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Lassa fever, an endemic viral hemorrhagic fever in West Africa, is attributed to the Lassa virus as its 
causative agent, and this disease has led to the untimely death of many people in the affected areas. At 
present, the available treatment options for Lassa fever are limited and there is need for new drugs. This 
study aims to use computational tools to predict the efficacy of small molecules that can target the 
Lassa fever virus glycoprotein which is essential for viral entry into host cells. This study uses 
quantitative structure activity relationship (QSAR) to reduce the cost and time of preclinical evaluation 
of potential drugs. This study retrieves 7620 molecules that can inhibit Lassa virus glycoprotein from 
ChEMBL database and builds a regression model with random forest algorithm. Its performance was 
compared with other regression models by using lazy predict, and random forest performed better than 
most of the regression models. The coefficient of determination r2 are 0.93 and 0.56 for the training and 
test set and root mean square error (RMSE) of 0.32 and 0.77 for the training set and test set, 
respectively. In conclusion, the model satisfies the acceptable QSAR model. 
 
Key words: Quantitative structure-activity relationship, bioactivity, drug-likeness, drug target. 

 
 
INTRODUCTION 
 
Lassa fever is listed among the diseases that pose 
significant public health threats (Klitting et al., 2021). 
Lassa fever is an acute viral illness in West Africa that is 
contracted by humans through contact with animals 
(Minari et al., 2021). Lassa fever was first identified in 
Nigeria in 1969 following the tragic death of two 
missionary  nurses   (Id   et   al.,  2022).  Subsequently,  it 

extended its transmission to other West African nations, 
namely Nigeria, Benin, Togo, Mali, Guinea, Sierra Leone, 
and Liberia through its animal carrier, the “multimammate 
rat” (Mastomys natalensis), leading to endemicity in these 
regions (Kikiowo, 2021). Approximately 5,000 deaths are 
documented per year in West Africa due to incidents of 
Lassa    virus   infection,   with   estimates   ranging   from  
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100,000 to 300,000 cases (Arefin et al., 2021; James, 
2020).  

Eradicating Lassa fever within the West Africa sub-
region has become a complex endeavor due to the 
unpredictable nature of recovery from the illness. This 
uncertainty arises from the virus’s capability to persist in 
human bodily fluids, such as semen, even after a person 
has recuperated (Arefin et al., 2021; Oloniniyi et al., 
2016). Therefore, there is a need to research drug 
molecules to eliminate the Lassa virus in human body 
fluids.  

In drug discovery, virtual screening (VS) and 
quantitative structure-activity relationship (QSAR) 
represent pivotal approaches that effectively complement 
laboratory processes, aiming to mitigate challenges 
encountered in experiments (Chakravarti and Alla, 2019). 
Therefore, virtual screening is now adopted in 
pharmaceutical companies and various academic and 
industrial projects to predict the biological activities of 
new molecules. The major goal of the QSAR is to identify 
optimal chemical structures, along with their most 
suitable conformer for effective interaction with a drug 
target (Abdel-ilah et al., 2017). 

A drug target is a molecule within the body that the 
drug targets to produce a therapeutic effect. 

QSAR utilize both three-dimensional (3D) and two-
dimensional (2D) molecular representations as input 
models for forecasting biological activities (Chakravarti 
and Alla, 2019). Biological activity refers to the 
advantageous or harmful impacts a medication can 
impose on living organisms, and its significance is pivotal 
in the realm of medical uses (Alberga et al., 2019). 

To perform QSAR, small molecules will potentially bind 
to a variety of drug targets which can be protein or cell 
targets (Alberga et al., 2019). 

With the help of online repositories of well-annotated 
biological activity, such as ChEMBL and BindingDB, it 
has become easy to perform QSAR (Alberga et al., 
2019). 

Evaluating the potential bioactivity of a molecule 
involves comparing its chemical structure and properties 
with those of molecules that already exhibit known 
activity (Kwon et al., 2019).  

Serendipity and systematic screening were important in 
drug discovery in the early years. Nevertheless, in recent 
times, it has expanded its scope to evolve from nature-
inspired drug design to a more systematically guided 
approach known as rational drug design. In the pursuit of 
expediting drug discovery, numerous methodologies 
have been employed by researchers. Notably, (Makolo 
and Ajiboye, 2023) utilized nucleotide sequencing to 
identify and delineate Corona Virus potential drug targets. 
Within this progression, both drug design methodologies, 
namely nature-inspired and rational, now revolve around 
a fundamental concept called QSAR (Abdel-ilah et al., 
2017). The QSAR framework has swiftly advanced, 
enabling   the    swift   in-silico   prediction   of   molecular  

 
 
 
 
characteristics and biological behaviors of new 
compounds, often without the need for extensive 
experimental testing. This approach effectively conserves  
resources, time, labor, and expenses.  

