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In order to reduce the amount of information when querying from large databases, one has to develop 
new approaches. We present here a new way to query our SQUAT database. SQUAT contains formal 
concepts representing an association between a number of genes that are simultaneously 
overexpressed and the biological situations in which those genes are overexpressed. We explored the 
relevance of querying “self-explaining” formal concepts obeying a double constraint: (1) The concept 
should contain, within the genes of the concepts, at least one transcription factor (TF), and (2) At least 
one gene in the concept, should contain in its promoter a transcription factor binding site (TFBS) for the 
identified TF. The present work demonstrated that: (1) there are such “self-explaining” formal concepts 
in SQUAT. (2) Mining only those “self-explaining” formal concepts severely reduces the number of 
concepts that have to be analyzed. (3) Two such “self-explaining” concepts have been further analyzed, 
and their biological relevance has been demonstrated. 
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INTRODUCTION 
 
The generation of very large gene expression databases 
by high-throughput technologies like microarray 
(Gershon, 2002), SAGE (Velculescu et al., 1995) or RNA-
seq (Hanriot et al., 2008) calls for similarly high-
throughput exploration tools of the possible functional 
links between gene expression levels and biological 
situations. Various techniques have been used for 
exploring such relationships, including global techniques 
like hierarchical clustering (Ng, 2001) or local techniques 
like local pattern extraction (Prelic et al., 2006). For the 
biologist, a local pattern is an association between a 
number of genes displaying specific expression pro-
perties and the situations in which those genes display 
such properties. A recent review highlights the relevance 
of mining local patterns with respect to clustering 
analyses (Madeira and Oliveira, 2004). 

We have been developing local pattern extraction such 
as association rule discovery (Becquet et al., 2002; 
Creighton and Hanash, 2003; Georgii et al., 2005; Li et 
at., 2003) or formal concepts (Rioult et al., 2003; Blachon 
et  al.,  2007)  to  capture  groups  of  genes  displaying  a 
 
 
 
*Corresponding author. E-mail: olivier.gandrillon@univ-lyon1.fr. 

simultaneous behavior in a number of biological 
situations. We have been focusing on the gene 
overexpression property (for a discussion about 
overexpression, see Becquet et al., 2002 and Pensa et 
al., 2004). A formal concept is a special case of a local 
pattern that harbors an association between genes that 
are simultaneously overexpressed and the biological 
situations in which those genes are overexpressed. We 
have recently described a web-available database called 
SQUAT containing different types of data, including raw 
SAGE expression values and local patterns in the form of 
formal concepts (Leyritz et al., 2008) allowing the 
biologist to query the resulting information. 

One of the main drawbacks of every local pattern 
approach is the huge number of extracted patterns. This 
is especially true in noisy data, such as transcriptomic 
data. As an example, the human part of SQUAT data-
base contains 532,073 formal concepts, and the murine 
part contains 1,141,895 formal concepts. We have 
therefore developed over the years a number of 
techniques to reduce the amount of information to be 
displayed to the final end-user, that is, the biologist. 

This includes: 
 
(1)    a    simple    color-coding    approach    by    function  
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Figure 1. Schematic description of the “self-explaining” concept. SQUAT was used to establish a 
“tag-to-TFBS” relationship. This allowed to query for concepts containing autoregulated genes 
(genes harboring in their promoter at least one TFBS for the TF that is present within the 

concept). The percentage of autoregulated genes is then calculated (in the example it is 66.6%). 

 
 
(Becquet et al., 2002).  
(2) a regrouping of formal concepts using clustering 
techniques (Blachon et al., 2007) implemented in SQUAT 
(Leyritz et al., 2008). 
(3) the simultaneous use of various sources of 
information, including text mining approaches (Klema et 
al., 2008). 
 
In the present work, we decided to focus on “self-
explaining” formal concepts. For this the basic idea was 
to find concepts responding to the following query: “find 
all concepts, containing within the genes of the concepts, 
at least one transcription factor (TF), and in which at least 
one gene in the concept contains in its promoter a 
transcription factor binding site (TFBS) for the identified 
TF.” 

Our hope was that this TF/TFBS relationship should be 
able to explain at least part of the molecular link 
explaining why some of those genes were found in the 
same concept, which is why those genes are 
simultaneously overexpressed. 
 
