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The proposed Neural-Fuzzy pattern recognition (NFPR) system discussed in this paper effectively 
reduces the complication in precisely analyzing and interpreting human deoxyribonucleic acid (DNA) 
sample. In this novel approach, the perfect blend made of bioinformatics and a competitive method of 
neural networks technique, which has the advantage over conventional computation technique, in their 
ability to solve problem that do not have an algorithmic solution or the available solutions are also too 
complex to be found, results in efficient DNA pattern analysis algorithm that identifies repeated 
patterns in the given human DNA sample assisting in generation of unique identification number of an 
individual, location of occurrence of mutation in the mutated DNA sample with utmost prediction 
accuracy. 
 
Key words: Neural-Fuzzy resonance mapping, competitive learning, NFPR processor, Input generator, 
preprocessor, discriminator, DNA profiling, DNA sequence, FASTA format. 

 
 
INTRODUCTION 
 
The genome (Joe and John, 1999) is the entirety of an 
organism's hereditary information which is encoded either 
in deoxyribonucleic acid (DNA) or, for many types of 
virus, in ribonucleic acid (RNA). The role of DNA 
sequences has become indispensable for many 
biological researches. DNA sequencing is applied in 
various fields such as diagnostic, biotechnology, forensic 
biology and biological systematic.  

The DNA sequences of thousands of organisms have 
been decoded and stored in databases. A comparison of 
genes within a species or between different species can 
show similarities between protein functions, or relations 
between species.  With  the  growing  amount  of  data,  it  
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became impractical to analyze DNA sequences manually. 
A pattern (Richard et al., 2006; Donald, 2005) is 
essentially an arrangement or an ordering, in which some 
organization of underlying structure can be said to exist, 
that is, a pattern can be referred to as a quantitative or 
structural description of an object or some item of 
interest. A set of patterns that share some common 
properties can be regarded as pattern class (Phipps, 
1996) in our case the unique repeated nucleotide 
sequence from the given human DNA sample.  

Neural networks (Advances in Neural Networks issn, 
2006) can process information in parallel, at high speed, 
and in a distributed manner. Neural networks which are 
simplified models of the biological neuron system, made 
up of highly interconnected neural computing elements 
that have the ability to learn and thereby acquire 
knowledge and make it available for use. Neural 
networks are capable  of  learning   by  examples to solve  



 
 
 
 
 
unknown or untrained instances of the problem, if it’s 
aptly trained.  

Neural networks architectures (Stephen et al., 2009; 
Robert, 2007) can be trained with known examples of a 
problem before they are tested for their inference. They 
can, therefore, identify new objects previously untrained. 
Neural networks (Carpenter and Grossberg, 1987) are 
robust systems and are fault tolerant. They can therefore, 
recall full patterns from incomplete, partial or noisy 
patterns. Network architectures (John et al., 2008) have 
been classified into various types based on their learning 
mechanisms and other features.  

In Competitive Learning method those neurons which 
respond strongly to input stimuli have their weights 
updated, when an input pattern is presented, all neurons 
in the layer compete and the winning neuron undergoes 
weight adjustment. Hence it is a “Winner-takes-all” 
strategy. 

Neural networks (Advances in Neural Networks issn, 
2006) suitable particularly for pattern classification 
problems in realistic environment is  Neural-Fuzzy 
resonance mapping (NFRM) (Carpenter and Grossberg, 
2010), it is a vast simplification of fuzzy resonance 
mapping which possess reduced computational overhead 
and architectural redundancy. 
 

 
DNA PROFILING AND SEQUENCING  
 
DNA profiling (Stephen and David, 2003) also called DNA 
testing, DNA typing, or genetic fingerprinting, is a 
technique employed by forensic (Norah and Keith, 2002; 
Joe and John, 1999; John and Brent, 2005) scientists to 
assist in the identification of individuals on the basis of 
their respective DNA profiles. DNA profiles (David, 2004) 
are encrypted sets of numbers that reflect a person's 
DNA makeup (David, 2008; Andreas, 2001), which can 
also be used as the person's identifier.  DNA sequencing 
theory addresses physical processes related to 
sequencing  DNA .The term DNA sequencing refers to 
sequencing methods  for determining the order of the 
nucleotide bases—adenine, guanine, cytosine, thymine 
and uracil (rare case) in a molecule of DNA. Single 
nucleotide poly-orphisms (Computational Intelligence and 
Bio inspired Systems, 2005 ) are a DNA sequence 
variation occurring when a single nucleotide A, T, C, or G 
in the genome (Julie, 2001) (or other shared sequence) 
differs between members of a species (Des and willie, 
2000) (or between paired chromosomes in an individual).  

For example, two sequenced DNA fragments from 
different individuals (Michael, 2007), AAGCCTA to 
AAGCTTA, contain a difference in a single nucleotide. 
Various DNA sequence formats available are: Plain 
sequence format, EMBL format, GCG format, GCG-RSF 
(rich sequence format, Gen Bank format, IG format and 
given sample is used as an input to  neural-fuzzy  pattern 
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recognition (NFPR) processor which is to be interpreted 
and analysed. Fuzzy representation of nucleotide bases 
in NFPR processor is Adenine (A)-0.1, Thymine (T)-0.2, 
Guanine (G)-0.3, Cytosine (C)-0.4, Uracil (U)-0.5.The 
concept of clustering logical and illogical sequence is 
shown in Figure 1. 
 
 
NEURAL-FUZZY PATTERN RECOGNITION 
PROCESSOR 
 

Learning input generator  
 

The input generator is used for input normalization and it 
represents the presence of particular feature in the input 
patterns and its absence. Various cases for generating 
normalized learning inputs are shown in Table 1. 
 
 

Learning inputs   
  

p21ni, I...,I,ILIN =                                       (1)  

      

processor) NFPR of weightsinput, learning of (size 4pand

0.5n0.10.5,i0.1Where

=

≤≤≤≤

 

Various cases for learning input normalization is given in 

Table 2. 
 
 
Activation function generator  
 
When coded input patterns from input generator are 
presented to NFPR-Processor all output nodes become 
active to varying degrees. The output activation denoted 
by activation function (ACFj) for the j

th
 output node. 

Where LIN is the learning input and LIWj is the 
corresponding learning input weights.   
 
 
Activation unction    
  

WjLIα

WjLIΛLIN
ACFj

+
=                                        (2)  

 

Here α is kept as a small value close to 0 it’s about 
0.0000001.The node which registers the highest 
activation function is deemed Winner node, that is:  
 

max(ACFj)nodeWinner =                  (3)             

 

In the event of more than one node emerging as the 
winner owing to the same activation function value some 
FASTA  format. A  sequence  file  in  FASTA  format  of a
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Figure 1. Concept of Clustering Logical and Illogical sequence. 