The period following genomics has led to the 
emergence and accumulation of a wide array of QSAR 
models. The physical and chemical characteristics of 
each compound are typically determined through 
quantum chemical calculations of each compound 
because they can effectively capture both the molecule’s 
global and specific properties (Nantasenamat et al., 
2010). Supplementary sets of descriptors can be 
extracted from commercially accessible or freely 
available molecular property software packages designed 
for academic purposes. The fusion of multiple sources of 
molecular descriptors often yields a vast number of 
descriptors for subsequent analysis. 

Tackling this extensive dataset necessitates computer 
algorithms capable of modeling its inherently intricate and 
multidimensional nature. A broad spectrum of learning 
algorithms exists to unveil concealed patterns within this 
substantial data, and adeptly selecting and optimizing 
learning parameters becomes pivotal for the triumph of 
modeling and prediction efforts (Hasan et al., 2022). 
The drug discovery process follows a similar pattern, 
involving screening an extensive collection of compounds 
through high-throughput methods, resulting in substantial 
data generation. The QSAR approach emerges as a 
hopeful technology capable of establishing connections 
between a compound's structural attributes and its 
corresponding biological effects for streamlining the drug 
discovery workflow (Abdel-ilah et al., 2017). The 
evolution of a chemical structure entails the spatial 
positioning of atoms within a molecule, along with the 
chemical bonds that link these atoms. These 
characteristics can be used computationally to anticipate 
potential biological interactions. 

To extract, analyze, discover, and predict the effect of 
drug molecules on a drug target, machine learning (ML) 
is being increasingly used. Machine learning has become 
a prominent computational technique widely utilized in 
the field of drug discovery  (Bosc et al., 2021).  

HEK293 cells, widely used in biomedical research, 
have been implicated in the replication and propagation 
of various viruses, including lassa virus (Tan et al., 2021). 

A research article by Creative Biolab (2024) described 
the production of recombinant lineage IV Lassa in 
mammalian HEK293 cells assembled with z, GPC and N 
antigens and its usefulness in the development of LASV 
IV diagnostics and vaccine development. 

This research utilizes machine learning to analyze and 
predict the behavior of drug molecules for Lassa fever 
target protein. This study also delves into drug-like 
qualities, encompassing factors such as water and fat 
solubility, effectiveness at the biological target, ligand 
efficiency, lipophilic efficiency, and molecular weight. 

The  explicit  objective  of  the study is to employ Virtual 



 
 
 
 
Screening (VS), QSAR, and Machine Learning (ML) to 
analyze and predict the behavior of drug molecules 
targeting the Lassa fever virus protein while exploring 
crucial drug-like qualities. 
 
 
Scope and limitation 
 
This model performed only the computational aspect of 
the drug discovery by using a QSAR and machine 
learning algorithms to discover drug candidates.  
 
 
MATERIALS AND METHODS 
 
In this work, QSAR model using random forest regressor was used 
to predict bioactivity of molecules that can inhibit lassa virus drug 
target.   

The techniques and methods used in developing our model can 
be broadly divided into four phases, as shown in Figure 1. 
 
 
Data collection and processing 
 
Figure 2 shows the method applied in the data collection and 
processing of the bioactivity data that are used for the building of 
QSAR model. 

A data set of inhibitors against human HEK293, the expression 
system of recombinant Lassa fever virus GP2 glycoprotein, was 
downloaded from ChEMBL database. ChEMBL is a ‘chemogenomic’ 
database that integrates chemical, bioactivity and genomic data to 
aid the translation of genomic information into effective new drugs. 
The ChEMBL ID of the dataset is ChEMBLID614818 shown in 
Table 1. The dataset obtained from ChEMBL comprises various 
measurements for bioactivity including IC50, Ki, % activity, % 
inhibition, EC50 and IC50. The bioactivity data with IC50 as their 
measurement units are selected for further investigation. They 
contain 7620 compounds.  
 
 
Labelling molecules as active and inactive 
 
Molecules with IC50 standard value greater than or equal to 10000 
nM were labelled inactive, while those with IC50 value less than or 
equal to 1000 nM were labelled as active. The IC50 standard 
values are converted to PIC50 to ensure no uneven data points. 
PIC50 is the negative logarithm of IC50. After the conversion of 
IC50, any value greater than or equal to 6 was labelled as active, 
and any value less than 6 was labelled as inactive. 
 
