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For the past decade, artificial intelligence (AI) and its related technologies have made remarkable 
advances in marketing and business solutions based on AI-driven big data analysis of customer 
queries, and it, when coupled with bioinformatics, seemingly holds out great promise for use in 
healthcare. In reality, however, AI is still largely a buzzword when it comes to disease diagnosis and 
treatment. This review addresses the uncertainty of AI applications to disease diagnosis and treatment, 
not only pinpointing AI’s inherent algorithmic problems in dealing with non-patternable stochastic 
healthcare data, but also revealing the innate fallacy of identifying genetic mutations as a tool for 
genome-based personalized medicine. Finally, this review concludes by presenting some insights into 
future AI application in healthcare. 
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INTRODUCTION 
 
Artificial intelligence (AI) has been around for decades 
since its inception at the 1956 workshop in Dartmouth 
College. However, its technology has been recently 
hyped with the arrival of machine learning (ML) and deep 
learning (DL) algorithms whose evolution centered 
around the artificial neural network (ANN) model to 
handle complex multi-layered nonlinear data 
(Schmidhuber, 2014; Bini, 2018). This is in addition to 
IBM Watson‟s beating against Jeopardy champions in 
2011 and Google AlphaGo‟s stunning 4-1 victory over a 
world‟s best Go player in 2016. Such incredible 
successes of AI have been largely driven by the 
integration  of   Big  Data  and  ML  algorithms,  rooted  in 

complex neural networks to process perceptions and 
make decisions for action in our brain (Rosenblatt, 1958), 
holding out promise of a revolution in solving all sorts of 
real-world problems and issues. Armed with image 
processing, voice recognition, and natural language 
processing (NLP), today‟s high-tech companies including 
Google and Amazon are using AI and its related 
technologies as a primary growth fuel. These high-tech 
companies are pouring immense efforts to get machines 
far smarter in addressing their business challenges, and 
already starting to shape up our daily lives and the 
society, both positively and negatively (Yampolskiy and 
Spellchecker, 2016). 
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In parallel, there has been a lot of excitement about how 
AI will disrupt the entire ecosystem in healthcare. AI 
applications in healthcare have been traditionally 
concentrated around cancer, neurology and cardiology, 
mostly through automated medical image analysis to look 
for specific patterns linked to diseases and disorders 
(Jiang et al., 2017; Ravi et al., 2017; Mandal et al., 2018). 
For instance, electronic abnormal mammogram follow-up 
triggers were reported to flag patient records with delays 
on mammography with an accuracy of 71% (Murphy et 
al., 2018). Recently, AI application to other healthcare 
domains looks equally promising in helping to better 
streamline and coordinate administrative and clinical 
processes. This is to serve patients more efficiently and 
economically in: reducing preventable medical errors 
associated with robot-assisted surgery and drug dosage 
determination, improving disease diagnosis and 
recommending the best treatment options for individual 
patients, and aiding to develop new medicines (Kalis et 
al., 2018). These recent AI applications in different 
healthcare spaces are being primed by such AI 
companies as PathAI, aiming at error reduction in cancer 
diagnosis, Freenome, aiming at early cancer detection, 
BenvolentAI, aiming at providing the right treatments to 
patients, and Atomwise (established in 2012) aiming at 
identifying patient characteristics for drug discovery for 
clinical trials (Daley, 2018). In June 2018, the American 
Medical Association (AMA) adopted a new policy, 
Augmented Intelligence in Health Care H-480.940 
(American Medical Association, 2018) to promote AI 
applications in healthcare for benefitting patients, 
physicians, and the healthcare community. In April 2, 
2019, the Food and Drug Administration (FDA) posted a 
white paper FDA-2019-N-1185, “Proposed Regulatory 
Framework for Modifications to Artificial Intelligence/ 
Machine Learning (AI/ML)-Based Software as a Medical 
Device (SaMD)”. This paper outlines the agency‟s 
forceful move to require FDA approval of AI-enabled 
medical devices prior to commercialization in an effort to 
ensure their reliable and scalable performance for a wide 
variety of real-world patients and clinical data (Ross, 
2019). 
 