 
 
 
mechanism such as choosing a node with the smallest 
index may be devised to break the tie.  
 
 

Match function generator  
 

The match function (MAF) which helps to determine 
whether the network must adjust its learning parameters 
is given by: 
 
 

Matching function 
 

LIN

WjLIΛLIN
MAFj =                           (4)       

 
The MAF association with the vigilance parameter (ρ) 
decides on whether a particular output node is good 
enough to encode a given input pattern or whether a new 
output node should be opened to encode the same.  

The network is said to be in a state of resonance, if the 
match function value exceeds vigilance parameter. 
However, for a node to exhibit resonance, it is essential 
that it not only encodes the given input pattern but should 
also represent the same category as that of the input 
pattern. The network is said to  be  in  state  of  mismatch 

reset if the vigilance parameter exceeds match function, 
Such a state only means that the particular output node is 
not fit enough to learn the given input pattern and thereby 
cannot update its weights even though the category of 
the output node may be the same as that of the input 
pattern. This is so, since the output node has fallen short 
of the expected encoding granularity indicated by the 
vigilance parameter. If match function is greater than 
vigilance parameter and category of input pattern is not 
same with the learning input, the vigilance parameter is 
updated and is given by: 
 

δρ  +MAF = (δ =0.001)                                   (5)      

 
The weight updating equation of an output node j when it 
proceeds to learn the given input pattern LIN is given by: 
 
Weight for Inference (WFI) 
 

old
)WFIj(1)

old
WFIjΛ(LIN

new
j WFI ββ −+=           (6)                                                                        

                                                                   

10where ≤≤ β              ( β =1) 

 
The computation involved in generating WFI and 
category for Inference (CFI) for some nucleotide  pairs  is 
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Table 1. Generating weights for inference (WFI), category for inference (CFI) from learning inputs. 
 

 Nucleotide pair A,A* A,U* T,A* T,T** T,U* G,A* G,G** G,U* C,A* C,C** C,U* U,A* U,U*** 

Category L L L ILL L L ILL L L ILL L L ILL 

 Learning input(LIN) 0.1,0.1, 

0.9,0.9 

0.1,0.5, 

0.9,0.5 

0.2,0.1, 

0.8,0.9 

0.2,0.8, 

0.8,0.2 

0.2,0.5, 

0.8,0.5 

0.3,0.1, 

0.7,0.9 

0.3,0.7, 

0.7,0.3 

0.3,0.5, 

0.7,0.5 

0.4,0.1, 

0.6,0.9 

0.4,0.6, 

0.6,0.4 

0.4,0.5, 

0.6,0.5 

0.5,0.1, 

0.5,0.9 

0.5,0.6, 

0.5,0.4 

              

ρ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5, 

0.600+ δ 

0.601 0.601 0.601 

              

Learning 
input 
weights  

 

LIW(1) =LIN 0.1,0.1, 

0.9,0.9 

0.1,0.1, 

0.9,0.5 

0.1,0.1, 

0.8,0.5 

0.1,0.1, 

0.8,0.5 

0.1,0.1, 

0.8,0.5 

0.1,0.1, 

0.7,0.5 

0.1,0.1, 

0.7,0.5 

0.1,0.1, 

0.7,0.5 

0.1,0.1, 

0.6,0.5 

0.1,0.1, 

0.6,0.5 

0.1,0.1, 

0.6,0.5 

0.1,0.1, 

0.6,0.5 

              

LIW(2) ~ ~ ~ =LIN 0.2,0.8, 

0.8,0.2 

0.2,0.8, 

0.8,0.2 

0.2,0.8, 

0.8,0.2 

0.2,0.7, 

0.7,0.2 

0.2,0.7, 

0.7,0.2 

0.2,0.7, 

0.7,0.2 

0.2,0.6, 

0.6,0.2 

0.2,0.6, 

0.6,0.2 

0.2,0.6, 

0.6,0.2 

              

LIW(3) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.5,0.1, 

0.5,0.9 

               

Activation 
function 

ACF(1) 0.9999 0.7999 0.9375 0.7999 0.9999 0.9333 0.8751 0.9999 0.9285 0.9230 0.9999 0.9230 0.8461 

ACF(2) ~ ~ ~ ~ 0.8499 0.5999 0.8999 0.8888 0.6111 0.8888 0.9375 0.6249 0.9375 

ACF(3) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.7499 

              

Highest Activation 
Function 

ACF(1) ACF(1) ACF(1) ACF(2) ACF(1) ACF(1) ACF(2) ACF(1) ACF(1) ACF(2) ACF(1) ACF(1), 

ACF(2) 

ACF(2) 

              

Category Match / 
Mismatch 

Match Match Match  Match Match  Match Match Mismatch Match Match  

   Match   Match   Match   Match 

             

Match 
Function 

MAF(1) 1.0000 0.8000 0.7500 0.6000 0.7500 0.7000 0.6000 0.7000 0.6500 0.6000 0.6500 0.6000 0.5500 

MAF(2) ~ ~ ~ ~ 0.8500 0.6000 0.9000 0.8000 0.5500 0.8000 0.7500 0.5000 0.7500 

MAF(3) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.7500 

               

Weight for 
inference  

and 

category 

for 
inference 

WFI(1)  

 

0.1,0.1, 

0.9,0.9 

0.1,0.1, 

0.9,0.5 

0.1,0.1, 

0.8,0.5 

0.1,0.1, 

0.8,0.5 

0.1,0.1, 

0.8,0.5 

0.1,0.1, 

0.7,0.5 

0.1,0.1, 

0.7,0.5 

0.1,0.1, 

0.7,0.5 

0.1,0.1, 

0.6,0.5 

0.1,0.1, 

0.6,0.5 

0.1,0.1, 

0.6,0.5 

0.1,0.1, 

0.6,0.5 

0.1,0.1, 

0.6,0.5 

CFI(1) L L L L L L L L L L L L L 

              

WFI(2) 

 

~ ~ ~ 0.2,0.8, 

0.8,0.2 

0.2,0.8, 

0.8,0.2 

0.2,0.8, 

0.8,0.2 

0.2,0.7, 

0.7,0.2 

0.2,0.7, 

0.7,0.2 

0.2,0.7, 

0.7,0.2 

0.2,0.6, 

0.6,0.2 

0.2,0.6, 

0.6,0.2 

0.2,0.6, 

0.6,0.2 

0.2,0.6, 

0.5,0.2 
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Table 1. Contd. 