 
Calculation of Lipinski’s descriptors 
 
All small organic compounds and salts were removed from the 
compounds, and Lipinski descriptors (Molecule weight, log p, no of 
Hydrogen bond donors and no of Hydrogen bond acceptor) were 
computed in order to calculate the likelihood of being a drug-like 
molecule as shown in Figure 4. 
 
 
Lipinski’s descriptor’s rule: 

 
(1) Molecular weight < 500 Dalton 
(2) Octanol-water partition coefficient (LogP) < 5  
(3) Hydrogen acceptors < 10 
(4) Hydrogen donors < 5 
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Descriptor calculation 
 
The canonical SMILE of the molecules was encoded by a vector of 
fingerprint descriptors accounting for its molecular constituents and 
standardized using the built-in function of the PaDEL-Descriptor as 
a toolkit. This descriptor helped to capture the feature space of 
chemical compounds and represented the molecule substructures 
in binary digits. Figure 3 gives more details on the description 
calculation. 

Collinearity is a condition where descriptor pairs are closely 
related to one another, and this will not only add complexity to the 
model but potentially give rise to bias. Collinearity was handled 
using the panda drop () function to drop one of the two features 
from a highly correlated pair. 
 
Model building 
 
The model building is in three stages: (i) data splitting, (ii) model 
building by Random Forest, (iii) and evaluation of the model as 
shown in Figure 4. 
 
 
Data splitting 
 
The data derived from the descriptors was divided into two sets to 
develop machine learning algorithms. 80% of the data was 
allocated for the training dataset, while the remaining 20% was 
designated as the test set. 
 
 
Model building using Random Forest 
 
Random Forest (RF) is an ensemble algorithm composed of several 
decision trees (Simeon et al., 2016). The fundamental concept 
behind Random Forest is to avoid constructing an overly complex 
decision tree with an excessive number of nodes, which could lead 
to overfitting and excessive adaptation to the data. Instead, it 
creates multiple trees to reduce variance (Simeon et al., 2016). 

This model was built using Random Forest regressors, the n 
estimator was set to 100, and the remaining parameters were set to 
default, as shown in Figure 5. 
 
 
Performance evaluation 
 
The performance of this model was evaluated using the coefficient 
of determination (R2), and root mean square error (RMSE) as the 
performance metric. In the QSAR model, R2 is used to determine 
the model's goodness of fit. 

A QSAR model is acceptable when it has a coefficient of 
determination R2 value > 0.6 for the training set and R2> 0.5 for the 
test set (Valeria Catalani et al., 2021). 

RMSE is a measure of the prediction error exhibited by the 
trained model. 

 
 
RESULTS AND DISCUSSION 
 
The data set used for this model building is the HEK293 
cell line. It contains 81788 bioactivity data of standard 
types potency, IC50, EC50, CC50, and Ki and only the 
standard type of IC50 was retained for further 
investigation. The data set that has IC50 as its standard 
type contains 7620 compounds. The coefficient of 
determination (r2) and RMSE are the performance 
metrics used to measure the  performance  of  the  model  

• Support Vector Machine 

• Deep Neural Network 
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Figure 1. Generic model of techniques and method QSAR and machine learning used. 
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Figure 2. Data collection process. 

 
 
 
built. 

The coefficient of the determinant (r2) defines the 
goodness of fit of the QSAR model. A QSAR model is 
acceptable when it has the value r2> 0.6 for the training 
set and r2> 0.5 for the test set. This model has the 
coefficient of determination r2 of 0.93 and 0.56 
(approximately) for the training and test set and RMSE of 
0.32    and   0.77   for   the   training   set   and   test   set,  

respectively. 
 
 
Calculation of descriptors 
 
The values generated from Lipinski's descriptor were 
combined with the labeled bioactivity data and frequency 
plot  to  show  the   distribution   of   active   and   inactive  
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Table 1. Dataset. 
 

Datasets source link Name No. of molecules 

ChEMBL614818 [Target Report Card (ebi.ac.uk) HEK293 7620  IC50 value 

 
 
 

 
 

Figure 3. Calculation of Lipinski’s descriptors. 

 
 
 

 
 

Figure 4. Model building using machine learning algorithms. 
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Figure 5. Random forest algorithms. 
Source: Attanasi and Coburn (2023) 

 
 
 

 
 

Figure 6. Frequency plot to show active and inactive molecules. 