 
METHODS 

 
The SQUAT database was used for performing the tag-to-transcript 
relationship (Keime et al., 2004), followed by the tag-to-transcript-
to-TSS relationship (Leyritz et al., 2008). Starting from TSS 
positions, promoter sequences were defined as ranging from 5 kbp 
in 5’ of the TSS to 1 kbp in 3’ of the TSS. All promoters 
corresponding to a 1 tag – 1 transcript – 1 TSS were kept, as well 
as promoters corresponding to a 1 tag – 1 transcript – n TSS, if all 
TSS were contained within a 2 kpb distance. In the first case, the 
most 3’ TSS was used for further studies. This left us with a total of 
12,951 human promoters. 

The MATCH program  (Kel et al., 2003, 2008 version 4)  was  run 

using the resources of the commercial version of TRANSFAC
®
 for 

finding all TFBS on these promoter sequences. In  order  to  reduce 

the number of false positives, the profile contained in the 
“vertebrate_non_redundant_minFP.prf” file was used. 

In the end, we obtain a tag-to-TFBS relationship (Figure 1) that is 
the basis for future queries. The query is a two step process. All 
concepts containing at least one TF were isolated from SQUAT. 

The percentage of autoregulated genes was then calculated for 
each of the concepts. 

The L2L-based queries were performed using the stand alone 
version of L2L (http://depts.washington.edu/l2l/; Newman and 
Weiner, 2005). This tool, given a gene list, provides categories that 
are statistically overrepresented as compared to a gene random 
sampling. We therefore took as an entry a list of genes, belonging 
to one concept, a well as lists belonging to the following categories: 

 
1. The Gene Ontology organizing principle: biological process, 
2. The Gene Ontology organizing principle: molecular function. 
3. The L2L specific category: microarray data. For this L2L compare 
the list of genes contained within a concept to lists of genes that 
have been experimentally determined as being over expressed in 
response to a particular stimulus - in other words, published lists of 
microarray results. 

 
The program first calculates the number of expected matches for 
that list, then the relative enrichment of actual matches, and finally 
a binomial probability for the relative enrichment. The results are 
logged, and written to a raw output file. The best p-values were 
retrieved and one therefore obtains, for each formal concept, three 
values: the best p value obtained when trying to find an enrichment 
regarding a biological process, a molecular function or a microarray 
experiment. 

STRING was queried using the default parameters values. 
 
 

RESULTS 
 
The first purpose of this work was to find “self explaining 
concepts” obeying a double constraint regarding the 
presence of a TF in the concept and of potential target 
genes among the other genes of the concept (Figure 1). 
The second purpose was to see if  that  would  lead  to  a 
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Figure 2. The number of concepts as a function of the 

autoregulated genes it harbors. 5013 concepts containing at 
least one autoregulated gene (mean size = 14.74 genes, as 
compared with the mean size of 5.43 for all SQUAT 
concepts) were obtained. 561 concepts harbored at least 50 
% of autoregulated gene (mean size = 6,65 genes) and 20 
concepts harbored 100 % of autoregulated gene (mean size 
= 3,15 genes). 

 

 
 

 
 
Figure 3. Schematic description of the use of L2L. Each individual concept can be seen 

as a list of genes. Each list was then compared to three types of lists of genes present 
within L2L. This results in the calculation of the p-value estimating the statistical 
significance of the redundancy between the two lists. 

 

 

 

reduction in the number of formal concepts that have to 
be studied, and the third was to investigate their 
biological relevance. 

We first checked for the presence of concepts that 
would fit such a double constraint. The results of the 
corresponding queries are displayed in Figure 2. Three 
things are readily apparent from Figure 2: 
 

1. There indeed are concepts obeying the double 
constraint. 
2. The percentage of auto-regulated gene can vary over 
the    full     range     of     1    to    100%    of    the   genes 

3. Although the number of concepts is severely reduced 
from more than 500,000 to a few hundreds, it 
nevertheless still represents an unmanageable amount of 
information 
 

We therefore decided to explore the possible biological 
relevance of the queried concepts, using L2L. For each 
identified concept, three files, representing three types of 
categories were retrieved from L2L (Figure 3):  
 
1. Biological process, 
2. Molecular function 
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Figure 4. Most significant concepts for varying values of the percentage of auto-regulated genes. 

Shown is the best p-value among all of the possible p-values for all of the gene belonging to all of the concept that were 
extracted at a certain value of x, the percentage of auto-regulated genes. The best p-value was selected each for of the three 
L2L categories examined. The five concepts displaying the lowest p-values are indicated and labeled 1 to 5. 

 
 

 
Table 1. The four CRX concepts. 

