African Journal of
Bacteriology Research

  • Abbreviation: J. Bacteriol. Res.
  • Language: English
  • ISSN: 2006-9871
  • DOI: 10.5897/JBR
  • Start Year: 2009
  • Published Articles: 109

Full Length Research Paper

Effect of high temperature on viability of Lactobacillus casei and analysis of secreted and GroEL proteins profiles

Najla Haddaji
  • Najla Haddaji
  • Laboratoire d’Analyse, Traitement et Valorisation des Polluants de l’Environnement et des Produits, Faculté de Pharmacie Rue Avicenne, Monastir 5000, Tunisie.
  • Google Scholar
Boubaker Krifi
  • Boubaker Krifi
  • Laboratoire d’Analyse, Traitement et Valorisation des Polluants de l’Environnement et des Produits, Faculté de Pharmacie Rue Avicenne, Monastir 5000, Tunisie.
  • Google Scholar
Rihab Lagha
  • Rihab Lagha
  • Laboratoire d’Analyse, Traitement et Valorisation des Polluants de l’Environnement et des Produits, Faculté de Pharmacie Rue Avicenne, Monastir 5000, Tunisie.
  • Google Scholar
Sadok Khouadja
  • Sadok Khouadja
  • Laboratoire d’Analyse, Traitement et Valorisation des Polluants de l’Environnement et des Produits, Faculté de Pharmacie Rue Avicenne, Monastir 5000, Tunisie.
  • Google Scholar
Amina Bakhrouf
  • Amina Bakhrouf
  • Laboratoire d’Analyse, Traitement et Valorisation des Polluants de l’Environnement et des Produits, Faculté de Pharmacie Rue Avicenne, Monastir 5000, Tunisie.
  • Google Scholar


  •  Received: 29 January 2015
  •  Accepted: 13 March 2015
  •  Published: 30 April 2015

References

Ang D, Liberek K, Skowyra D, Zylicz M, Georgopoulos C (1991). Biological role and regulation of the universally conserved heat shock proteins. J. Biol. Chem. 266:24233-24236.

 

Auffray Y, Gansel X, Thammavongs B, Boutibonnes P (1992). Heat-shock induced protein synthesis in Lactococcus lactis subsp. lactis. Curr. Microbiol. 24:281-284.
Crossref

 

 

Boutibonnes P, Bison V, Thammavongs B, Hartke A, Panoff J, Benachour A, Auffray Y (1995). Induction of thermo tolerance by chemical agents in Lactococcus lactis subsp. lactis IL1408. Int. J. Food Microb. 25:83-94.
Crossref

 

 

Bradford MM (1976). A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Crossref

 

 

Broadbent JR, Orberg CJ, Wei L (1998). Characterization of the Lactobacillus helveticus groELS operon. Res. Microbiol. 149:247-253.
Crossref

 

 

Bron PA, Molenaar D, de Vos WM, Kleerebezem M (2006). DNA micro-array-based identification of bile-responsive genes in Lactobacillus plantarum. J. Appl. Microbiol. 100:728-738.
Crossref

 

 

Corcoran BM, Stanton C, Fitzgerald G, Ross RP (2008). Life under stress: the probiotic stress response and how it may be manipulated. Curr. Pharm. Des. 14:1382-1399.
Crossref

 

 

De Angelis M, Di cagno R, Huet C, Crecchio C, Fox PF, Gobetti M (2004): Heat shock response in Lactobacillus plantarum. Appl. Environ. Microbiol. 70:1336-1346.
Crossref

 

 

De Leon P, Marco S, Isiegas C, Marina A, Carrascosa JL, Mellado RP (1997). Streptomyces lividans groES, groEL1 and groEL2 genes. Microbiology 143:3563-3571.
Crossref

 

 

Desmond C, Fitzgerald GF, Stanton C, Ross RP (2004). Improved stress tolerance of GroESL-overproducing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338. Appl. Environ. Microbiol. 70:5929-5936.
Crossref

 

 

Earnshaw RG (1995). Understanding physical inactivation processes: combined preservation opportunities using heat, ultrasound and pressure. Int. J. Food Microbiol. 28:197-219.
Crossref

 

 

Flahaut S, Hartke A, Giard JC, Benachour A, Boutibonnes P, Auffray Y (1996). Relationship between stress response toward bile salts, acid and heat treatment in Enterococcus faecalis. FEMS Microbiol. Lett. 138:49-54.
Crossref

 

 

Fujita M, Amemura A, Aramaki H (1998). Transcription of the groESL operon in Pseudomonas aeruginosa PAO1. FEMS Microbiol. Lett. 163:237-242.
Crossref

 

 

Gouesbet G, Jan G, Boyaval P (2002). Two-dimensional electrophoresis study of Lactobacillus delbrueckii subsp. Bulgaricus thermotolerance. Appl. Environ. Microbiol. 68:1055-1063.
Crossref

 

 

Gupta RS (1995). Evolution of the chaperon in families (Hsp60, Hsp10 and Tcp-1) of proteins and origin of eukaryotic cells. Mol. Microbiol. 15:1-11.
Crossref

 

 

Guzzo J, Delmas F, Pierre F, Jobin MP, Samyn B, Van Beeumen J, Cavin JF, Divies C (1997). A small heat shock protein from Leuconostoc oenos induced by multiple stresses and during stationary growth phase. Lett. Appl. Microbiol. 24:393-396.
Crossref