 
 
 
classes, as shown in Figure 6. Based on the set 
threshold,   the   frequency   plot   shows  we  have  more 

inactive than active molecules. The standard value in 
IC50  was  later  converted  to PIC50 to ensure that there  



Makolo and Gboyega          7 
 
 
 

 
 

Figure 7. Scatter plot of LogP vs molecular weight. 

 
 
 
was no uneven distribution of data points by taking the 
negative logarithm of IC50, and the active molecules now 
have a threshold of PIC50 greater than 6 and inactive 
molecules the threshold is PIC50 less than 5. The 
statistical description of the bioactivity dataset of 4984 
after the conversion to PIC50: mean 4.9, standard 
deviation 1.172096, minimum value 1.207468, 25% 
4.157531, 50% 4.698970, 75% 5.208485, max 10.920819 
as shown in Figure 7 shows that the data was evenly 
distributed. 
 
 
Exploratory data analysis of inhibitors via Lipinski's 
descriptor 
 
Exploratory data analysis of inhibitors was performed to 
gain insights into the structure-activity relationship by 
analysing Lipinski's rule-of-five descriptors (Ursu et al., 
2011). This provides important knowledge on the general 
character of compounds governing inhibitory properties of 
compounds. Exploratory data analysis was performed 
using Lipinski's rule-of-five descriptors comprising MW, 
LogP, numHDonors and numHAcceptors. MW represents 
the molecular weight of a compound and is commonly 
used because it can be used to determine the dosage of 
the drug and formulation of the appropriate compound 
size  that   is   important   for   its   passage   via  the  lipid 

membrane. LogP detects if a compound can cross the 
cell membrane and reach its target. numHDonors and 
numHAcceptors describe the number of hydrogen bond 
donors and hydrogen bond acceptors, respectively, which 
are used to measure hydrogen bonding capacity. 
Visualisation of the chemical space of LogP as a function 
of MW is as shown in Figure 8.  LogP is a measure of the 
lipophilicity of a compound, which affects its ability to 
cross biological membranes. MW is a measure of the 
size and complexity of a compound, which affects its 
solubility and transport. 

Active compounds are those that have a desired 
biological effect, such as inhibiting a target enzyme or 
binding to a receptor. Inactive compounds are those that 
do not have the desired effect or have undesirable side 
effects. 

The scatter plot suggests that active compounds tend 
to have higher LogP and lower MW than inactive 
compounds. This means that active compounds are more 
lipophilic and smaller than inactive compounds, which 
may make them more likely to reach and interact with 
their targets. 

The scatter plot also suggests that there is a trade-off 
between LogP and MW, as increasing one tends to 
decrease the other. This means that there is a balance 
between lipophilicity and size that affects the activity of a 
compound. 
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Figure 8. Box plot of PIC50 vs bioactivity class. 

 
 
 

 
 

Figure 9. Box plot of bioactivity class and Lipinski’s descriptors. 

 
 
 
The PIC50 value is a measure of the potency of a 
compound, which is the inverse of the concentration 
required to achieve 50% of the maximum effect. Higher 
PIC50 values indicate higher potency, meaning that less 
compound is needed to achieve the same effect. 

The scatter plot shows that the PIC50 values vary 
within  each   class  of  compounds,  as  indicated  by  the 

different shades of blue and orange. Darker shades 
indicate higher PIC50 values, meaning higher potency. 
The scatter plot shows that some active compounds have 
higher potency than others, and some inactive 
compounds have lower potency than others. 

Also, Figure 9 shows the box plot graph of the 
distribution of PIC50  values  for  two  different  bioactivity  
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Figure 10. Box plot of bioactivity class and Hydrogen bond donor and acceptors. 

 
 
 
classes: active and inactive. The PIC50 value is a 
measure of the potency or efficacy of a biochemical 
substance, such as a drug or a ligand, in interacting with 
a biological target, such as protein or a receptor. A higher 
PIC50 value means that the substance has a higher 
affinity or a lower concentration required to achieve a 
certain effect. 