 

Rank List Name Binomial p-value 
Number of 
libraries 

Number of 
tags 

% of CRX-regulated 
genes 

1 visual perception 4.94 10 -28 2 168 11,00 

2 visual perception 5.46 10-26 2 150 11,00 

4 visual perception 1.73 10-24 3 84 10,00 

5 visual perception 2.34 10-23 2 139 13,00 
 

Column 1: The rank of the concept among the 5 best p-values (Figure 4); Column 2: L2L list name providing the best p-value;  Column 3: the 

actual p-value; Columns 4 and 5: the number of libraries (i.e. biological situations) and tags (i.e. genes) in each concept; Columns 6: the 
percentage of auto-regulated genes (via CRX binding sites) in each concept. 

 

 
 

3. Microarray data. 
 
All concepts for values of x (the percentage of auto- 
regulated gene) ranging from 1 to 100% were extracted. 
Then for one value of x, one obtains a large amount of 
concepts. All of the genes belonging to those concepts 
were processed through L2L, and the best p-value 
obtained for a given value of x, for the three categories 
chosen, for any concept, was selected. The best p-value, 
for the three categories chosen, is displayed in Figure 4. 

Although this might be counterintuitive, it is 
nevertheless clear that there are much more biologically 
significant concepts arising for the lower values of x. For 
concepts where more than half of the genes are auto-
regulated, there is almost no concept displaying a 
significant p-value using L2L.  

The five most significant extracted concepts were then 
examined. Among those, 4 harbored the same trans-
cription factor, named CRX (Table 1). It is immediately 
apparent that the best p-values were all obtained for the 
“Visual   perception”   category   of    the    GO   biological  

processes.  
We then interrogated SQUAT in order to estimate the 

global number of concepts which contained CRX. We 
found a total of 7 concepts, 4 of them containing more 
than one gene. It therefore appears that among the 5 
best p-values we obtained all four CRX concepts among 
the 532073 concepts contained within our SQUA data-
base. This demonstrates the power of the approach to 
extract a very small number of closely related concepts. 

We then investigated the nature of the three libraries 
found within the concepts. It turned out that all three 
libraries were made from normal retina. At that stage we 
investigated the nature of CRX. Using the hyperlink from 
SQUAT to Entrez Gene, we could find the following 
description of the function of CRX: “The protein encoded 
by this gene is a photoreceptor-specific transcription 
factor which plays a role in the differentiation of 
photoreceptor cells. This homeodomain protein is 
necessary for the maintenance of normal cone and rod 
function”. It was therefore clear that we had extracted 
information     regarding    the     overexpression     for    a  
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Figure 5. Analysis of the biological meaning of the CRX concepts. A: Shown 

are all the genes that 1. were common to all four concepts and 2. harbored at 
least one TFBS for CRX in their promoter. For each gene is shown its HUGO 
name, the number of CRX-binding sites in its promoter, and its full name. B. 

STRING output showing the known relationship between the 8 genes, 
indicated by a yellow line representing text-mining-based evidence. The 
combined score are computed as the joint probability of the probabilities from 
the different evidence channels, correcting for the probability of randomly 
observing an interaction (see the STRING website for more information). 

 

 

photoreceptor-specific transcription factor in retinal cells 
Finally, we identified all genes that (1) were common to 
all four concepts and (2) harbored at least one TFBS for 
CRX in their promoter. This resulted in a list of 7 genes 
(Figure 5A). Those were still linked to “visual perception” 
with a very highly significant score (p= 2.48 10-12), which 
is due to the fact that all individual gene products could 
be shown to be related to eye development and vision 
(not shown). 

In order to explore possible known relationship 
between CRX and any of those gens, we turned to the 
STRING database (http://string-db.org/; Figure 5B). 
Among the 7 genes, 2 (RAX and PPEF2) had no known 
relationship with CRX,1 (RDH8) had an indirect 
relationship, and the 4 left displayed weak text-mining-
based relationship.  When  explored  in  details, the  most 

relevant relationship was between Recovering and CRX, 
whereas only anecdotal co-occurrence-based linked CRX 
to RLBP-1, GUCA1 andPDE6G. 

