) corresponding to the molecular weights of 1.5, 1.9, 2.0, 2.6, 3.2 and 10 kb, respectively. Endonuclease restriction analysis study was carried out with purified plasmid using four endonucleases (*Alu* I, *Bam* HI, *Hae* III and *Hind* III). Treatment with *Alu* I resulted in the disappearance of all the 6 plasmid bands, indicating complete digestion of the plasmids. Restriction analysis of plasmid DNA of isolate S-B2C2 revealed complete digestion of two plasmids (2.6 and 1.5 kb) when treated with *Hind* III. However, a new band of molecular weight equivalent to 1.7 kb did appear. Data presented in the paper indicates the multiple plasmid availability in bacteria and their diversity in response to restriction sites available on them.

Key words: Antibiotic resistance, plasmid, restriction digestion, root vegetables.

INTRODUCTION

Antibiotic resistance in bacteria which was rare before the dawn of antibiotic era has increased tremendously mainly because of over-use/misuse of antibiotics and transfer of resistance genes horizontally among bacteria (Levy, 1997). Today, antibiotic resistance among pathogens emerges shortly after the introduction of every new antimicrobial compound. Studies on the selection and dissemination of antibiotic resistance have mainly been focused on clinically relevant bacterial species. However, the recent findings that antibiotic resistance is amply present in commensal bacteria such as *Lactobacillus* (Teuber et al., 1999; Erdogru and Erbilir, 2006), *Leuconostoc* (Rodriguez, 2009) and *Bifidobacterium* (Ammor et al., 2007; D’Aimmo et al., 2007) has also attracted the attention of food microbiologists. Lactic acid bacteria may also be involved in horizontal transfer of antibiotic resistance as they are consumed live together with food and live in close association with diverse organisms in various ecological niches. *Leuconostoc* are heterofermentative lactic acid bacteria...
that occur naturally in milk, grass, herbage, grapes and many vegetables (Teuber and Geis, 1981). Several members of this group are used in dairy fermentations to produce aroma compounds (Cogan, 1985). Though common inhabitants are food and food products, much attention has not been paid on the antibiotic resistance of Leuconostoc spp. Antibiotic resistance to methicillin in Leuconostoc mesenteroides isolated from meat (Vidal and Collin-Thompson, 1987) and to vancomycin in Leuconostoc spp. (Hamilton-Miller and Shah, 1998; Simpson et al., 1988) have also been reported.

One of the major and common problem faced by the medical microbiologist, now a days, is the development of resistance to various antimicrobials which pose a challenge to public health. Thus understanding the routes of dissemination of antimicrobials resistant bacterial strains and resistance encoding genetic sequence is crucial to effectively control and minimize the problem. Food and food products are thus effective sources for the acquisition of drug resistant bacteria and genes involved in drug resistance resulting in the uncontrolled dissemination of resistance among the animals including human beings. Transfer of antibiotic resistance from animals to humans through food products derived from animals colonized by resistant bacteria is quite possible (Gonzalez-Zorn and Escudero, 2012). However, the role of LAB as reservoir of antibiotic resistance determinants with transmission potential to pathogenic species is now increasingly acknowledged (Marshall et al., 2009; van Reenen and Dicks, 2011).

Lactic acid bacteria are closely associated with some root vegetables such as carrot, turnip, beet and radish. These are consumed raw or are used to produce fermented products. However, LAB associated with these vegetables have been studied with respect to their role in fermentation of these vegetables. However, much attention has not been paid toward antibiotic resistance and nature of resistance in these organisms (Table1).

MATERIALS AND METHODS

Isolation of lactic acid bacteria

Lactic acid bacteria were isolated by using enrichment culture technique. The root vegetables were washed thoroughly first with tap water and then with sterile distilled water to remove the dirt, dust and micro-organism present on the surface. The vegetables were chopped in to small pieces and were put in to 500 ml Erlenmeyer flasks containing 3% brine adjusted to pH 5.0. The flasks were incubated at ~15°C. After incubation for 3-4 days, 100 µl of the brine was spread on MRS medium (de Man et al., 1993) containing bromothymol blue. LAB were identified with small colonies (2-5 mm in diameter) with entire margins, convex, smooth glistening and yellow in colour with a yellow zone around them.

Antibiotic sensitivity test

A loop full of freshly grown bacterial culture was suspended in 1 ml sterile distilled water. Aliquots of 100 µl of these bacterial suspensions (~1 x 10⁶ cfu/ml) were spread on Petri plates containing MRS Agar. The plates were incubated at 30°C for 15 min and thereafter, discs of different antibiotics were placed with the help of sterilized forceps on the surface of inoculated plates. The plates were incubated at 30°C and observed for zone of inhibition after 24 h.