The graph has two categories on the x-axis: active and 
inactive, representing the substances that have a 
bioactivity above or below a certain threshold, 
respectively. The y-axis shows the PIC50 values ranging 
from 0 to 10. The graph has two boxes: one blue for the 
active substances and one orange for the inactive 
substances. Each box represents the interquartile range 
(IQR) of the PIC50 values for each category, which is the 
difference between 25 and 75th percentiles. The line 
inside each box is the median PIC50 value for each 
category, which is the middle value when the data is 
sorted in ascending order. The whiskers are the outliers 
extend from the boxes to the minimum and maximum 
values within 1.5 times the IQR bioactive class active 
class versus PIC50 to visualize active and inactive 
inhibitors; the active class has PIC50 values greater than 
six and the inactive class less than or equal to 5. The dot 
is the outliers found in both the active and inactive 
classes. 

In addition, the box plot of Lipinski's descriptors shown 
in Figure 10 the graph of logP versus bioactivities class 
shows that the active compounds tend to have a wider 
range of lipophilicity, which may suggest that they have a 
different mode of action or target different receptors. The 
inactive compounds are more clustered around a neutral 
LogP value, which may imply that they are less likely to 
cross biological membranes or bind to hydrophobic sites.  

Also in the same Figure 10, the graph of molecular 
weight (MW) versus bioactivity class shows the 
distribution of MW for active and inactive classes. MW is 
a measure of the size and complexity of a compound, 
which can affect its pharmacokinetic and 
pharmacodynamic properties. In this plot, the median of 
MW for active compounds is around 500, while for 
inactive compounds it is slightly higher but still below 
1000. This implies that the active compounds are smaller 
and simpler than the inactive ones, which may make 
them more likely to penetrate biological barriers and 
reach their targets. 

The “inactive” class has a more compact distribution 
with fewer outliers, implying that the inactive compounds 
have similar MW and are less diverse. These compounds 
may be too large or too complex to interact with the 
desired targets, or they may have unfavorable properties 
that limit their bioavailability or efficacy. 
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Figure 11. Mann-Whitney U test for each Lipinski’s rule of drug likeness. 

 
 
 
In Figure 11, the graph of NumHDonors versus Bioactivity 
classes shows the distribution of a chemical property 
called NumHDonors in active and inactive classes. 
NumHDonors are the number of atoms that can donate 
hydrogen bonds to other molecules. These bonds are 
important for the interaction between drugs and their 
targets. The graph suggests that the active class has 
lower and less variable NumHDonors than the inactive 
class. This means that molecules with fewer hydrogen 
bond donors are more likely to be biologically active. 
However, there are also many outliers in both classes, 
meaning that there are exceptions to this trend. 

In Figure 11, the graph of NumHAcceptors versus 
Bioactivity class represents the distribution of 
NumHAcceptors in two different bioactivity classes: active 
and inactive. The NumHAcceptors is a measure of the 
number of hydrogen atoms that can form hydrogen bonds 
with other molecules, which can affect the solubility and 
permeability of a compound. In this plot, the “active” class 
has a higher average NumHAcceptors compared to the 
“inactive” class, indicating that the active compounds are 
more polar and can form more hydrogen bonds. The 
“active” class also has a wider interquartile range (IQR) 
and more outliers, suggesting that there is more diversity 
and variability in the NumHAcceptors of the active 
compounds. The “inactive” class has a more compact 
distribution with fewer outliers, implying that the inactive 
compounds have  similar  NumHAcceptors  and  are  less 

polar.  The active compounds have a higher tendency to 
interact with polar targets or environments, while the 
inactive compounds are more likely to be excluded or 
rejected by them. 

A Mann-Whitney test is a non-parametric statistical test 
that compares the distributions of two independent 
groups of data. It tests whether there is a significant 
difference in the median values of the groups. The null 
hypothesis (H0) is that the two groups have the same 
distribution, and the alternative hypothesis (H1) is that 
they have different distributions. 

Mann-Whitney tests were conducted on four 
descriptors: 'pIC50', 'MW', 'NumHDonors', and 
'NumHAcceptors', comparing two independent groups of 
data. The results revealed significant differences in the 
distributions of these descriptors between the groups, 
with p-values much smaller than 0.05 as shown in Figure 
12. This suggests that the median values of the 
descriptors likely differ between the two groups. 
 
 
Molecular descriptor calculation from PADEL-
Descriptors 
 
PADEL-descriptor does the calculation of the local 
properties of the canonical smile in binary digits. The 
output of this Descriptor is used as an X-input to build the 
machine  learning. The output of the result is as shown in  
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Figure 12. Conversion of canonical SMILES to Pubchem binary digits’ fingerprint. 

 
 
 
Figure 13. 

The molecular descriptors have 4984 rows and 881 
columns. 
 
