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In human physiological and pathological flow systems, it is not possible to rule out diffusion in all 
advective processes because perfusion goes hand in hand with diffusion processes. It is the perfusion 
throughout the capillary bed and then the diffusion of fluids throughout the tissue that is the subject of 
most magnetic resonance functional imaging procedures. It is observed from literature that basic 
theory of perfusion is mostly based on experimental observation which makes it entirely computational 
with quite a lot of data fitting. Therefore, it is quite rigorous and has many phenomena that seem not to 
have a common background. It is very important to attempt developing a theory that would take most 
issues (if not all) into consideration under a common phenomenon. In this study, based on the Bloch 
NMR flow equations along with the Boubaker polynomials expansion scheme (BPES), we describe 
analytically the dynamics of perfusion processes by an equation which combines both diffusive and 
advective properties.    
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INTRODUCTION  
 
Distribution of oxygen to every corner of the body is 
accomplished by the cardiovascular system, with the help 
of the most important fluid in the body: the Blood, the 
stream of life. Life depends so much on blood such that 
its importance cannot be over emphasized. It has been 
investigated that any obstacle to the normal flow of blood 
causes a malfunctioning in the body system that leads to 
cardiovascular related diseases. 

Functional magnetic resonance imaging (Martinez et 
al., 2002; Valfouskaya and Adler, 2005; Segnorile et al., 
2006) consists of several different imaging methods that 
are used to visualize and, in some cases, quantify blood 
and fluid movement beyond the general vascular system. 
It  is  the  perfusion  through out  the capillary bed and the  
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diffusion of fluid throughout the tissue that is the subject 
of most magnetic resonance functional procedures 
(Sprawls, 2000). 

Most perfusion processes within the human body are 
always changing from time to time with regards to a lot of 
body conditions. These processes take place in tube - 
like vessels (for example, the blood vessel) which are 
always under some sort of pressure and since they are 
elastic in nature, we need to characterize the flow velocity 
and the diffusion coefficient from point to point. If we take 
for example, the case of a sudden rush of blood to a part 
of the body tissue, the blood vessel carrying blood to the 
part of the tissue would suddenly become larger because 
of increased pressure and at that point, the flow velocity 
and diffusion coefficient changes. If the cause of the 
sudden demand for more blood is removed, the vessel 
goes back to its normal shape. Therefore, it would be 
very crucial to account for the velocity and diffusion 
(Awojoyogbe, 2004) coefficient at all points for an 
accurate description of the  process  under  investigation.   



 
 
 
 
Hence, based on the Bloch NMR flow equations (Zoppou 
and Knight, 1997; Awojoyogbe et al., 2010; Awojoyogbe, 
2007; Awojoyogbe, 2003; Awojoyogbe, 2002; 
Awojoyogbe, 2008), we must use the diffusion-advection 
equation with spatially varying diffusion coefficients as 
proposed in this study. 
 
 
MATHEMATICAL METHOD 
 
In this study, a mathematical (analytical) technique in the form of a 
plane wave is applied to transform the time dependent Bloch NMR 
flow equation to diffusion-advection equation for the qualitative 
analysis of nuclear magnetization. We consider the perfusion (or 
transport) of any specific blood component as one dimensional 
since blood flow within the vessels is directional and, even in 
bifurcations, flow has a resultant direction of fluid flow. Therefore, 
for any NMR sensitive substance of interest, the perfusion process 
is given by the NMR advection - diffusion equation derived from the 
Bloch NMR flow equations (Awojoyogbe, 2004) 
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γ is the gyromagnetic ratio, D is the  diffusion coefficient, v is the 
fluid velocity, T1  is the spin lattice relaxation time, T2 is the spin 
relaxation time, Mo is the equilibrium magnetization, B1(x,t) is the  
applied magnetic field and My is the transverse magnetization.  
 
Solutions to Equation (1a) have been discussed by a number of 
analytical methods (Awojoyogbe, 2008; Oyodum et al., 2009), and 
for the present purpose it is sufficient to design the NMR system in 
such a way that the transverse magnetization My, takes the form of 
a plane wave, 
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Subject to the following theoretical conditions: 
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Where m and n are dependent on the NMR flow parameters and 

1B  is independent of x and t. based on equations (1b, 2 and 3), we 
can write equation (1a) in the form of diffusion-advection equation 
for the nuclear magnetization. 
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Where D(x) is the variable diffusion  coefficient. Equation  (4)  is  a  
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generalize equation of motion for the NMR flow system with a 
spatially  variable  velocity and diffusion coefficient. The behavior of  
the transverse magnetization or signal is depicted by the solution to 
equation (4). If we make the following assumption: 
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Equation (4) becomes  
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Analytical solution to equation (7) is similar to those of the diffusion 
equation of variable diffusion coefficient (Zoppou and Knight, 1997). 
Hence, the solution could be written as 
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The value of the constant BPESA  is determined using the Boubaker 

