Full Length Research Paper
References
Ang D, Liberek K, Skowyra D, Zylicz M, Georgopoulos C (1991). Biological role and regulation of the universally conserved heat shock proteins. J. Biol. Chem. 266:24233-24236. |
|
|
|
Auffray Y, Gansel X, Thammavongs B, Boutibonnes P (1992). Heat-shock induced protein synthesis in Lactococcus lactis subsp. lactis. Curr. Microbiol. 24:281-284. |
|
|
|
Boutibonnes P, Bison V, Thammavongs B, Hartke A, Panoff J, Benachour A, Auffray Y (1995). Induction of thermo tolerance by chemical agents in Lactococcus lactis subsp. lactis IL1408. Int. J. Food Microb. 25:83-94. |
|
|
|
Bradford MM (1976). A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. |
|
|
|
Broadbent JR, Orberg CJ, Wei L (1998). Characterization of the Lactobacillus helveticus groELS operon. Res. Microbiol. 149:247-253. |
|
|
|
Bron PA, Molenaar D, de Vos WM, Kleerebezem M (2006). DNA micro-array-based identiï¬cation of bile-responsive genes in Lactobacillus plantarum. J. Appl. Microbiol. 100:728-738. |
|
|
|
Corcoran BM, Stanton C, Fitzgerald G, Ross RP (2008). Life under stress: the probiotic stress response and how it may be manipulated. Curr. Pharm. Des. 14:1382-1399. |
|
|
|
De Angelis M, Di cagno R, Huet C, Crecchio C, Fox PF, Gobetti M (2004): Heat shock response in Lactobacillus plantarum. Appl. Environ. Microbiol. 70:1336-1346. |
|
|
|
De Leon P, Marco S, Isiegas C, Marina A, Carrascosa JL, Mellado RP (1997). Streptomyces lividans groES, groEL1 and groEL2 genes. Microbiology 143:3563-3571. |
|
|
|
Desmond C, Fitzgerald GF, Stanton C, Ross RP (2004). Improved stress tolerance of GroESL-overproducing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338. Appl. Environ. Microbiol. 70:5929-5936. |
|
|
|
Earnshaw RG (1995). Understanding physical inactivation processes: combined preservation opportunities using heat, ultrasound and pressure. Int. J. Food Microbiol. 28:197-219. |
|
|
|
Flahaut S, Hartke A, Giard JC, Benachour A, Boutibonnes P, Auffray Y (1996). Relationship between stress response toward bile salts, acid and heat treatment in Enterococcus faecalis. FEMS Microbiol. Lett. 138:49-54. |
|
|
|
Fujita M, Amemura A, Aramaki H (1998). Transcription of the groESL operon in Pseudomonas aeruginosa PAO1. FEMS Microbiol. Lett. 163:237-242. |
|
|
|
Gouesbet G, Jan G, Boyaval P (2002). Two-dimensional electrophoresis study of Lactobacillus delbrueckii subsp. Bulgaricus thermotolerance. Appl. Environ. Microbiol. 68:1055-1063. |
|
|
|
Gupta RS (1995). Evolution of the chaperon in families (Hsp60, Hsp10 and Tcp-1) of proteins and origin of eukaryotic cells. Mol. Microbiol. 15:1-11. |
|
|
|
Guzzo J, Delmas F, Pierre F, Jobin MP, Samyn B, Van Beeumen J, Cavin JF, Divies C (1997). A small heat shock protein from Leuconostoc oenos induced by multiple stresses and during stationary growth phase. Lett. Appl. Microbiol. 24:393-396. |
|
|
|
Hansen MC, Nielsen AK, Molin S, Hammer K, Kilstrup M, Palmer JrRJ, Udsen C, White DC (2001). Changes in rRNA levels during stress invalidates results from mRNA blotting: fluorescence in situ rRNA hybridization permits renormalization for estimation of cellular mRNA levels. J. Bacteriol. 183:4747-4751. |
|
|
|
Hecker M, Schumann,W, Volker U (1996). Heat-shock and general response in Bacillus subtilis. Mol. Microbiol. 19:417-428. |
|
|
|
Hennequin C, Porcheray F, Waligora-Dupriet AJ, Collignon A, Barc M, Bourlioux P, Karjalainen T (2001). GroEL (Hsp60) of Clostridium difficile is involved in cell adherence. Microbiol. 147:87-96. |
|
|
|
Joe MK, Parck SM, Lee YS, Hwang DC, Hong CB (2000). High temperature stress resistance of E. Coli induced by a tobacco class I low molecular weight heat-shock proteins. Moll. Cells 10:519-524. |