 
Uncertainty of AI in disease diagnosis and treatment 
 
Despite such transforming breakthroughs seemingly 
destined to change the world, AI-powered smart 
machines still remain not that intelligent in processing 
non-patternable stochastic healthcare data, structured or 
unstructured, due predominantly to their inherent 
algorithmic inability to learn new contexts and adapt to 
change, making only mediocre advances in disease 
diagnosis and treatment (Esteva et al., 2017). In addition, 
AI application to healthcare is limited currently by the 
quality, bias, consistency, variability, and scale of 
healthcare data (Warwick et al., 2015; FDA, 2013).  

 
 
 
 
Moreover, the vast majority of healthcare data centered 
on patients and their diseases are non-discrete, non-
patternable, and stochastic in nature (Boddy et al., 2019; 
JASON, 2017; Wang et al., 2015a), thereby making 
existing probabilistic statistical analysis useless. 
Consequently, even coupled with mountains of 
healthcare big data, AI‟s critical decision-making around 
disease diagnosis and treatment is extraordinarily 
challenging, requiring a new AI algorithm to smartly deal 
with a multitude of non-patternable stochastic variables or 
factors associated with each individual disease, epidemic 
or rare. In this vein, the extensions of AI learning to 
healthcare solutions for disease diagnosis and treatment 
is yet to live up to our expectations. 

Bias is one of AI‟s Achilles heels, determining the fate 
of AI towards the singularity as reflected in the „garbage 
in, garbage out‟ (GIGO) principle for data processing. 
Depending on the level of quality of and bias in 
healthcare data, today‟s ML and DL algorithms, 
supervised and unsupervised, will inherently learn and 
replicate the same deeper-seated biases as we have, 
inevitably and unintendedly failing to make fair decisions 
(Challen et al., 2019; Canetti et al., 2019). To make it 
worse, AI is biased by design. The AI‟s fairness issue is 
exemplified by the Google‟s photos app mislabeling two 
black couple as gorillas and Microsoft‟s chatbot Tay 
responding with disruptive and abusive Tweets. In 
addition, the COMPAS program used for making bail and 
sentencing decisions in U.S. courts was hugely biased 
against black defendants, falsely flagging blacks nearly 
twice as likely to re-offend as whites (Larson et al., 2016). 
Moreover, AI-based online lenders discriminate against 
minorities, charging much higher interest rates to minority 
borrowers compared to white borrowers (Bartlett et al., 
2018). 

The lack of trust is another key factor that comes up for 
the success of AI in healthcare. Today‟s AI and ML 
algorithms employ a black box just like neural networks in 
the brain, turning decision-making over to the black box. 
Thus, not even the most eminent high-profile AI experts 
really know for sure how AI and ML algorithms internally 
work to arrive at a final decision (Knight, 2017; Bleicher, 
2017). Consequently, the final decision lacks explainability 
and transparency, not compelling to convince doctors 
and patients to trust AI‟s decision-making. In March 2018, 
an Uber self-driving SUV made a wrong decision, hitting 
and killing a pedestrian in Tempe, Arizona. According to 
an MIT Sloan Management Review‟s research study 
(Davenport and Bean, 2018), the majority of organizations 
(82% of those surveyed) had not adopted AI beyond pilot 
projects, that is, people do not trust AI in healthcare. 
These together speak of a mortifying reminder of the risk 
of AI in disease diagnosis and treatment, which must roll 
out accurate, fair, and trustworthy decisions.  

A recent study revealed that AI has not really evolved 
much since its beginning. It iteratively reuses one form of 
its existing  algorithms  nearly  every  decade, rather than  
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Figure 1. Schematic illustration for genome assembly. (A) A scaffold with gaps is built by aligning each of 
the three contigs 1 (red), 2 (green), and 3 (blue) against the reference genome (black). The gaps in the 
scaffold are represented by dotted black lines between the contigs. (B) The three contigs (1-3) in A are 
constructed, each by aligning a set of short sequence reads through overlapping regions, and they are 
computationally organized into the scaffold by being positioned against the reference sequence. 