We therefore have isolated 7 new putative direct CRX 
target genes involved in the visual ability of retinal cells, 
previously uncharacterized as CRX target genes. As a 
next step in the analysis, we decided to relax the 
stringency of the p-value constraint. For this, we analyzed 
the concepts harboring the 54 best p-values. Among 
those it was immediately apparent that the TEAD2 (TEA 
domain family member 2) transcription factor was the 
most prominent one, since it appeared in 40% of the 
concepts. One should note that 466 concepts containing 
TEAD2 and with more than one gene and more than one 
situation appear in SQUAT. So this is different from the 
previous situation: here we selected a subpart of all of the 
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Figure 6A. Analysis of the biological meaning of the TEAD2 concepts.L2L output of the 35 genes that match 

between our TEAD2 targets and the L2L microarray list “stemcell_embryonic_up”. The first column displays 
the name of the genes, the second, the GO functional category to which they are related, and the third 
indicates their complete name. Arrows points toward those genes harboring at least one TEAD2-binding site 
in their promoter. 

 
 
 

TEAD2-containing concepts. 
Among the 21 concepts containing TEAD2 and 

appearing among the 54 best p-values, 15 were 
harboring homogeneous situations consisting of 
Embryonic Stem Cells. Pubmed was then searched using 
as an entry “TEAD2 embryonic stem cells”. Such a query 
returned 4 papers, mostly non relevant for establishing a 
link between TEAD2 and ES cells. 

We then analyzed the function of the  genes  contained  

in the concepts, by making a complete list of all the 
genes appearing in the 15 concepts. This left us with a 
list of 116 genes that we submitted to L2L. We obtained a 
very significant match (p= 2.82 10-21) with a microarray-
based list called “stemcell_embryonic_up (Enriched in 
mouse embryonic stem cells, compared to differentiated 
brain and bone marrow cells)”. The 35 genes that match 
between our TEAD2 targets and the L2L microarray list 
are displayed  in  the  Figure  6A.  We  also  performed  a 
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Figure 6B. Analysis of the biological meaning of the TEAD2 concepts. 

STRING output showing the known relationship, indicated by a line, between the 35 genes. The color code 
of the lines is shown in the box on the right (see the STRING website for more information). 

 
 
 

STRING analysis, that revealed that none of those genes 
are known to be connected to TEAD2, and are mostly 
non connected with each other (Figure 6B). 

Altogether our analysis suggest a role for TEAD2 in 
embryonic stem cells which has until now not been 
described, together with a list of TEAD2-target genes that 
might be relevant for its function in human ES cells, half 
of them being putative direct TEAD2 targets. 
 
 
DISCUSSION 
 

We have developed a querying process of our SQUAT 
database, which allows querying simultaneously various 
sources of information. This allowed us to search for 
“self-explaining” concept containing a TF together with 
putative target genes of that TF. We further refined our 
search by relying on an automatic L2L-based indexing. 
We finally analyzed two groups of concepts. Both of 
those were found to be biologically significant with a 
mixture of both known and new information that indicates 
a successful data mining quest.  

In this work various databases have been used in a 
sequential fashion, to progressively reduce the amount of 
extracted information. One possible future direction would 
consist in mining simultaneously different sources of 
information. Such a process could be viewed as 
computing  all  maximal  homogeneous  clique  sets  from 

different subgraphs. Preliminary evidence that this could 
be feasible has been obtained recently (Mougel et al., 
2010).  

Furthermore, it would be of interest to automate the 
search for interesting concepts. This would require the 
combination in a single solver of various information 
sources, an effort that is presently the subject of intense 
research (Medina et al., 2010; Cao et al., 2011 and 
references therein). 
 
 
ACKNOWLEDGEMENTS 
 
This work has been funded by the ANR (French 
Research National Agency) project BINGO2 
(https://bingo2.greyc.fr/) ANR-07-MDCO-014 which is a 
follow-up of the first BINGO project (2004-2007). We 
thank all members of the BINGO2 project for stimulating 
discussion. 
 
 
REFERENCES 

 
Becquet C, Blachon S, Jeudy B, Boulicaut JF, Gandrillon O (2002). 

Strong-association-rule mining for large-scale gene-expression data 

analysis: a case study on human SAGE data. Genome Biol., 3, 
RESEARCH0067. 

Blachon S, Pensa RG, Besson J, Robardet C, Boulicaut J-F, Gandrillon 

O (2007). Clustering formal concepts to discover biologically relevant 
knowledge from gene expression data. In Silico Biol., 7: 0033. 



90         J. Comput. Biol. Bioinform. Res. 
 
 
 
Cao L, Zhang H, Zhao Y, Luo D, Zhang C (2011). Combined mining: 

discovering informative knowledge in complex data. IEEE Trans Syst 
Man Cybern B Cybern, 41: 699-712. 

