Full Length Research Paper
Abstract
This paper outlines two hybrid approaches to investigate the nonlinear relationship between size of a forest fire and meteorological variables (temperature, relative humidity, wind speed and rainfall). Self organizing map was used to cluster the historical meteorological variables. The clustered data were then used as inputs for two different approaches, the back-propagation neural network and the rule generation approaches. A back-propagation neural network was trained based on these inputs to classify the output (burnt area) in categorical form, namely; small, medium, large and extremely large. Several sets of rules were also generated from the data clustered by the self organizing map. Experimental results showed that both approaches gave considerable accuracy. Back-propagation neural network achieved a higher rate of accuracy than rule generation approach because the rule generation approach could not predict any criterion that goes beyond the set of rules.
Key words: Forest fire, self organizing map, back-propagation neural network, rule-based system.
Copyright © 2024 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0