 
 
 
its existing algorithms nearly every decade, rather than 
redesigning a brand-new algorithm (Hao, 2019). This 
implies that AI decision-making models will not play out 
well without a next-generation paradigm. Beyond this, 
healthcare solutions around disease diagnosis and 
treatment are extremely complicated compared to 
marketing and business solutions, requiring much harder 
and frequently life-and-death treatment decisions for 
patients. Without changing the present AI paradigm, even 
today‟s most advanced ML and DL algorithms are 
doomed to predict exaggerated risks of diseases or 
simply churn out too many false positives, whereby failing 
to diagnose disease unambiguously and recommend the 
right treatment at the right time. For instance, Google Flu 
Trends (GFT) (Ginsberg et al., 2009), ambitiously 
designed based on Google search queries to forecast 
seasonal flu outbreaks two weeks earlier than the 
Centers for Disease Control and Prevention (CDC), 
turned out to be an epic failure of AI application to 
healthcare (Lazer et al., 2014). In July 2018, a STAT 
medical website‟s report revealed that IBM Watson 
Health, the reportedly best AI healthcare system in the 
world, failed multiple times in recommending safe and 
accurate treatment options for cancer patients, 
notwithstanding collaborations with oncologists at the 
Memorial Sloan Kettering Cancer Institute. This also 
bodes ill for the future of AI in healthcare, clouding the 
putatively rosy arrival of the personalized medicine era. 
 
 
Fallacy of genome-based personalized medicine 
 
Bioinformatics is largely centered on biodata composed 
of biosequences, biostructures, and their metadata, 
searching for signature patterns to promote human health 

and wellness most commonly by comparatively analyzing 
homologous biosequences collected from different 
people. With the putative reference human genome 
(International Human Genome Sequencing Consortium, 
2004), researchers strongly believe that the AI-enabled 
bioinformatics will efficiently identify such patterns by 
comparing human genomes, each linked to human 
disease, launching genomic medicine. The paradigm for 
genomic medicine is, however, inherently full of fallacies. 

Firstly, the putative reference human genome does not 
intrinsically qualify as a reference, against which a 
person‟s genome is compared in search of signature 
patterns associated with the person‟s disease (Lee, 
2017). It is a composite human genome of which 70% 
came from just a single donor anonymously named 
RP11, seriously lacking in diversity (Sherman et al., 
2019). As illustrated in Figure 1, it is rather established as 
a guide for genome sequencing, against which contigs, 
each constructed from a set of short sequence reads, are 
aligned and assembled to build often-fragmented scaffolds 
of individuals and patients (Ekblom and Wolf, 2014). 
Each individual‟s genome is unique in both composition 
and organization (Seo et al., 2016), so that genomic 
variations found between people do not necessarily 
support for their relatedness to disease or disorder (Lee, 
2017). In this regard, the putative reference human 
genome should not be a legitimate reference genome to 
be used to search for genomic variations. In reality, it is 
not logical to create such a single reference human 
genome to be universally compared against each 
individual‟s genome in search of genomic variations, as 
individual genomes vary very widely from person to 
person but uniquely across diverse ethnic groups and 
populations around the world.  

Secondly,  the  paradigm of genomic medicine is based  
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Figure 2. Example of alignment of gene sequences. The reference sequence on the top portion (shaded in light pink) of the 
sequences alignment editor expedites the alignment of homologous gene sequences and helps the identification of genetic 
variations across sequences. The gap (-) and tilde (~) characters in each sequence are to represent the positions of any 
insertion/deletion (aka indel) and unavailable nucleotide(s), respectively. 