Creighton C, Hanash S (2003). Mining gene expression databases for 
association rules. Bioinformatics, 19: 79-86. 

Georgii E, Richter L, Ruckert U, Kramer S (2005). Analyzing microarray 

data using quantitative association rules. Bioinformatics, 21 Suppl 2, 
ii123-ii129. 

Gershon D (2002). Microarray technology: an array of opportunities. 

Nature, 416: 885-891. 
Hanriot L, Keime C, Gay N, Faure C, Dossat C, Wincker P, Scote-

Blachon C, Peyron C, Gandrillon O (2008). A combination of 

LongSAGE with Solexa sequencing is well suited to explore the 
depth and the complexity of transcriptome. BMC Genomics, 9: 418. 

Keime C, Damiola F, Mouchiroud D, Duret L, Gandrillon O (2004). 

Identitag, a relational database for SAGE tag identification and 
interspecies comparison of SAGE libraries. BMC Bioinform., 5: 143. 

Kel AE, Gößling E, Reuter I, Cheremushkin E, Kel-Margoulis OV, 

Wingender E (2003). MATCHTM : A tool for searching transcription 
factor binding sites in DNA sequences. Nucleic Acids Res., 31: 3576-
3579. 

Klema J, Blachon S, Soulet A, Crémilleux B, Gandrillon O (2008). 
Constraint-Based Knowledge Discovery from SAGE Data. ISB, 8: 
0014. 

Leyritz L, Schicklin S, Blachon S, Keime C, Robardet C, Boulicaut J-F, 
Besson J, Pensa RG, Gandrillon O (2008). SQUAT: a web tool to 
mine human, murine and avian SAGE data. BMC Bioinform., 9: 378. 

Li J, Liu H, Downing JR, Yeoh AE, Wong L (2003). Simple rules 
underlying gene expression profiles of more than six subtypes of 
acute lymphoblastic leukemia (ALL) patients. Bioinformatics, 19: 71-

78. 
Madeira SC, Oliveira AL (2004). Biclustering algorithms for biological 

data analysis: a survey. IEEE/ACM Transactions on Computational 

Biol. Bioinform., 1: 24-45. 
 
 

 
 
 

 
 
 

 
 
 

 
 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 

 
 
 
 
Medina I, Carbonell J, Pulido L, Madeira SC, Goetz S, Conesa A, 

Tarraga J, Pascual-Montano A, Nogales-Cadenas R, Santoyo J 
(2010). Babelomics: an integrative platform for the analysis of 

transcriptomics, proteomics and genomic data with advanced 
functional profiling. Nucleic Acids Res., 38, W210-213. 

Mougel PN, Plantevit M, Rigotti C, Gandrillon O, Boulicaut JF (2010). 

Constraint-based Mining of Sets of Cliques Sharing Vertex 
Properties. In Proc Workshop on the Analysis of Complex Networks 
ACNE 2010 co-located with ECML PKDD 2010 (Barcelona, M. 

Berlingerio, B. Bringmann, A. Nürnberger), pp. 48-62.  
Newman JC, M Weiner AM (2005). L2L: a simple tool for discovering 

the hidden significance in microarray expression data. Genome Biol., 

2005, 6:R81. 
Ng TR, Sander J, Sleumer M (2001). Hierarchical Cluster Analysis of 

SAGE Data for Cancer Profiling. workshop on Data Mining in 

BioInformatics with SIGKDD '01. 
Pensa R, Leschi C, Besson J, Boulicaut JF (2004). Assessment of 

discretization techniques for relevant pattern discovery from gene 

expression data. Paper presented at: 4th ACM SIGKDD Workshop 
on Data Mining in Bioinformatics BIOKDD'04 co-located with ACM 
SIGKDD'04 (Seattle, USA). 

Prelic A, Bleuler S, Zimmermann P, Wille A, Buhlmann P, Gruissem W, 
Hennig L, Thiele L, Zitzler E (2006). A systematic comparison and 
evaluation of biclustering methods for gene expression data. 
Bioinform., 22: 1122-1129. 

Rioult F, Robardet C, Blachon S, Crémilleux B, Gandrillon O, Boulicaut 
JF (2003). Mining concepts from large SAGE gene expression 

matrices. Paper presented at: 2nd Int Workshop Knowledge 
Discovery in Inductive Databases KDID'03 co-located with ECML-
PKDD 2003 (Cavtat-Dubrovnik (Croatia)) STRING. 

http://string.embl.de/. 
Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995). Serial 

analysis of gene expression. Sciences, 270:484-487. 