 

 CFI(2) ~ ~ ~ ILL ILL ILL ILL ILL ILL ILL ILL ILL ILL 

              

WFI(3) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0.5,0.1, 

0.5,0.9 

0.5,0.1, 

0.5,0.9 

              

CFI(3) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ L L 
 

ρ=VIGILANCE PARAMETER ,*- CASE1,**-CASE2,***CASE3. 

 
 
 
given below and shown in Table 1: 
 
Delta (δ) =0.001; Beta (β) =1; and Alpha (α) 
=0.0000001, 
 
 
For nucleotide pair (AA) 
 
Category to be trained: L (Logical) 
 
Fuzzy Equivalent (FE): 0.1(A), 0.1(A)  
 
Learning Input (LIN) =0.1, 0.1, 1-0.1, 1-0.1 
                              = 0.1, 0.1, 0.9, 0.9 (Case1) 
 

Rho (ρ) =0.5, 9.0,9.0,1.0,1.0AILIW(1) ==
 

 

9999.0
0000001.2

0.2

0000001.2

9,0.90.1,0.1,0.

|9,0.90.1,0.1,0.|0000001.0

9,0.90.1,0.1,0.Λ9,0.90.1,0.1,0.
ACF(1)

===

+
=

 
 

0000.1
0.2

0.2

0.2

9,0.90.1,0.1,0.

|9,0.90.1,0.1,0.|

9,0.90.1,0.1,0.Λ9,0.90.1,0.1,0.
MAF(1)

===

=

 

As it’s the first learning input, 
 

9,0.90.1,0.1,0.WFI(1) = , . LCFI(1) =  

 
 
For nucleotide pair (AU) 
 
Category to be trained: L (Logical). 
Fuzzy Equivalent: 0.1(A), 0.5(U). 
 
Learning Input (LIN) = 0.1, 0.5, 1-0.1, 1-0.5 
                         =0.1, 0.5, 0.9, 0.5 (Case1)  
Rho (ρ) =0.5,  

 

5.0,9.0,5.0,1.0LIN = , 9.0,9.0,1.0,1.0LIW(1)=  

 

7999.0
0000001.2

6.1

0000001.2

59,0.0.1,0.1,0.

|9,0.90.1,0.1,0.|0000001.0

9,0.90.1,0.1,0.Λ9,0.50.1,0.5,0.
ACF(1)

===

+
=

 
 

7999.0
0000001.2

6.1

0000001.2

59,0.0.1,0.1,0.

|9,0.90.1,0.1,0.|0000001.0

9,0.90.1,0.1,0.Λ9,0.50.1,0.5,0.
ACF(1)

===

+
=

 

8000.0
0.2

6.1

0.2

9,0.50.1,0.1,0.

|9,0.50.1,0.5,0.|

9,0.90.1,0.1,0.Λ9,0.50.1,0.5,0.
MAF(1)

===

=
  

 
ACF (1) has same category as of category of 
nucleotide pair, MFI (1) is greater than rho, so 
 

9,0.50.1,0.1,0.,0.9,0.9)1)(0.1,0.1-(1

9,0.9)0.1,0.1,0.(Λ)59,0.0.1,0.5,0.(*1WFI(1)

=+

=

 
 

5.0,9.0,1.0,1.0WFI(1)=
,

. LCFI(1) =  

 
 
For nucleotide pair (TT) 

 
Category to be trained: ILL (Illogical) 

 
Fuzzy Equivalent: 0.2(T), 0.2(T)  

 
Learning Input (LIN) = 0.2, 1-0.2, 1-0.2, 0.2 

 
=0.2, 0.8, 0.8, 0.2 (Case2)  
 

Rho (ρ) =0.5, 5.0,8.0,1.0,1.0LIW(1)=  
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Table 2. Various cases for learning input normalization 
 

 
Condition

 

Learning Input

 

Category

 

        Case 1 
 

i ≠ n or i=n=0.1 

and 

n<=0.5

 

LIN i, n = i, n, 1- i, 1-n 

e.g. 

LIN 0.1, 0.1 = 0.1, 0.1, (1- 0.1), (1-0.1) 

LIN 0.1, 0.1 = 0.1, 0.1, 0.9, 0.9 

LIN 0.2, 0.5 = 0.2, 0.5, (1- 0.2), (1-0.5) 

LIN 0.2, 0.5 = 0.2, 0.5, 0.8, 0.5

 

Category=L 

(logical)

 

 Case 2 
 

i = n 

and 

0.1> i, n <0.5

 

LIN i, n = i, 1-i, 1-n, n 

e.g. 

LIN 0.2, 0.2= 0.2, (1-0.2), (1- 0.2), 0.2 

LIN 0.2, 0.2 = 0.2, 0.8, 0.8, 0.2 

LIN 0.3, 0.3= 0.3, (1-0.3), (1- 0.3), 0.3 

LIN 0.3, 0.3= 0.3, 0.7, 0.7, 0.3

 

Category=ILL 

(illogical)

 

      Case 3 
 

i=n=0.5

 

LIN i, n = i, i+0.1, n, n-0.1 

e.g. 

LIN 0.5, 0.5= 0.5, (0.5+1),  0.5, (0.5-0.1) 

LIN 0.5, 0.5= 0.5, 0.6, 0.5, 0.4

 

Category=ILL 

(illogical)

 
 
 
      

 

9999.0
5000001.1

2.1

5000001.1

28,0.0.1,0.1,0.

|8,0.50.1,0.1,0.|0000001.0

8,0.50.1,0.1,0.Λ8,0.20.2,0.8,0.
ACF(1)

===

+
=

, 

 

6000.0
0.2

2.1

0.2

8,0.20.1,0.1,0.

|8,0.20.2,0.8,0.|

8,0.50.1,0.1,0.Λ8,0.20.2,0.8,0.
MAF(1)

===

=

 
 
As category of nucleotide pair is the new category to be 
trained: 
 

5.0,8.0,1.0,1.0WFI(1)= , 2.0,8.0,8.0,2.0WFI(2)= . 