Plasmid isolation

Plasmids were isolated using HiPura Plasmid DNA Miniprep Purification Spin Kit procured from HiMedia Pvt. Ltd. Mumbai, India.

Agarose gel electrophoresis

The DNA isolated was electrophoresed on agarose gel (1.0%). Aliquots of 5 µl of sample along with 2 µl of 6X loading dye were loaded in wells and allowed to run at 80-100 V for 1-2 h. The bands were visualized on UV-trmsilluminator (Genei Pvt. Ltd.).

Restriction digestion of plasmid DNA

Aliquots of 8 µl of plasmid DNA sample were taken in microcentrifuge tubes and 4-5 µl of restriction enzymes (Alu I, Bam HI, Hae III and Hind III) was added to each tube. Tubes were incubated at 37°C for 3 h. Reaction was terminated by adding stop solution (0.5M EDTA). Samples were then electrophoresed on agarose gel (1.0 %) to observe the restriction pattern.

RESULTS

Isolation and confirmation of lactic acid bacteria (LAB)

On the basis of the colony characteristics 56 isolates

Table 1. Sources of selected Leuconostoc spp. isolates.

<table>
<thead>
<tr>
<th>Source</th>
<th>Isolate numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrot (Daus carota sub sp. sativus)</td>
<td>S-9, S-13, S-41, S-CH, S-B2C2</td>
</tr>
<tr>
<td>Black carrot (Daus carota sub sp. carota)</td>
<td>S-33</td>
</tr>
<tr>
<td>Beet (Beta vulgaris)</td>
<td>S-21, S-23</td>
</tr>
<tr>
<td>Turnip (Brassica rape sub sp. rape)</td>
<td>S-28, S-37, S-38, S-42</td>
</tr>
<tr>
<td>Raddish (Raphanus sativus)</td>
<td>S-15, S-31, S-35, S-36</td>
</tr>
<tr>
<td>Cabbage (Brassica oleracea Linne.)</td>
<td>S-YCB</td>
</tr>
</tbody>
</table>

All vegetables were collected fresh from farmers to isolate LAB. Isolation was done by enrichment culture technique.
were picked, purified and characterized. Out of 56 isolates, 17 were identified as *Leuconostoc* spp. All the 17 isolates were found to be Gram positive, small rod or coco-bacilli, non-spore forming, non-motile, catalase negative. These were also negative for indole production and produced extracellular dextran in the presence of sucrose.

All the 17 isolates were checked for antibiotic sensitivity against 16 different antibiotics (Table 2). Result of this study revealed that majority of the 17 isolates were resistant to Penicillin G, Vancomycin, Oxacillin and Ceftazidime, 4 isolates viz. S-9, S-13, S-37 and S-42 were resistant to Methicillin, whereas others were sensitive though slightly only. None of the isolates showed resistance against Imipenum as all the isolates were highly sensitive to this drug. Carbenicillin showed antibacterial sensitivity against all the isolates except one (S-13). All the isolates were intermediate to highly sensitive to Rifampicin. Likewise Amoxicillin Sublactam showed antibacterial sensitivity against all the isolates except one isolates, S-B2C2 which was found to be resistant to this antibiotic.

Plasmid DNA isolation

Results revealed that among 17 isolates, only one isolates, S-B2C2 showed the presence of plasmids. Electrophogram revealed that among the different LAB isolates, S-B2C2 showed the presence of multiple plasmids (six) corresponding to the molecular weights of 1.5, 1.9, 2.0, 2.6, 3.2 and 10 kb, respectively (Figure 1, Lane 2). None of the rest isolates possessed any plasmid (Figure 1).

Endonuclease restriction analysis

Endonuclease restriction analysis study was carried out with purified plasmid using four endonucleases (Alu I, Bam HI, Hae III and Hind III). Treatment with *Alu* I resulted in the disappearance of all the 6 plasmid bands (Figure 2, Lane 2), indicating complete digestion of the plasmids. When the plasmid DNA of isolate S-B2C2 was treated with *Bam* HI, only one plasmid of molecular weight equivalent to 2.6 kb disappeared because of complete digestion. However, the remaining 5 bands remained unaffected (Figure 2, Lane 3). Digestion with *Hae* III resulted in the loss of four plasmids out of six. Two of the plasmids (2.0 Kb and 3.2 Kb) remained undigested (Figure 2, Lane 4). Restriction analysis of plasmid DNA of isolate S-B2C2 revealed complete digestion of two plasmids (2.6 and 1.5 kb) when treated with *Hind* III. However a new band of molecular weight equivalent to 1.7 kb did appear (Figure 2, Lane 5).

Table 2. Antibiotic resistance profile of *Leuconostoc* spp. isolates.