 

 

Hansen MC, Nielsen AK, Molin S, Hammer K, Kilstrup M, Palmer JrRJ, Udsen C, White DC (2001). Changes in rRNA levels during stress invalidates results from mRNA blotting: fluorescence in situ rRNA hybridization permits renormalization for estimation of cellular mRNA levels. J. Bacteriol. 183:4747-4751.
Crossref

 

 

Hecker M, Schumann,W, Volker U (1996). Heat-shock and general response in Bacillus subtilis. Mol. Microbiol. 19:417-428.
Crossref

 

 

Hennequin C, Porcheray F, Waligora-Dupriet AJ, Collignon A, Barc M, Bourlioux P, Karjalainen T (2001). GroEL (Hsp60) of Clostridium difficile is involved in cell adherence. Microbiol. 147:87-96.

 

 

Joe MK, Parck SM, Lee YS, Hwang DC, Hong CB (2000). High temperature stress resistance of E. Coli induced by a tobacco class I low molecular weight heat-shock proteins. Moll. Cells 10:519-524.
Crossref

 

 

Kilstrup M, Jakobsen S, Hammer K, Vogensen FK (1997). Induction of heat shock proteins Dnak, GroEL, and GroES by salt stress in Lactococcus lactis. Appl. Environ. Microbiol. 63:1826-1837.
PMid:9143115 PMCid:PMC168475

 

 

Kim WS, Perl L, Park JH, Tandianus JE, Dunn NW (2001). Assessment of stress response of the probiotic Lactobacillus acidophilus. Curr. Microbiol. 43:346-350.
Crossref

 

 

Kolter R, Siegele DA, Tormo A (1993).The stationary phase of the bacterial life cycle. Annu. Rev. Microbiol. 47:855-874.
Crossref

 

 

Mansouripour S, Esfaudiari Z, Natelghi L (2013). The effect of heat process on the survival and increased viability of probiotic by microcapsulation : a review. Ann. Biolog. Res. 4:83-87.

 

 

Narberhaus F (2002). Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol. Mol. Biol. Rev. (66): 64-93.
Crossref

 

 

Pieterse B, Leer RJ, Schuren FH, Van der Werf MJ (2005). Unravelling the multiple effects of lactic acid stress on Lactobacillus plantarum by transcription profiling. Microbiology 151:3881-3894.
Crossref

 

 

Prasad J, McJarrow P, Gopal P (2003). Heat and osmotic stress responses of probiotic Lactobacillus rhamnosus HN001 (DR20) in relation to viability after drying. Appl. Environ. Microbiol. 69:917-925.
Crossref

 

 

Rechinger KB, Siegumfeldt H, Svendsen I, Jakobsen M (2000). "Early" protein synthesis of Lactobacillus delbrueckii ssp. bulgaricus in milk revealed by [35S]methionine labeling and two-dimensional gel electrophoresis. Electrophoresis 21:2660-2669.
Crossref

 

 

Sabri MY, Zamri-Saad M, Mutalib AR, Israf DA, Muniandy N (2000). Efficacy of an outer membrane protein of Pasteurella haemolytica A2, A7 or A9-enriched vaccine against intratracheal challenge exposure in sheep. Vet. Microbiol. 73: 13-23.
Crossref

 

 

Salotra P, Singh DK, Seal KP, Krishna N, Jaffe H, Bhatnagar R (1995). Expression of DnaK and GroEL homologs in Leuconostoc esenteroides in response to heat shock, cold shock or chemical stress. FEMS Microbiol. Lett. 131:57-62.
Crossref

 

 

Segal G, Ron EZ (1996). Regulation and organization of the groE and dnaK operons in eubacteria. FEMS Microbiol. Lett. 138:1-10.
Crossref

 

 

Serrano LM, Molenaar D, Wels M, Teusink B, De Vos WM, Smid EJ (2007). Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1. Microb. Cell Fact. 10:6-29.
Crossref

 

 

Spano G, Massa S (2006). Environmental stress response in wine lactic acid bacteria: beyond Bacillus subtilis. Crit. Rev. Microbiol. 32:77-86.
Crossref

 

 

Stevens MJA (2008). Transcriptome response of Lactobacillus plantarum to global regulator deficiency, stress and other environmental conditions. The- sis. Wageningen University, Wageningen, The Netherlands.

 

 

Svensater G, Sjogreen B, Hamilton IR (2000). Multiple stress responses in Streptococcus mutans and the induction of general and stress-specific proteins. Microbiology 146: 107-117.

 

 

Teixera P, Castro H, Mohacsi-Farkas C, Kirby R (1997). Identification of sites of injury in Lactobacillus bulgaricus during heat stress. J. Appl. Microbiol. 83: 219-226.
Crossref

 

 

Van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E (2002). Stress responses in lactic acid bacteria. Antonie Leeuwenhoek 82:187-216.
Crossref

 

 

Veinger L, Diamant S, Buchner J, Goloubinoff P (1998). The small heat shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J. Biol. Chem. 273:11032-11037.
Crossref

 

 

Walker DC, Girgis HS, Klaenhammer TR (1999). The groESL chaperone operon of Lactobacillus johnsonii. Appl. Environ. Microbiol. 65: 3033-3041.

 

 

Whitaker RD, Batt CA (1991). Characterization of the heat shock response in Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 57:1408-1412.