, LCFI(1) = . ILLCFI(2) =  
 
 

For nucleotide pair (CC) 
 

Category to be trained: ILL (Illogical) 
 

Fuzzy Equivalent: 0.4(C), 0.4(C)  
 

Learning Input (LIN): 0.4, 1-0.4, 1-0.4, 0.4 
                             =0.4, 0.6, 0.6, 0.4(Case2) 
 

Rho (ρ) =0.5 

5.0,6.0,1.0,1.0LIW(1) = , 2.0,7.0,7.0,2.0LIW(2) =  

 

9230.0
3000001.1

2.1

3000001.1

46,0.0.1,0.1,0.

|6,0.50.1,0.1,0.|0000001.0

6,0.50.1,0.1,0.Λ6,0.40.4,0.6,0.
ACF(1)

===

+
=

 
 

8888.0
8000001.1

6.1

8000001.1

26,0.0.2,0.6,0.

|7,0.20.2,0.7,0.|0000001.0

7,0.20.2,0.7,0.Λ6,0.40.4,0.6,0.
ACF(2)

===

+
=

 
 

6000.0
0.2

2.1

0.2

6,0.40.1,0.1,0.

|6,0.40.4,0.6,0.|

6,0.50.1,0.1,0.Λ6,0.40.4,0.6,0.
MAF(1)

===

=

 
 

8000.0
0.2

6.1

0.2

6,0.20.2,0.6,0.

|6,0.40.4,0.6,0.|

7,0.20.2,0.7,0.Λ6,0.40.4,0.6,0.
MAF(2)

===

=

 

 
ACF (1) has the highest value and its category is  Logical 
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which is not same as the category of input nucleotide 
pair, update the value of rho, that is, 0.600 (MAF (1)) 
+0.001(δ) =0.601, find the next highest value which is 
ACF (2) whose category is same as that of nucleotide 
pair, so update WIF(2): 
 

6,0.50.1,0.1,0.WFI(1) = . LCFI(1) =  

ILL.CFI(2)

6,0.2,0.2,0.6,0.,0.7,0.2)1)(0.2,0.7-(1

7,0.2)0.2,0.7,0.(Λ)6,0.40.4,0.6,0.(*1WFI(2)

=

=+

=

 

 

 
For nucleotide pair (UA) 
 
Category to be trained: L (Logical) 
 
Fuzzy Equivalent: 0.5(U), 0.1(A)  
 
Learning Input (LIN): 0.5, 0.1, 1-0.5, 1-0.1 
      =0.5, 0.1, 0.5, 0.9(Case1) 
 
Rho (ρ) =0.601,  
 

5.0,6.0,1.0,1.0LIW(1) = , 2.0,6.0,6.0,2.0LIW(2) =
 

 

9230.0
3000001.1

2.1

3000001.1

55,0.0.1,0.1,0.

|6,0.50.1,0.1,0.|0000001.0

6,0.50.1,0.1,0.Λ95,0.0.5,0.1,0.
ACF(1)

===

+
=

 
 

6249.0
6000001.1

0.1

6000001.1

25,0.0.2,0.1,0.

|6,0.20.2,0.6,0.|0000001.0

6,0.20.2,0.6,0.Λ5,0.90.5,0.1,0.
ACF(2)

===

+
=

 
 

6000.0
0.2

2.1

0.2

5,0.50.1,0.1,0.

|5,0.90.5,0.1,0.|

6,0.50.1,0.1,0.Λ5,0.90.5,0.1,0.
MAF(1)

===

=

 
 

5000.0
0.2

0.1

0.2

5,0.20.2,0.1,0.

|6,0.40.4,0.6,0.|

6,0.20.2,0.6,0.Λ5,0.90.5,0.1,0.
MAF(2)

===

=

 

 
 
 
 
ACF (1) has the highest value and MAF (1) is less than 
rho, find the next highest value which is ACF (2) ,its 
corresponding MAF (2) is also less than rho, so add new 
WFI (3), that is, WFI(3)=LIN: 
 

6,0.50.1,0.1,0.WFI(1)= , 6,0.20.2,0.6,0.WFI(2)=  

5,0.90.5,0.1,0.WFI(3) = , , LCFI(1) =

, ILLCFI(2) = . LCFI(3) =  
 
 
For nucleotide pair (UU) 
 
Category to be trained: ILL (Illogical) 
 
Fuzzy Equivalent: 0.5(U), 0.5(U)  
 
Learning Input (AI): 0.5, 0.5+0.1, 0.5, 0.5-0.1 
            =0.5, 0.6, 0.5, 0.4(Case3)  
 

Rho (ρ) =0.601, 5.0,6.0,1.0,1.0LIW(1) = , 

 

2.0,6.0,6.0,2.0LIW(2)= , 9.0,5.0,1.0,5.0LIW(3) =
 

 

8461.0
3000001.1

1.1

3000001.1

45,0.0.1,0.1,0.

|6,0.50.1,0.1,0.|0000001.0

6,0.50.1,0.1,0.Λ5,0.40.5,0.6,0.
ACF(1)

===

+
=

 
 

8461.0
3000001.1

1.1

3000001.1

45,0.0.1,0.1,0.

|6,0.50.1,0.1,0.|0000001.0

6,0.50.1,0.1,0.Λ5,0.40.5,0.6,0.
ACF(1)

===

+
=

 
 

9375.0
6000001.1

5.1

6000001.1

25,0.0.2,0.6,0.

|6,0.20.2,0.6,0.|0000001.0

6,0.20.2,0.6,0.Λ5,0.40.5,0.6,0.
ACF(2)

===

+
=

 
 

7499.0
0000001.2

5.1

0000001.2

45,0.0.5,0.1,0.

|5,0.90.5,0.1,0.|0000001.0

5,0.90.5,0.1,0.Λ5,0.40.5,0.6,0.
ACF(3)

===

+
=

 
 

5500.0
0.2

1.1

0.2

5,0.40.1,0.1,0.

|5,0.40.5,0.6,0.|

6,0.50.1,0.1,0.Λ5,0.40.5,0.6,0.
MAF(1)

===

=
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Table 3. Various conditions for generating preprocessor output. 

 

Preprocessor Input 
Condition

 

Preprocessor Output

 

 

 

 

 

 

 

 

PPI( i, n)  

 

1 i ≠ n or i=n=0.1 

and 

n<=0.5 

PPO(i, n) = i, n, 1- i, 1-n 

e.g. 

PPO(0.1, 0.1) = 0.1, 0.1, (1- 0.1), (1-0.1) 

PPO(0.1, 0.1) = 0.1, 0.1, 0.9, 0.9 

PPO(0.2, 0.5) = 0.2, 0.5, (1- 0.2), (1-0.5) 

PPO(0.2, 0.5) = 0.2, 0.5, 0.8, 0.5 

2 i = n 

and 

0.1> i, n <0.5 

PPO(i, n) = i, 1-i, 1-n, n 
e.g. 