<table>
<thead>
<tr>
<th>Strains</th>
<th>P</th>
<th>Ox</th>
<th>Va</th>
<th>M</th>
<th>I</th>
<th>A</th>
<th>Ck</th>
<th>Ca</th>
<th>Cb</th>
<th>Cl</th>
<th>AMS</th>
<th>B</th>
<th>Ak</th>
<th>Rf</th>
<th>Ce</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-9</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>+++</td>
<td>R</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>R</td>
<td>++</td>
<td>+</td>
<td>R</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>S-13</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>+++</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>++</td>
<td>+</td>
<td>R</td>
<td>++</td>
<td>R</td>
</tr>
<tr>
<td>S-15</td>
<td>+</td>
<td>R</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>R</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>S-21</td>
<td>+</td>
<td>R</td>
<td>R</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>S-23</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>R</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>R</td>
</tr>
<tr>
<td>S-28</td>
<td>+</td>
<td>R</td>
<td>R</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>R</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>R</td>
</tr>
<tr>
<td>S-31</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>+</td>
<td>+++</td>
<td>+</td>
<td>++</td>
<td>R</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>S-33</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>+</td>
<td>+++</td>
<td>+</td>
<td>++</td>
<td>R</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>S-35</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>+++</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>R</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>R</td>
</tr>
<tr>
<td>S-36</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>R</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>S-37</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>++</td>
<td>+</td>
<td>R</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>S-38</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>R</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>S-41</td>
<td>+</td>
<td>R</td>
<td>R</td>
<td>++</td>
<td>+++</td>
<td>+</td>
<td>++</td>
<td>R</td>
<td>+++</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>S-42</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>+</td>
<td>+</td>
<td>R</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>R</td>
</tr>
<tr>
<td>S-CH</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>++</td>
<td>+++</td>
<td>+</td>
<td>++</td>
<td>R</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>S-B2C2</td>
<td>R</td>
<td>R</td>
<td>+</td>
<td>+++</td>
<td>R</td>
<td>R</td>
<td>+</td>
<td>++</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>+++</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>YCB</td>
<td>++</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>R</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
</tbody>
</table>

1-6 mm Resistant (R); 7-15 mm - susceptible (+); 16-25 mm - intermediate susceptible (++); 26-35 mm - highly susceptible (+++). P- Penicillin (10 mcg/disc), Ox- Oxacillin (1 mcg/disc), M- Methicillin (30 mcg/disc), Va- Vancomycin (30 mcg/disc), I- Imipenum (10 mcg/disc), A- Ampicillin (2 mcg/disc), Ck- Carbenicillin (100 mcg/disc), Cb- Ceftazidime (30 mcg/disc), Cl- Ciprofloxacin (5 mcg/disc), AMS- Amoxicillin Sublactam (30/15 mcg/disc), B- Bacitracin (0.05 µ/disc), Ak- Amikacin (30 mcg/disc), Rf- Rifampicin (15 mcg/disc), Ce- Cephoxime (30 mcg/disc).
DISCUSSION

Lactic acid bacteria, a broad group of Gram positive, non-spore forming rods and cocci have a role as commensal on mucosal surfaces and skin and inhabit the digestive tract of many animal species including humans (Tannock et al., 1990). A large number of species of lactic acid bacteria has been detected in the digestive tract but their prevalence and distribution varied with the animal species (Vaughan et al., 2002). In general, lactic acid bacteria are the organisms which first colonize the digestive system of animals. Many lactic acid bacteria possess probiotic property and are thus widely used in probiotic preparations.

Lactic acid bacteria are common inhabitants of many vegetables and fruits and thus form a part of fermented food products prepared from these fruits and vegetables. These lactic acid bacteria from fermented products may act as reservoirs of antimicrobial resistance genes that could be transferred into pathogens either in the food web or in the gastrointestinal tract of humans and animals (Belen Florez et al., 2005). The development of antibiotic resistance in bacteria is of public concern in view of the fact that a patient could develop antibiotic resistance because of emergence of a drug resistant micro-organism in patient’s body (Nagulpally, 2007). Thus, strains of micro-organisms for use in food systems as starters or probiotics need to be examined carefully for antimicrobial resistance (Teuber et al., 1999).

Since antibiotic susceptibility and resistance of lactic acid bacteria from vegetable and their products have not been studied much, the present investigation was carried out to determine the antibiotic resistance and diversity among different isolates with respect to presence of plasmids and their endonuclease restriction analysis. A total of 28 isolates of LAB were identified from root vegetables collected from 7 different locations around Dehradun town. These isolates were characterized for their morphological, cultural and biochemical characteristics and were found to belong to the category of LAB.