Polynomials Expansion Scheme (BPES) (Awojoyogbe, 2008; Zhao 
et al., 2008). The calculation protocol takes into account conjointly 
the properties of the BPES along with the already noticed 
(Awojoyogbe, 2008; Oyodum et al., 2009) similarity between 
equation (7) and the characteristic differential equation of the 
Boubaker polynomials. 

For a component of the blood in the unit of magnetic moment 
being transported across the blood vessel, the value of the constant 

BPESA  is  
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Subject to the following constraint: 
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The NMR transverse magnetization for the instantaneous release 
can therefore be written as: 
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This one-dimensional solution is valid quite well for the upstream 
and downstream of the bifurcation. For a continuous source of unit 
magnetic moment (Zoppou and Knight, 1997), the behavior of the 
NMR signal is obtained by integrating equation (12) with respect to 
time.   
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 is the one directional perfusion function 
and uo is a constant. The expression in equations (13) gives the 

behavior of the NMR signal ),( txMy at all points for a material 

or substance which is being transported (in perfusion). However, 
perfusing particles behave differently in different geometries. This 
requires that we applied some additional experimental conditions to 
appropriately describe equation (13) in different geometries.  
 
 
THE MULTIDIMENSIONAL PERFUSION PROCESS – 
CYLINDRICAL GEOMETRY 
 
Although perfusion in multi-dimension is quite rare, we may need to 
discuss this situation because such process can be applicable in 
the analysis of complex flow in regions of bifurcations. In turbulent 
flow for example, particles are transported in a way that is very 
difficult to specify the direction of the flowing particles or the 
direction of the resultant velocity. Hence, there is a need for point to 
point characterization of the fluid velocity, the diffusion coefficient 
and the NMR signal. 

Since perfusing substances obey the advection equation, the 
appropriate equation to accurately describe a flow process in a 
cylindrical geometry based on equation (7) derived as; 
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Where 
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Making the following assumptions (Sprawls, 2000): 
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We can write 
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If we define  
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Where and uo, vo, wo, are constants. Equation (14a) becomes 
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Giving 
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The equation of motion for NMR signals for a flow process in a 
cylindrical geometry can then be written as; 
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Provided that: 
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We seek a solution to equation (16) for an instantaneous release in 
the form 
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Where, 31g , 32g  and 33g  (which are not tensors) are the 

solutions to the one-dimensional constant coefficient advective 
diffusion in the transformed space.  
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For a source of unit magnetic moment, we obtain 
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The NMR transverse magnetization obtained for the instantaneous 
release after a long computation is; 
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For the case of a continuous release of an advected substance in 
cylindrical geometry, we shall integrate equation (20) with respect to 
time:   
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The value of the constant BPESA  is determined using the 

Boubaker Polynomials Expansion Scheme BPES (Awojoyogbe, 
2008; Zhao et al., 2008; Belhadj et al.,  2009; Chaouachi et al., 
2007; Fridjine et al., 2009; Fridjine and Amlouk, 2009; Fridjine et al., 
2009; Ghanouchi et al., 2008;Gherib et al., 2008;Guezmir et al., 
2009; Labiadh and Boubaker, 2007; Slama and Bessrour, 2009; 
Slama et al., 2009; Tabatabei et al., 2009)).  The calculation 
protocol takes into account conjointly the properties of the BPES 
along with the already noticed (Awojoyogbe, 2008; Oyodum et al., 
2009)  similarity   between   Equation  (13)   and   the  characteristic  
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differential equation of the  Boubaker  polynomials   (Slama et al., 
2008; Zhao et al., 2008). 
 