PPO(0.2, 0.2) = 0.2, (1-0.2), (1- 0.2), 0.2 
PPO(0.2, 0.2) = 0.2, 0.8, 0.8, 0.2 

PPO(0.3, 0.3) = 0.3, (1-0.3), (1- 0.3), 0.3 

PPO(0.3, 0.3) = 0.3, 0.7, 0.7, 0.3 

3 i=n=0.5 PPO(i, n) = i, i+0.1, n, n-0.1 

e.g. 

PPO(0.5, 0.5) = 0.5, (0.5+1),  0.5, (0.5- 0.1) 

PPO(0.5, 0.5) = 0.5, 0.6, 0.5, 0.4 

 
 
 

7500.0
0.2

5.1

0.2

5,0.20.2,0.6,0.

|5,0.40.5,0.6,0.|

6,0.20.2,0.6,0.Λ45,0.0.5,0.6,0.
MAF(2)

===

=

 
 

7500.0
0.2

5.1

0.2

5,0.40.5,0.1,0.

|5,0.40.5,0.6,0.|

5,0.90.5,0.1,0.Λ45,0.0.5,0.6,0.
MAF(3)

===

=

 
 
ACF (2) has the highest value, whose category is Illogical 
which is same as the category of input nucleotide pair, 
update WFI (2): 

  

)6,0.50.1,0.1,0.( WFI(1)So  5,0.20.2,0.6,0.

6,0.2)0.2,0.6,0.(Λ)5,0.40.5,0.6,0.(WFI(2)

==

=
  

 

5,0.9,0.5,0.1,0.WFI(3) = , LCFI(1) =

, ILLCFI(2) = . LCFI(3) =  
 

5,0.90.5,0.1,0.WFI(3) = .  

 
The WFI, CFI generated for various learning input is 
shown in Table 1.Once the network has been trained; the 
inference   of   patterns,   logical  or  illogical,  that  is,  the  

categories to which the patterns belong may be easily 
computed. This is accomplished by subjecting DNA input 
to CIF function through pre-processor. Various conditions 
for generating pre-processed output are shown in Table 3. 
 
 
Category inference function (CIF) 
 

WFIj

WFIjΛPPO
CIFj =                                             (7)           

 
Computation involved in finding CIF for DNA Input (TG) is 
shown as: 
 
If CIF (1)/ CIF (3) is greater than CIF (2) then greatest 
inferred category (GIF) is CIF (1) /CIF (3), so the 
category inferred is logical, else if CIF (2) is greater than 
CIF (1) and CIF (3) then greatest inferred category(IC) is 
illogical. 
 
 
For DNA input TG  
 

Pre-processor Input (PPI): 0.2(T), 0.3(G) 
 

Pre-processor Output (PPO): 0.2, 0.3, 0.8, 0.7 
 

0000.1
3.1

3.1

3.1

6,0.50.1,0.1,0.

|6,0.50.1,0.1,0.|

6,0.50.1,0.1,0.Λ8,0.70.2,0.3,0.
CIF(1)

===

=
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6000.0
0.2

2.1

5.1

5,0.20.2,0.3,0.

|5,0.20.2,0.6,0.|

5,0.20.2,0.6,0.Λ78,0.0.2,0.3,0.
CIF(2)

===

=

 
 

 

7500.0
0.2

5.1

0.2

75,0.0.2,0.1,0.

|5,0.90.5,0.1,0.|

5,0.90.5,0.1,0.Λ78,0.0.2,0.3,0.
CIF(3)

===

=

 
 

CIF(1) has the highest value whose category is logical so 
the corresponding seven consecutive nucleotide base 
from TG in the DNA sample is chosen as single logical 
sequence i.e.0.2,0.3,0.2,0.3,0.2,0.3,0.1   and DNA inputs 
whose  category  is  illogical,  two  consecutive  similar 
nucleotide base is considered as an illogical sequence as 
shown in Table 4. 
  
Logical sequence (LS):  
 

ks,p,Lseqs,2,...,p,Lseqs,1,p,Lseqks,LSp, =

    
 

7to1kand

to1sp,Where

=

∞=

                                             

(8)    

                 

 

 

The sequence that are logical in their category alone are 
fed to the discriminator (D1) where unique identification 
number(0.182464) is computed using the equation 9  as 
shown in Table 6 and the standard deviation of logical 
sequence is calculated and plotted using MATLAB 
(Sivanandam, 2006) to represent unique repeated logical 
sequence pictorially as in Figure 2. 
 

∑

∞=

=
=

7

to1sp,

1k

k
)ks,p,(Lseqksp,D1                          (9)                

   

0.6724570.1)(7
6

0.1)(6
5

0.1)(5

4
0.1)(4

3
0.4)(3

2
0.2)(2

1
0.4)(1D1 e.g.

7

1,3

=+++

+++=

 

 

Illogical sequence (IS): 
 

∞= ILseq,...,ILseq,ILseqIS sssp,                    (10) 

 

The sequence that are illogical in their category are fed to 
the discriminator (D2) where identification number is 
computed as shown in Table 5a and b using the equation: 

 
 
 
 

.repeated is base nucleotide  timesofNumber  = m

 1tom s,p,  re       whe

m
sILseqsp,D2

∞=

=

          (11)   

0.008000
3

0.2)(D2  e.g. 1,2 ==

 
 

The discriminator outputs of both D1, D2 are used to 
identify the location of mutation in the given sample as 
thus discussed. 
 
 

DNA SAMPLE: HUMAN-1 [BASE PAIR   =32, 
SEQUENCE =25] 
 

>AB000263 |acc=AB000263|descr=Homo sapiens mRNA 
for prepro cortistatin like peptide, complete cds.|len=368 
AATGTGTTGTGTGACCCCTCAAAATCTCTCAAATGTG
TTTTTACACTCCGTTGGTAATATGGAATGTGTTAAAGT
TGCTACCCGGGGTTTTTTAATGTGTCTCT 
TGTGACCCCTCAAAATCTCTCAAATGTGTTTTTACACT
CCGTTGGTAATATGGAATGTGTTAAAGTTGCTACCCG
GGGTTTTTTAATGTGTCTCT 
 
 

IDENTIFCIATION OF MUTATION IN THE SAMPLE 
 

Mutation (Charles, 2007) is a change of DNA sequence 
within a gene or chromosome of an organism resulting in 
the creation of a new character or trait not found in the 
parental type .The mutation (Mark and Marcus, 2007) 
results when a change occurs in a chromosome, either 
through an alteration in the nucleotide sequence of the 
DNA coding for a gene or through a change in the 
physical arrangement of a chromosome.  