During biochemical characterization, all the 28 isolates were found to be negative for catalase activity, indole production and nitrate reduction. Almost all the non-lactic acid bacteria are catalase negative and do not produce indole. These tests are commonly used and described in the Burgey’s Manual of Systemic Bacteriology for identification of LAB. Nitrate production is another important property of LAB. Lactic acid bacteria reduce nitrate to nitrite (Anderson, 1984). In acidic environment, nitrate may react with secondary or tertiary amines or with amides to form nitrosamines which are known for their carcinogenic effect. Some microorganism such as Paracoccus denitrificans has been reported to reduce
Figure 2. Plasmid restriction profile of SB$_2$C$_2$ generated by different restriction enzymes used in this study. L denotes DNA leader (100 to 10 kb), 1-7 are different LAB isolates used (1: SB$_2$C$_2$ digested with Alu I, 2: SB$_2$C$_2$ digested with Bam HI, 3: SB$_2$C$_2$ digested with Hae III, 4: SB$_2$C$_2$ digested with Hind III, 5-7: Blank).

Antibiotic resistance of all the 28 isolates was examined by disc-diffusion method and these isolates were found to be diverse in their antibiotic resistance against 16 antibiotics belonging to different groups. During this study, we observed that most of the strains of Leuconostoc spp. were resistant to Oxaclillin, Vancomycin, Cefazidime and Amphotericin. However, they were found to be susceptible to Imipenum, Cefitoxime, Carbencillin, Ciprofloxacín, Amoxicillin Sublactam, Bacitracin, Amikacin Rifampicín and Cephotoxime. Resistance to vancomycin in Leuconostoc spp. has been reported earlier also (Facklam et al., 1989; Orberg and Sandine, 1984). In fact this widespread resistance among the Leuconostoc spp. have been used by Benkerroum et al. (1993) to formulate a medium for the selective isolation of Leuconostoc from vegetables and dairy products using 30 µg of Vancomycin/ml as a criteria for selective isolation.

The antibiotics resistance though is present in Leuconostoc spp. but the isolated strains were sensitive to majority of antibiotics specially belonging to second and third generation. The development of resistance in lactic bacilli including Leuconostoc spp. is of major concern because of possibility of horizontal transfer of resistance from these bacteria to pathogens. Increasing evidences point at a crucial role for foodborne LAB as reservoir of potentially transmissible AR genes, underlining the need for further, more detailed studies aimed at identifying possible strategies to avoid AR spread to pathogens through fermented food consumption (Devirgiliis et al., 2013).

Results revealed that among 17 isolates, only one isolate, S-B$_2$C$_2$ showed the presence of plasmids. As inferred from the electrophorogram, isolate S-B$_2$C$_2$ showed the presence of multiple plasmids (six) corresponding to the molecular weights of 1.5, 1.9, 2, 2.6, 3.2 and 10 kb, respectively. None of the rest isolates possessed any plasmid. The presence of plasmid(s) in the Leuconostoc spp. has been shown earlier also by several workers (Prievost et al., 1995; Biet al., 2002). However the frequency was found to be low. Prievost et al. (1995) reported that only six strain possessed single cryptic plasmid among the 15 strains of Leuconostoc oenos studied.

It was recorded that isolate S-B$_2$C$_2$ showed resistance against 56% of the sixteen antibiotics used in the study. On the other hand, among the susceptible cases, only three could suppress the test organism adequately giving a zone of inhibition in between 16-35 mm. Such response of the organism against the antibiotics indicates a possible role of plasmids in such resistance behaviour. The presence of multiple plasmids may support the high resistance profile against a range of antibiotic as plasmid borne resistance is common in many microbes. It is well reported that antibiotic resistance is often plasmid borne (Svara and Rankin, 2011). Our results get support from Aslim and Beyatli (2004) who reported higher antibiotic resistance in the isolates carrying multiple plasmids. Additionally, they reported higher susceptibility in the isolates having no plasmid.

Digestion of plasmid DNA with restriction endonucleases was also carried out using 4 endonucleases, Hind III, Bam HI, Alu I and Hae III. Effect of the four endonucleases on plasmid DNA of S-B$_2$C$_2$ varied. All the six plasmids were digested when the plasmid DNA was treated with Alu I, where as Bam HI could digest only one plasmid (2.6 Kb) out of six. The digestion with Hind III resulted in the loss of two plasmids of the molecular size of 2.6 and 1.5 kb with the appearance of new band of molecular weight equivalent to 1.7 kb.
From these studies, it appears that restriction sites on the plasmids vary from plasmid to plasmid. Whereas a large number of restriction sites were present on plasmid 4 (2.6 kb) and 6 (1.5 kb) since these plasmids are completely digested by 3 endonucleases, that is, Hind III, Bam HI, Alu I and Hind III, Alu I, Hae III respectively, plasmid 4 of the molecular size of 2.0 kb contain the least number of restriction sites since it is digested completely but by Alu I endonuclease only. Further investigation will reveal which of the plasmid and fragment possess the resistance gene(s) and is responsible for antibiotic resistance trait in the organism.

REFERENCES

(www.biomedcentral.com/1471-2148/11/130).