|
|
|
Kilstrup M, Jakobsen S, Hammer K, Vogensen FK (1997). Induction of heat shock proteins Dnak, GroEL, and GroES by salt stress in Lactococcus lactis. Appl. Environ. Microbiol. 63:1826-1837. |
|
|
|
Kim WS, Perl L, Park JH, Tandianus JE, Dunn NW (2001). Assessment of stress response of the probiotic Lactobacillus acidophilus. Curr. Microbiol. 43:346-350. |
|
|
|
Kolter R, Siegele DA, Tormo A (1993).The stationary phase of the bacterial life cycle. Annu. Rev. Microbiol. 47:855-874. |
|
|
|
Mansouripour S, Esfaudiari Z, Natelghi L (2013). The effect of heat process on the survival and increased viability of probiotic by microcapsulation : a review. Ann. Biolog. Res. 4:83-87. |
|
|
|
Narberhaus F (2002). Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol. Mol. Biol. Rev. (66): 64-93. |
|
|
|
Pieterse B, Leer RJ, Schuren FH, Van der Werf MJ (2005). Unravelling the multiple effects of lactic acid stress on Lactobacillus plantarum by transcription proï¬ling. Microbiology 151:3881-3894. |
|
|
|
Prasad J, McJarrow P, Gopal P (2003). Heat and osmotic stress responses of probiotic Lactobacillus rhamnosus HN001 (DR20) in relation to viability after drying. Appl. Environ. Microbiol. 69:917-925. |
|
|
|
Rechinger KB, Siegumfeldt H, Svendsen I, Jakobsen M (2000). "Early" protein synthesis of Lactobacillus delbrueckii ssp. bulgaricus in milk revealed by [35S]methionine labeling and two-dimensional gel electrophoresis. Electrophoresis 21:2660-2669. |
|
|
|
Sabri MY, Zamri-Saad M, Mutalib AR, Israf DA, Muniandy N (2000). Efficacy of an outer membrane protein of Pasteurella haemolytica A2, A7 or A9-enriched vaccine against intratracheal challenge exposure in sheep. Vet. Microbiol. 73: 13-23. |
|
|
|
Salotra P, Singh DK, Seal KP, Krishna N, Jaffe H, Bhatnagar R (1995). Expression of DnaK and GroEL homologs in Leuconostoc esenteroides in response to heat shock, cold shock or chemical stress. FEMS Microbiol. Lett. 131:57-62. |
|
|
|
Segal G, Ron EZ (1996). Regulation and organization of the groE and dnaK operons in eubacteria. FEMS Microbiol. Lett. 138:1-10. |
|
|
|
Serrano LM, Molenaar D, Wels M, Teusink B, De Vos WM, Smid EJ (2007). Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1. Microb. Cell Fact. 10:6-29. |
|
|
|
Spano G, Massa S (2006). Environmental stress response in wine lactic acid bacteria: beyond Bacillus subtilis. Crit. Rev. Microbiol. 32:77-86. |
|
|
|
Stevens MJA (2008). Transcriptome response of Lactobacillus plantarum to global regulator deï¬ciency, stress and other environmental conditions. The- sis. Wageningen University, Wageningen, The Netherlands. |
|
|
|
Svensater G, Sjogreen B, Hamilton IR (2000). Multiple stress responses in Streptococcus mutans and the induction of general and stress-specific proteins. Microbiology 146: 107-117. |
|
|
|
Teixera P, Castro H, Mohacsi-Farkas C, Kirby R (1997). Identification of sites of injury in Lactobacillus bulgaricus during heat stress. J. Appl. Microbiol. 83: 219-226. |
|
|
|
Van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E (2002). Stress responses in lactic acid bacteria. Antonie Leeuwenhoek 82:187-216. |
|
|
|
Veinger L, Diamant S, Buchner J, Goloubinoff P (1998). The small heat shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J. Biol. Chem. 273:11032-11037. |
|
|
|
Walker DC, Girgis HS, Klaenhammer TR (1999). The groESL chaperone operon of Lactobacillus johnsonii. Appl. Environ. Microbiol. 65: 3033-3041. |
|
|
|
Whitaker RD, Batt CA (1991). Characterization of the heat shock response in Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 57:1408-1412. |
Copyright © 2024 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0