Mutations (Graham, 2007) that result in missing DNA 
are called deletions. These can be small, or longer 
deletions that affect a large number of genes on the 
chromosome. Deletions can also cause frame-shift 
mutations. Mutations (Richard et al., 1998 that result in 
the addition of extra DNA are called insertions. Insertions 
can also cause frame-shift mutations, and generally 
result in a non-functional protein. In an inversion 
mutation, an entire section of DNA is reversed. A small 
inversion may involve only a few bases within a gene, 
while longer inversions involve large regions of a 
chromosome containing several genes. 
 
 

Various types of mutation identification in human-1 
sample 
 

Before mutation 
 

LS1/RS              LS2                IS1                      IS1    IS1 
AATGTGT            TGTGTGA             C              C          C              
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Table 4. Identification of logical and illogical sequence using CIF. 

 

 DNA inputs of  human-1 

PPI (Preprocessor 
Input) 

A,A* 

0.1,0.1 

T,G* 

0.2,0.3 

C,C** 

0.4,0.4 

C,C** 

0.4,0.4 

C,C** 

0.4,0.4 

C,T* 

0.4,0.2 

T,C* 

0.2,0.4 

A,A* 

0.1,0.1 

T,T** 

0.2,0.2 

T,T** 

0.2,0.2 

T,T** 

0.2,0.2 

T,A* 

0.2,0.1 

PPO Preprocessor 
Output) 

0.1,0.1, 

0.9,0.9 

0.2,0.3, 

0.8,0.7 

0.4,0.6, 

0.6,0.4 

0.4,0.6, 

0.6,0.4 

0.4,0.6, 

0.6,0.4 

0.4,0.2, 

0.6,0.8 

0.2,0.4, 

0.8,0.6 

0.1,0.1, 

0.9,0.9 

0.2,0.8, 

0.8,0.2 

0.2,0.8, 

0.8,0.2 

0.2,0.8, 

0.8,0.2 

0.2,0.1, 

0.8,0.9 

             

WFI WFI(1) / 

CFI(1)-L 

0.1,0.1, 

0.6,0.5 

0.1,0.1, 

0.6,0.5 

0.1,0.1, 

0.6,0.5 

0.1,0.1, 

0.6,0.5 

0.1,0.1, 

0.6,0.5 

0.1,0.1, 

0.6,0.5 

0.1,0.1, 

0.6,0.5 

0.1,0.1, 

0.6,0.5 

0.1,0.1, 

0.6,0.5 

0.1,0.1, 

0.6,0.5 

0.1,0.1, 

0.6,0.5 

0.1,0.1, 

0.6,0.5 

             

WFI(2) / 

CFI(2)-ILL 

0.2,0.6, 

0.5,0.2 

0.2,0.6, 

0.5,0.2 

0.2,0.6, 

0.5,0.2 

0.2,0.6, 

0.5,0.2 

0.2,0.6, 

0.5,0.2 

0.2,0.6, 

0.5,0.2 

0.2,0.6, 

0.5,0.2 

0.2,0.6, 

0.5,0.2 

0.2,0.6, 

0.5,0.2 

0.2,0.6, 

0.5,0.2 

0.2,0.6, 

0.5,0.2 

0.2,0.6, 

0.5,0.2 

             

WFI(3) /  

CFI(3)-L 

0.5,0.1, 

0.5,0.9 

0.5,0.1, 

0.5,0.9 

0.5,0.1, 

0.5,0.9 

0.5,0.1, 

0.5,0.9 

0.5,0.1, 

0.5,0.9 

0.5,0.1, 

0.5,0.9 

0.5,0.1, 

0.5,0.9 

0.5,0.1, 

0.5,0.9 

0.5,0.1, 

0.5,0.9 

0.5,0.1, 

0.5,0.9 

0.5,0.1, 

0.5,0.9 

0.5,0.1, 

0.5,0.9 

              

CIF CIF(1) 1.0000 1.0000 0.9230 0.9230 0.9230 1.0000 1.0000 1.0000 0.7692 0.7692 0.7692 1.0000 

CIF(2) 0.6000 0.6000 1.0000 1.0000 1.0000 0.7333 0.8666 0.6000 1.0000 1.0000 1.0000 0.6666 

CIF(3) 0.8000 0.7500 0.7000 0.7000 0.7000 0.9000 0.7000 0.8000 0.5000 0.5000 0.5000 0.8500 

              

GIC CIF(1) CIF(1) CIF(2) CIF(2) CIF(2) CIF(1) CIF(1) CIF(1) CIF(2) CIF(2) CIF(2) CIF(1) 

             

 

IC 

LOGICAL L L    L L L    L 

ILLOGICAL   ILL ILL ILL    ILL ILL ILL  

              

Categorized 
Sequence 

0.1,0.1,0.
2,0.3,0.2,
0.3,0.2 

0.2,0.3,0.2,0
.3,0.2,0.3, 

0.1 

0.4,0.4 0.4,0.4 0.4,0.4 0.4,0.2,0.4,0
.1,0.1,0.1, 

0.1 

0.2,0.4,0.2,
0.4,0.2,0.4, 

0.1 

0.1,0.1,0.2,
0.3,0.2,0.3, 

0.2 

0.2,0.2 0.2,0.2 0.2,0.2 0.2,0.1,0.4,
0.1,0.4,0.2, 

0.4 
 

CIF, Category inference function; *, condtion 1; **, condition 2, ***, condition 3; IC, inferred category. 

 
 
 

LS3        LS4           LS5/RS              IS2   IS2 
CTCAAA TCTCTCA        AATGTGT         T        T 
IS2               LS6                  LS7                   LS8 
T         TACACTC        CGTTGGT        AATATGG 
LS9/RS   LS10                LS11                 IS3   IS3 
AATGTGT TAAAGTT        GCTACCC        G     G 
IS3              LS12                 LS13/RS            LS14 

G        GTTTTTT          AATGTGT         CTCTXXX 
 
 

Case 1  
 

After point mutation in the sample 
 

LS1/RS       LS2    IS1               IS1                  IS1  

AATGTGT  TGTGTGA     C           C                   C 
LS3            LS4           LS5/RS        IS2           IS2 
CTCA C AA    TCTCTCA AATGTG  T                T 
IS2                 LS6                LS7              LS8 
T            TACACTC      CGTTGGT   AATATGG 
LS9/RS                 LS10              LS11            IS3 
AATGTGT            TAAAGTT       GCTACCC       G 
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LS1, 1 LS1, 2 

LS1, 3 LS1, 4 

LS1, 5 LS1, 6 

 
 

 
Figure 2. MATLAB output for logical sequence (LS (1, 1)-LS (1, 6)) showing LS (1, 1) and LS (1, 5) are unique. CDP, Clustered data points; 
CIVEC, cluster of input vectors; WVEC, weight vectors. 