 
THE MULTIDIMENSIONAL PERFUSION PROCESS – 
SPHERICAL GEOMETRY 
 
Within the bifurcation itself, we shall approximate the region to 
some spherical region (the shape actually varies). In such a 
spherical geometrical structure, the diffusion-advection equation 
describing   the spatially variable perfusion process is given by, 
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Making the following assumptions [29]: 
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Equation (18) can be written as 
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Provided that  
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The equation of motion for NMR signals for a flow process within 
process within the bifurcation is given by:  
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We seek solutions to the diffusion-advection equation for an 
instantaneous release in the form 
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Where, 41g , 42g  and 43g  (which are not tensors) are the 

solutions to the one – dimensional constant coefficient advective 
diffusion in the transformed space 
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For a source of unit magnetic moment, 
 

1),,,(
0 0 0

=
 
 

∞ ∞ ∞

θφθφ ddrdtrM y
                        t∀   

  

The coefficients 41A , 42A  and 43A are constants. The integral 

gives  
 

�

� ( )[ ]( ) ( )[ ]( )
([(

1exp31exp 040442040441

−+Θ
−+Φ−+ tvDvAtuDRuA oooo

( )[ ]( ) 11exp     040443 =−+Θ twDwA oo  
( ) ( ) ( ) 1expexp3exp 2

0404
2
0404

2
0404000434241 =−−− twDtwtvDtvtuDturAAA oooθφ  

 

An obvious choice for 41A , 42A  and 43A  would be: 
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Where, 
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For the case of a continuous release of an advected substance in 
spherical geometry, we shall integrate equation (29) with respect to 
time    
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RESULTS AND DISCUSSION 
 
Equations (12, 13, 20, 21, 29 and 30) are the NMR 
transverse magnetizations and signals for the 
instantaneous and continuous release of advected 
substances in Cartesian, cylindrical and spherical 
geometries respectively. These NMR signals are functions of 
diffusion coefficient Do and their respective perfusion 

functions 2
02P , 2

03P and 2
04P . The diffusion coefficient is 

related to the net displacement of molecules in a given time. 
The average distance, s, traveled relative to diffusion 
coefficient is given as:   
 

tDs o2=
                                                                     (31)                                            

 
Based on equations (13, 21, 30, and 31) and applying some 
standard integral formulae, the NMR transverse magneti-
zations and signals for   the continuous release of 
advected substances in Cartesian, cylindrical and spheri-
cal geometries can be written as: 
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Where for example in spherical geometry, 
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In equation (32), the reduction in NMR signal 
)0(y

y

M

M
  

produced by the diffusion-perfusion process depends on 
the rate of diffusion expressed by the value of the 
diffusion coefficient, Do, the perfusion function in the 
particular geometry and the  perfusion sensitivity, q, 
which is determined by the average distance, s, traveled 
by a molecule in time t. The distance, s, depends on the 
diffusion coefficient for the specific tissue compartment 
within a voxel. A series of experiment to measure the 
perfusion function can be performed in which values of s, 
may be varied by varying n or m using equations (3, 8a 
and 31). 

From equations (12, 20 and 29), the NMR signal 
intensity for the instantaneous release of advected 
substances in for example spherical geometry can be 
written as: 
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By inspection of equation (33), it can be seen that the 
signal intensity is a product of signal attenuation due to 
perfusion and signal attenuation due to diffusion. 
Theoretically, a series of experiment can be performed in 
which either s, Do or δ is varied by varying n or m using 
equations (3, 8a, 31, and 32c) while keeping t constant. 
The real experimental conditions under which the above 
description of equation (33) can be used to perform the 
diffusion and perfusion measurements will be considered 
in separate studies. 
 
 
Conclusion  
 
We have obtained basic analytical expressions for the 
transverse magnetizations (the NMR signals) for 
perfusion processes in different geometrical structures 
and biophysical conditions based on the Bloch NMR flow 
equations. These analytical results are quite interesting 
and promising in the context of some recent works on 
dynamical flows (Sprawls, 2000; Awojoyogbe et al., 2010; 
Hassell et al., 2008; Nicolis et al., 2002). The application 
of these fundamental results to solve real life flow 
problems in which NMR-sensitive materials are 
transported will be presented separately. It should be 
mentioned that acquisition of perfusion data requires fast 
imaging methods based on the appropriate choice of n or  
m in   equation  (3 and 8a)   because   images   must  be 
acquired every few seconds to properly measure the 
characteristics of the bolus passage. It should be noted 
that, in specific tissue, the diffusion rate might be different 
in different directions because of the orientation of certain  
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tissue structures. This is a very important factor which 
must be taken into account when producing diffusion 
images. Hence, the results of diffusion-advection 
equation with spatially varying diffusion coefficients as 
discussed in this study, which is based on the 
fundamental Bloch NMR flow equations, can be 
invaluable mathematical tools to accurately understand 
the combined effect of diffusion and perfusion process in 
human physiological and pathological flow systems. The 
method presented in this study can have applications in 
functional magnetic resonance imaging (fMRI) with more 
accurate information. How the NMR parameters derived 
in the present model are linked to a practical 
measurement in terms of an fMRI sequence will be 
developed separately. 
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