 
Model building 
 
Splitting of data 
 
The dimension of the data set was checked before 
splitting the data. The dimension of X is (4984, 881), and 
the dimension of Y is (4984). 

The data is split into a training set and a test set; 80% 
of the data is used for the training set and 20% for the 
test set. The dimension of the data is viewed after the 
splitting of the data: X_train (3987, 881), Y_train (3987), 
X_test (997, 881) and Y_test (997). 
 
 
Building a regression model using Random Forest 
 
The regression model is built using Random Forest 
Regressor, n_estimators is 100, and the train set gives 
the coefficient of determination (R2) equals 0.93 
approximately and the prediction test is 0.56 
approximately, which is an acceptable QSAR according 
to Valeria Catalani et al. (2021). The result of the model 
is  as   shown   in   Figure   14.   The   model's   fitness  is 

visualised by plotting the scatter plot of the Predicted 
PIC50 value versus the Experimental PIC50 value, as 
shown in Figure 15. 

In Figure 15, the graph shows how well the predicted 
PIC50 values match the experimental PIC50 values. The 
PIC50 value is a measure of how potent a substance can 
inhibit a biological function. The higher the PIC50 value, 
the more potent the substance is. The graph compares 
the experimental and predicted values for different 
substances using a scatter plot. The x-axis shows the 
experimental PIC50 values and the y-axis shows the 
predicted PIC50 values. The blue line is the line of best 
fit, which shows the average trend of the data. The closer 
the dots are to the line, the more accurate the predictions 
are. The graph suggests that there is a good correlation 
between the experimental and predicted values, as most 
of the dots are close to or on the line. This means that the 
prediction method is reliable and can be used to estimate 
the potency of new substances. 
 
 
Comparison with other models 
 
This model is compared with other models using the 
library lazy predict, some lazy predict regressors with 
good performance in QSAR modelling are selected, as 
shown in Figure 16, and their performance was 
compared     with     Random   Forest    Regressors.   The  
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Figure 13. Regression model using random forest. 

 
 
 

 
 

Figure 14. Scatter plot of experimental versus predicted PIC50 values. 
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Figure 15. Comparison of machine learning models using lazy predict. 

 
 
 

 
 

Figure 16. Performance table of the training set. 
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Figure 17. Performance table of the test set. 

 
 
 
DecisionTreeRegressor performs best on the training set 
with an adjusted R-squared value of 0.96, R-squared 
value of 0.97, RMSE value of 0.20 and time taken of 
0.75, and RandomForestRegressors is the second model 
that performs best on the training set with adjusted R-
squared value of  0.90, R-squared value of 0.92, RMSE 
value of 0.32 and time taken of 27.44, the detail is as 
shown in Figure 17, while on the test set 
RandomForestRegressor performs best on the test set 
with adjusted R-squared value of -2.70, R-squared value 
of 0.57, RMSE value of 0.77 and time taken of 26.69. At 
the same time, SVR is the second model that performs 
best on the test set with an adjusted R-squared value of -
2.95, R-squared value of 0.54, RMSE value of 0.80 and 
time taken of 11.63; the detail is as shown in Figure 18. 

The visualisation of the model's performance metrics 
given in Figure 18 shows the R-Squared values of 
different regression models. Random Forest Regressor 
has a higher R-Squared value than most of the other 
models, except for Decision Tree Regressor. This means 
that Random Forest  is  able  to  capture  the  relationship 

between the input and output variables better than most 
of the other models. Figure 19 shows that RMSE value of 
DecisionTreeRegressor with value of 0.20, 
RandomForestRegressor with value of 0.32, 
BaggingRegressor with value of 0.36 and MLP with value 
of 0.37 satisfied the acceptable QSAR value of 0.5 for 
RMSE and Figure 20 shows that 
RandomForestRegressor, MLPRegressor and SVR took 
more time to build the model than other machine learning 
algorithms. 
 
 
Conclusion 
 
In this study, the experiment was performed with 7620 
datasets, and after the data cleaning, it was reduced to 
4984, and these 4894 datasets were used to perform 
QSAR. The canonical smile of molecule is used to build 
this model after its conversion by PADEL-Description to 
binary digits, and the model built by random regression 
satisfied the threshold of an acceptable QSAR model.  
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Figure 18. Visualisation of R-square.   

 
 
 

 
 

Figure 19. Visualisation of RMSE result. 
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Figure 20. Time taken by the models. 

 
 
 
Hence, this model can predict newly discovered drug 
candidates that can inhibit Lassa Fever Virus GP2 
glycoprotein in HEK293. 
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