 
 
 
              

IS3          IS3                  LS12            LS13/RS         LS14 
G          G              GTTTTTT    AATGTGT       CTCTXXX 
In case 1 the point mutation occurred in logical sequence 
(LS1, 3) by the mutant C that can be identified with the 
change in identification number of LS1, 3 where 
identification number of illogical sequence remains 
unaltered as in Table 6. 
 
 
Result  
 
Change in polypeptide sequence might change the shape 
or function  of  the  protein,  depending  on  where  in  the  

sequence occurs. 
 
 
Case 2   
 
After frame shift mutation [Insertion] in the sample:     
 

LS1/RS         LS2              IS1            IS1                    IS1          
AATGTGT    TGTGTGA          C            C                 C    
LS3            LS4               LS5/RS        IS2                    IS2 
CTCAAAA   TCTCTCA      AATGTGT     T                      T     
IS2                      LS6                    LS7               LS8                 
T                       TACACTC           CGTTGGT    AATATGG    
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Table 5a. Discriminator (d2) outputs for categorized IS from non-mutated human 1 sample. 

 

Illogical Sequence 
(IS p, s )  

Number of time 

sequence repeated(m) 

Human 

(p) 

Sequence 

(s) 
ILseqs 

Identification 

number (D2p,s) 

IS1,1 1 1 1 0.4 0.064000 

IS1,1 2 1 1 0.4 

IS1,1 3 1 1 0.4 

      

IS1,2 1 1 2 0.2 0.008000 

IS1,2 2 1 2 0.2 

IS1,2 3 1 2 0.2 

      

IS1,3 1 1 3 0.3 0.027000 

IS1,3 2 1 3 0.3 

IS1,3 3 1 3 0.3 
 
 
 

Table 5b. Discriminator (d1) outputs for categorized logical sequence from non-mutated human1 sample. 
 

Logical 
sequence 

(LS p ,s) 

Human 

(p) 

Sequence 

(s) 

LSeq p, s, k Identification 

number 

(D1p,s) 

  
k=1 k=2 k=3 k=4 k=5 k=6 k=7 

LS1,1 1 1 0.1 0.1 0.2 0.3 0.2 0.3 0.2 0.182464 

0
.1

8
2
4
6
4
 

(U
n
iq

u
e
 i
d
e
n
ti
fi
c
a
ti
o
n
 n

u
m

b
e
r)

 LS1,2 1 2 0.2 0.3 0.2 0.3 0.2 0.3 0.1 0.442375 

LS1,3 1 3 0.4 0.2 0.4 0.1 0.1 0.1 0.1 0.672457 

LS1,4 1 4 0.2 0.4 0.2 0.4 0.2 0.4 0.1 0.672577 

LS1,5 1 5 0.1 0.1 0.2 0.3 0.2 0.3 0.2 0.182464 

LS1,6 1 6 0.2 0.1 0.4 0.1 0.4 0.2 0.4 0.475453 

LS1,7 1 7 0.4 0.3 0.2 0.2 0.3 0.3 0.2 0.627014 

LS1,8 1 8 0.1 0.1 0.2 0.1 0.2 0.3 0.3 0.151905 

LS1,9 1 9 0.1 0.1 0.2 0.3 0.2 0.3 0.2 0.182464 

LS1,10 1 10 0.2 0.1 0.1 0.1 0.3 0.2 0.2 0.236024 

LS1,11 1 11 0.3 0.4 0.2 0.1 0.4 0.4 0.4 0.731645 

LS1,12 1 12 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.412474 

LS1,13 1 13 0.1 0.1 0.2 0.3 0.2 0.3 0.2 0.182464 
 
 
 

LS9/RS               LS10                  LS11             LS12 
AATGTGT     TAAAGTT          GCTACCC     G C GGGTT       
IS3    IS3                    IS3                 LS13                 LS14 
T                 T               T         TAATGTG         TCTCTXX 
 
In case 2 the frame shift mutation (insertion) occurred in 
one of the IS1,3 by the mutant C which alters both the 
logical sequence (LS1,12) and illogical sequence (IS1,3) 
that can be identified by the change in identification 
number of both logical sequence (LS1,12) and illogical 
sequence (IS1,3) as in Table 7. 
 
 

Result  
 
Change in polypeptide sequence might change the shape 

or function of the protein, depending on where in the 
sequence occurs. 
 
 
Case 3  
 

After point mutation [neutral or silent] in the sample    
 

LS1/RS            LS2               IS1                 IS1          IS1     
AATGTGT       TGTGTGA     C                    C            C      
LS3                  LS4               LS5/RS          IS2         IS2     
CTCAAAA       TCTCTCA     AATGTGT      T            T       
IS2                   LS6               LS7                LS8                 
T                      TACACTC     CGTTGGT     AATATGG 
LS9/RS            LS10             LS11              IS3 
AATGTGT             TAAAGTT             GCTACCC           G   
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Table 6.  Point mutation. 

 

Logical Sequence 

 (LS) 

Identification number 
(before mutation) 

Identificatio number 

(after mutation) 

LS1,1 0.182464 0.182464 

LS1,2 0.442375 0.442375 

LS1,3 0.672457 0.723607 

LS1,4 0.672577 0.672577 

LS1,5 0.182464 0.182464 

LS1,6 0.475453 0.475453 

LS1,7 0.627014 0.627014 

LS1,8 0.151905 0.151905 

LS1,9 0.182464 0.182464 

LS1,10 0.236024 0.236024 

LS1,11 0.731645 0.731645 

LS1,12 0.412474 0.412474 

LS1,13 0.182464 0.182464 

   

 Illogical sequence 

(IS) 

Identification number 

(before mutation) 

Identification number 

(after mutation) 

 IS1,1 0.064000 0.064000 

IS1,2 0.008000 0.008000 

IS1,3 0.027000 0.027000 

 
 
 

Table 7. Frame shift mutation (insertion). 

 

Logical Sequence 
(LS) 

Identification  number 

(before mutation) 

Identification  number 

(after mutation) 

LS1,1 0.182464 0.182464 

LS1,2 0.442375 0.442375 

LS1,3 0.672457 0.672457 

LS1,4 0.672577 0.672577 

LS1,5 0.182464 0.182464 

LS1,6 0.475453 0.475453 

LS1,7 0.627014 0.627014 

LS1,8 0.151905 0.151905 

LS1,9 0.182464 0.182464 

LS1,10 0.236024 0.236024 

LS1,11 0.731645 0.731645 

LS1,12 0.412474 0.7459736 

LS1,13 0.182464 0.243464 

   

 Illogical sequence 

(IS) 

Identification number 

(before mutation) 

Identification number 

(after mutation) 

IS1,1 0.064000 0.064000 

IS1,2 0.008000 0.008000 

IS1,3 0.027000 0.008000 
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Table 8.  point mutation neutral or silent. 