 
 
 
solely on the premise that genetic changes are 
responsible for diseases, disorders, or medical conditions 
(Acuna-Hidalgo et al., 2016). The paradigm has prompted 
to look for disease-causing genetic mutations (most 
commonly single nucleotide polymorphisms (SNPs)) by 
comparing gene sequences from patients against their 
homologous regions in the putative reference human 
genome, as shown in Figure 2. With a hope to identify 
genetic variations in patients more efficiently, whole 
exome sequencing (WES) has been established to 
sequence only the human exome, or the collection of all 
known coding regions (or genes) that are translated into 
peptides, which represents ~1% of a person‟s full-length 
genome (Lee, 2017). Nonetheless, the noncoding regions 
(or non-genes), which are transcribed into RNA but never 
translated into peptides, are also as functionally and/or 
structurally equally important as the coding regions 
(Baker, 2012), embedded with greatly diverse variations 
including: small or large insertions/deletions (indels), 
repetitive elements (REs), transposable elements (TEs), 
and copy number variations (CNVs) (Burger et al., 2011). 
To our surprise and contrary to our expectations 
regarding the correlation between mutation and disease, 
it was uncovered that the peptide-making genes that are 
essential for proliferation and survival reveal basically no 
variations  across  all  human  populations  (Wang  et  al., 

2015b). More shockingly, the vast majority of the highly 
variable 3,230 peptide-producing genes among 60,706 
individuals from all corners of the world are not linked to 
any currently known human disease (Lek et al., 2016). 
The latter two studies further substantiate a notion that 
genetic variation does not speak of any relatedness to 
disease-causing phenotypes, but simply of evolutionary 
changes in people‟s genomes that have responded 
differently over time to their past environments and living 
conditions (Lee, 2017). It is thus clear that without any 
significant paradigm shift in pattern recognition and 
genome analysis, today‟s AI and ML will not warrant any 
success in identifying medically meaningful signature 
patterns linked to human diseases and disorders. 
 
 
DISCUSSION AND CONCLUSIONS 
 
AI and its related technologies have been hugely 
successful in certain well-defined domains such as game 
mastering, voice recognition, and language translation. 
AI-enabled pattern and image recognition algorithms 
have assisted eminent high-tech companies to make 
important decisions and necessary adjustments for their 
marketing and business strategies. In contrast to these 
well-defined    domains,   AI-utilized   decision-making   in  

 
 

 
 



 
 
 
 
healthcare has made only mediocre advances. Especially, 
AI in disease diagnosis and treatment (the AI‟s last 
resort) faces a number of non-trivial thorny problems to 
overcome. In particular, most healthcare data around 
human diseases and their phenotypes involve arrays of 
non-patternable stochastic variables, so that currently 
inherently probabilistic AI algorithms will fail to learn 
about healthcare data, and thus will not be able to make 
reliable, unambiguous, and transparent treatment 
decisions for patients. This reminds us of the Feynman 
trap, which states that something extremely unlikely is 
100% likely if it already happened. This also indicates 
that the future prospect of AI in healthcare is not that 
promising. The extension of AI to healthcare, disease 
diagnosis and treatment in particular, is doomed to fail 
regardless of computing power, without a quantum leap 
in AI‟s algorithmic revolution to analyze and process non-
patternable stochastic healthcare data. Recently, a team 
of researchers published a novel scalable deep neural 
network training model by replacing the conventional 
fully-connected layers (FCLs) with quadradically fewer 
sparsely-connected layers (SSLs) without loss of 
accuracy (Mocanu et al., 2018), opening the doors to a 
better modeling of the original brain-inspired ANNs where 
neurons are connected only to handful of other neurons. 

Moreover, healthcare data and biodata often lack the 
quality and fairness required for AI to make right and fair 
decisions that are explainable to doctors and patients. To 
make it worse, we do not have quality healthcare data for 
rare diseases from which several hundred millions of 
people worldwide are suffering. Furthermore, the majority 
of bioinformaticians and data scientists – who apply AI to 
healthcare solutions – lack thorough understanding of 
real-world healthcare data and biodata. They tend to use 
oversimplified toy models to solve complex multivariate 
healthcare problems, thereby throwing out or ignoring 
many real but seemingly outliers, followed by building 
healthcare solutions with overly limited reliability and no 
flexibility. Therefore, they are never capable of dealing 
with real-world biodata reliably and efficiently. This 
warrants that they are in dire need of better education 
and due training opportunities to learn real-world biodata 
properly in a new type of interdisciplinary setting and 
employ that learning to design next-generation adaptive 
AI algorithms, which could make reliable and 
unambiguous decisions to solve such complex 
computational problems around healthcare, specifically 
disease diagnosis and treatment.  
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