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INTRODUCTION 
 
Important studies on HIV/ AIDS include papers of 
Hazenberge (2000), Duffin and Tullis (2002), Tullis 
(2004), Tullis et al (2002ab, 2003), Oluyo (2007), Oluyo 
and Ayeni (2007), Stafford et al (200) and Wang and Li 
(2006).  The hallmark of HIV disease is the gradual loss  
of CD4+ T cells, which  ultimately leaves the immune 
system unable to defend opportunistic infections. Recent 
studies Hazenberge (2000) and Tullis (2004) suggest that 
CD4 + T cells are lost through infection and binding of gp 
120 to uninfected CD4 + T cells. The envelope ultimately 
leads to the death of healthy cells. On the other hand, 
hemodialysis assists infected T cells to recover. The 
present study investigates the criteria under which the 
rate of recovery of infected cells through hemodialysis 
could lead to the stability of the equilibrium point. 
 
 
MATHEMATICAL MODEL 
 
We modify the model of Duffin and Tulis (2002) by incorporating 
recovery through affinity hemodialysis: 
 
 
Production 
 

TS
π
→  rate of T-cell production from stem cells.  

i

k

TVT
1

→+  infection of T cells 

 
 
 
*Corresponding author. E-mail: ayeni_ro@yahoo.com. 

PTTP
k3

↔+  reversible gp 24 binding to normal T-Cells 

Ti + hemodialysis T
µ

→  recovery of some T infected cells as a 
result of hemodialysis 
 
 
Clearance 
 

1d

T →  death of normal T cell 

2d

iT →  death of infected T cells 

c

V →  viral clearance rate, 
 
Where Ti is infected T cell, V is virus and P is concentration of 
gp120. 
 
Arising from above, the relevant mathematical equations are: 
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STABILITY OF THE CRITICAL POINTS 
 
To obtain the critical points, we set In infected free equilibrium 
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So 
1
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To obtain the infected equilibrium, we obtain 
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Also andTTdTVk ii µ−−= 210  Substituting for V, we 

obtain 
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Substituting for T and V in 
 

iTTVkTd µπ +−−= 210   

 
gives Ti and subsequently V. 
 

So, the un-infected equilibrium is �
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Theorem 1 
 

If ( ) 212
1

kkcdd +≠ µπ
 there exist two equilibria. 

 
 
 
 

Let us denote this infected equilibrium by ( )*** ,, VTT i  where 

each component corresponds to an earlier specified value. 
We let 
 

*** ,, VVzTTyTTx ii −=−=−=  

 
Then 
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Thus 
 
x'        x  
y'  =  A  y 
z'        z 
 
 
Where; 
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Thus 
 

0=− IA λ  

 
Implies 
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Theorem 2 
 
Equation (3.1) has no positive root. 
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Table 1. Description of variables and constants. 
 

Terms Description Values 

π  Rate of production of T cells dT0/day 

d1 Natural death rate of healthy T cells 0.01/day 

k1 Viral infection rate (CD4+Tcells) 0.00027/virus day 

µ Infected T cell recovery rate µ/day 

d2 Death rate of infected T cells 0.39/day 

k2 Viral production for T cell 850/day 

c Clearance rate of the virus  3/day 

S Stem cell  

T Uninfected activated CD4+T cell  

Ti Infected CD4+T cells  

V Virus produced by T cells and macrophages  

P Concentration of pg 120  
 
 
 
Theorem 3 
 
Equation (3.1) has three negative roots or one negative root and 
two complex roots. 
 
 
Theorem 4 
 
The infected equilibrium is globally asymptotically stable. 

 Routh – Hurwitz criteria (Wang and Li, 2006). All zeros of 

023 =+++ γβλαλλ  have negative real parts if and only 

if 0>−γαβ . 
Therefore, all zeros of (3.1) have negative real parts if and only if  

 

( )( *1221*12*11 +++++++ VkdddVkcdcVkdµ  

) ( ) 0*12*121*1 >++− VkccdVkcddVk µµ  
 

 
That is,  
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Proof of theorems 
 

Clearly all coefficients and the constants of ( )λp  are positive. The 
proof of the theorems 2 to 4 involved using the Descartes rule of 
signs: The number of positive zeros of a polynomial with real 
coefficients is either equal to the number of variations in sign of the 
polynomial or is less than this by an even number.Table 1 

Proof of theorem 1 
 
The infection – free equilibrium is given by 
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then ( ) 212 kkcdT += µ . Hence the other equilibrium is 
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Proof of theorem 2 
 
The number of variations in sign is zero. Hence by Descartes’ rule 
of signs the polynomial equation has no positive root. 
 
 
Proof of theorem 3 
 
From p(λ) in (3.1), we obtain 
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So the number of changes in sign is 3. Hence by Descartes’ rule of 
signs, p(λ) has either three negative roots or one negative root and 
two complex roots. 
 
 
Proof of theorem 4 
 
Since all the parameters are positive, the inequality holds. 
By theorem 3 and Routh – Hurwitz criteria (3.1) has; 
 
(i) Either three negative roots or  
(ii) One negative root and two complex roots whose real parts are 
equal and negative. So in either case the equilibrium is globally 
asymptotically stable. 
 
 
RESULT AND DISCUSSION 
 
The main purpose of this paper is to verify, beyond earlier 
papers, the effect of affinity hemodialysis on HIV/AIDS as 
a potential treatment option for HIV patients resistant to 
drugs. A key factor in this analysis is µ. When µ is zero, 
the possibility of a quasi-steady infected equilibrium does 
not exist. Thus a stable infected equilibrium does not 
arise. This paper shows, further, that affinity hemodialysis 
is a potentially useful adjunctive therapy which can be 
employed to treat HIV-infected patients either directly or 
in conjunction with drug therapy (Tullis, 2004) 
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