 

Logical sequence 

 (LS) 

Identification number 

(before mutation) 

Identification number 

(after mutation) 

LS1,1 0.182464 0.182464 

LS1,2 0.442375 0.442375 

LS1,3 0.672457 0.672457 

LS1,4 0.672577 0.672577 

LS1,5 0.182464 0.182464 

LS1,6 0.475453 0.475453 

LS1,7 0.627014 0.627014 

LS1,8 0.151905 0.151905 

LS1,9 0.182464 0.182464 

LS1,10 0.236024 0.236024 

LS1,11 0.731645 0.731645 

LS1,12 0.412474 0.412474 

LS1,13 0.182464 0.182464 

   

Illogical sequence 

(IS) 

Identification number 

(before mutation) 

Identification number 

(after mutation) 

 IS1,1 0.064000 0.064000 

IS1,2 0.008000 0.008000 

IS1,3 0.027000 0.008100 

 
 
 
 

IS3    IS3               IS3                  LS12              LS13/RS              
G    G                   G           GTTTTTT       AATGTGT    
LS14 
CTCTXXX 
 
 

Result  
 
No change in polypeptide sequence, possible 
consequence for the organism =none. In case 3, the point 
mutation is occurred in same IS1,3 as case 2 but with 
mutant G that only alters the illogical sequence (IS1,3) and 
not any of the LS that can be identified only using the 
change in identification number of illogical sequence 
(IS1,3) Table 8. 
 
 
Case 4 
 
After Frame shift mutation in the sample 
 
LS1/RS            LS2                IS1                IS1            IS1     
AATGTGT         TGTGTGA        C                   C             C                 
LS3                  LS4                LS5/RS        IS2       IS2  
CTCAAAA         TCTCTCA        AATGTGT       T            T        
IS2                         LS6                      LS7                   LS8  
T                      TACACTC      CGTTGGT   AATATGG    
LS9/RS            LS10                LS11              IS3         IS3     

AATGTGT      TAAAGTT       GCTACCC   G          G       
IS3                  LS12               LS13/RS        LS14 

GGTTT           TTA                 ATGTGTC     TCTXXX 
 

In case 4 the frame mutation [deletion] occurred in logical 
sequence (LS1, 12) by the removal of mutant T and can be 
identified with the change in identification number  of 
logical sequence (LS1, 12)  with no alteration in any of the 
illogical sequence as in Table 9 .  
 
 

Result  
 

Change in polypeptide sequence might change the shape 
or function of the protein, depending on where in the 
sequence occurs. 
 

 

Case 5   
 

In case 5, the inversion mutation occurred in logical 
sequence   (LS1, 10) by replacing TAAAGTT with mutant 
TTGAAAT that can be identified with the change in 
identification number of logical sequence (LS1, 10) alone 

with no alteration in any of the IS as in Table 10.  
 
 

After inversion mutation in the sample 
 

LS1/RS           LS2               IS1                 IS1             IS1  
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Table 9.  Frame shift mutation deletion. 

 

Logical sequence 

(LS) 

Identification number 

(before mutation) 

Identification number 

(after mutation) 

LS1,1 0.182464 0.182464 

LS1,2 0.442375 0.442375 

LS1,3 0.672457 0.672457 

LS1,4 0.672577 0.672577 

LS1,5 0.182464 0.182464 

LS1,6 0.475453 0.475453 

LS1,7 0.627014 0.627014 

LS1,8 0.151905 0.151905 

LS1,9 0.182464 0.182464 

LS1,10 0.236024 0.236024 

LS1,11 0.731645 0.731645 

LS1,12 0.412474 0.410945 

LS1,13 0.182464 0.291402 

   

Illogical sequence 

(IS) 

Identification number 

(before mutation) 

Identification number 

(after mutation) 

IS1,1 0.064000 0.064000 

IS1,2 0.008000 0.008000 

IS1,3 0.027000 0.027000 

 
 
 

Table 10.  Inversion mutation. 

 

Logical sequence 

(LS) 

Identification number 

(before mutation) 

Identification number 

(after mutation) 

LS1,1 0.182464 0.182464 

LS1,2 0.442375 0.442375 

LS1,3 0.672457 0.672457 

LS1,4 0.672577 0.672577 

LS1,5 0.182464 0.182464 

LS1,6 0.475453 0.475453 

LS1,7 0.627014 0.627014 

LS1,8 0.151905 0.151905 

LS1,9 0.182464 0.182464 

LS1,10 0.236024 0.361546 

LS1,11 0.731645 0.731645 

LS1,12 0.412474 0.412474 

LS1,13 0.182464 0.182464 

   

llogical sequence 

(IS) 

Identification number 

(before mutation) 

Identification number 

(after mutation) 

IS1,1 0.064000 0.064000 

IS1,2 0.008000 0.008000 

IS1,3 0.027000 0.027000 

 
 
 



 
 
 
 
 
AATGTGT     TGTGTGA    C                     C               C          
LS3                LS4              LS5/RS           IS2            IS2 
CTCAAAA     TCTCTCA    AATGTGT       T               T          
IS2                 LS6              LS7            LS8 
T                    TACACTC    CGTTGGT     AATATGG     
LS9/RS          LS10            LS11               IS3          
AATGTGT     TTGAAAT        GCTACCC      G                
IS3                   IS3                LS12        LS13/RS      LS14 
G                   G       GTTTTTT      AATGTGT    CTCTXXX 
 
 
CONCLUSION 
 
As an attempt to automate the genetic finger printing the 
Neural-fuzzy pattern recognition system (NFPR) 
discussed in the above work assists forensic scientists by 
generating unique identification number for individuals 
from their DNA sample. The proposed system also helps 
to identify the location of occurrence mutation in the given 
mutated DNA sample, for instance, gene mutations which 
triggers hereditary nonpolyposis colorectal cancer 
(HNPCC) tumor that could not be detected even by PCR-
SSCP can be easily detected by subjecting the sample to 
gene sequencing process and analyzed using above 
system. 

Further development can be extended by training 
patterns in DNA protein that can be represented by 
suitable fuzzy equivalent in order to classify and predict 
the protein structure in the protein folding problem. The 
above technique can be used in the areas where feature 
extraction is to be done in genetic engineering with 
suitable modification. 
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