
Journal of Computational Biology and Bioinformatics Research Vol. 3(2), pp. 15-24, February 2011 
Available online http://www.academicjournals.org/jcbbr 
ISSN-2141-2227 ©2011 Academic Journals 
 
 
 
 
Full Length Research Paper 
 

Prediction of eukaryotic protein subcellular multi-
localisation with a combined KNN-SVM ensemble 

classifier 
 

Liqi Li1, Hong Kuang2, Yuan Zhang1*, Yue Zhou1, Kaifa Wang3 and Ying Wan4 

 
1Department of Orthopaedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China. 

2Central Laboratory, 452nd Hospital of Chinese PLA, Chengdu, Sichuan, China. 
3Department of Mathematics, Third Military Medical University, Chongqing, China. 
4Department of Immunology, Third Military Medical University, Chongqing, China. 

 
Accepted 15 December, 2010 

 
Proteins may exist in or shift among two or more different subcellular locations, and this phenomenon 
is closely related to biological function. It is challenging to deal with multiple locations during 
eukaryotic protein subcellular localisation prediction with routine methods; therefore, a reliable and 
automatic ensemble classifier for protein subcellular localisation is needed. We propose a new 
ensemble classifier combined with the KNN (K-nearest neighbour) and SVM (support vector machine) 
algorithms to predict the subcellular localisation of eukaryotic proteins from the GO (gene ontology) 
annotations. This method was developed by fusing basic individual classifiers through a voting system. 
The overall prediction accuracies thus obtained via the jackknife test and resubstitution test were 70.5 
and 77.6% for eukaryotic proteins respectively, which are significantly higher than other methods 
presented in the previous studies and reveal that our strategy better predicts eukaryotic protein 
subcellular localisation. 
 
Key words: Gene ontology, multiple subcellular localisation, K-nearest neighbour, support vector machine, 
ensemble classifier. 

 
 
INTRODUCTION 
 
The amount of protein sequence data is increasing 
rapidly with the progression of genome projects. 
However, traditional experimental methods, including cell 
fractionation, electron microscopy and fluorescence 
microscopy, are time-consuming and expensive and 
cannot meet the research demands of the enormous 
amount of raw protein sequences (Lin et al., 2009; Xu et 
al., 2009). Thus, it is essential to find computational 
techniques to effectively analyse these data.  

Because a protein needs to be transported to the 
correct cellular location to properly perform  its  functions,  
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Abbreviation: GO, Gene ontology; KNN, K-nearest neighbour; 
SSL, subset subcellular location; SVM, support vector machine. 

the prediction of protein subcellular localisation is an 
important aspect of protein bioinformatics and 
biofunctionality. Compared to experimental methods, 
computational prediction techniques can predict protein 
subcellular localisation more quickly and accurately. 
Moreover, it can effectively analyse proteome sequences 
on a large scale. Currently, many computational tech-
niques, such as the neural network (Ma and Gu, 2010), 
support vector machine (SVM) (Shen and Burger, 2010) 
and hidden Markov models (HMM) (Rashid et al., 2007), 
have been developed for the prediction of protein 
subcellular localisation. 

However, the neural network can suffer from multiple 
local minima (Marinov and Weeks, 2001), the solution to 
an SVM is unique and global.  While the number of 
parameters that need to be evaluated in an HMM is large 
(Mount, 2009). In contrast to HMM, only the kernel 
function and the regularization parameter C are selected 
to specify one SVM  (Hua  and  Sun,  2001).  The  reason  
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that SVMs often outperform other computational 
techniques in practice is that SVMs are less prone to over 
fitting (Huang and Kecman, 2005). While the 
classification decision of KNN is based on a small 
neighbourhood of similar objects. The advantages of 
KNN are that the training is fast and it is well-suited for 
multi-modal classes (Wang and Yang, 2009). Therefore, 
SVM and KNN were introduced to predict eukaryotic 
protein sub cellular localisation.  We developed a novel 
predictor named the KNN-SVM ensemble classifier, 
which is a combination of the KNN and SVM algorithms 
(Qiu et al., 2010; Zheng et al., 2009).  

This predictor uses the gene ontology (Kim et al., 2010; 
Torto-Alalibo et al., 2010) database, which is based on 
the three related ontologies of molecular function, 
biological process, and cellular component, to improve 
prediction performance. Although there are three different 
types of gene ontology GO IDs for each sequence, we 
have not chosen only one type of GO ID. In this strategy, 
the GO numbers of the eukaryotic protein dataset 
covering 22 subcellular locations were extracted from the 
free GO database at 
ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/UNIPROT/ 
(released on March 15, 2010) and then were transformed 
into a 7166-dimension input vector (Chou and Shen, 
2007). For the 22 subcellular locations in this paper, the 
one-versus-one method (Su et al., 2007) was employed 
to construct the classifiers. Thus, a total of 231 binary 
classifiers were prepared. In addition, either KNN or 
SVM, depending on which gave the higher accuracy rate, 
was used to predict the classifier of the 231 binary 
classifiers. As a result, a significant improvement in 
prediction quality was achieved, which makes the KNN-
SVM ensemble classifier another powerful method for 
subcellular localisation prediction. 
 
 
MATERIALS AND METHODS  
 
Dataset 
 
The free dataset   we used was generated by Chou and Shen 
(Chou and Shen, 2007; Chou and Shen, 2008), which can be 
downloaded from http://www.csbio.sjtu.edu.cn/bioinf/euk-
multi/Download.htm. The dataset contained 5618 eukaryotic protein 
sequences belonging to 22 location categories: 17 acrosome, 53 
cell wall, 64 centriole, 501 chloroplast, 85 cyanelle, 1060 cytoplasm, 
74 cytoskeleton, 364 endoplasmic reticulum, 89 endosome, 640 
extracellular, 254 Golgi apparatus, 13 hydrogenosome, 80 
lysosome, 13 melanosome, 31 microsome, 535 mitochondria, 1333 
nucleus, 97 peroxisome, 725 plasma membrane, 15 synapse, 36 
spindle pole body, and 102 vacuole (Figure 1). Although the dataset 
generated by Chou and Shen is 2 years old, it is a classical dataset 
cited by many related articles (Blum et al., 2009; Briesemeister et 
al., 2010; He and De Buck, 2010; He et al., 2010; Huang et al., 
2008; Sharpe et al., 2010).  

These sequences were extracted from SWISSPROT (version 
50.7) and included only sequences that appeared to be complete 
and were annotated with reliable experimental observations. In this 
dataset, none of proteins had 25% or more sequence identity to any 
other protein in a same subcellular location,  with  the  exception  of  

 
 
 
 
three locations: acrosome, melanosome, and synapse. Otherwise, 
the numbers of proteins in the three locations would be insufficient 
to reach the statistical requirement. Because some proteins in this 
dataset could exist in or shift among two or more different 
subcellular locations, it was necessary to introduce the concept of a 
“locative protein”. If a protein exists in or shifts between two different 
subcellular locations, it will be counted as two locative proteins; 
likewise, if it exists in or shifts among three locations, three locative 
proteins will be counted. In this study, 5091 proteins belonged to 1 
subcellular location, 495 to 2 locations, 28 to 3 locations, and 4 to 4 
locations. 
 
 
Gene ontology 
 
Gene ontology, which is a controlled vocabulary, is used to describe 
the biology of a gene product in any organism. The gene ontology 
annotation is an effective protein descriptor and has been applied to 
a wide variety of biological sequence analyses (Rastogi and Rost, 
2010). Moreover, most eukaryotic protein sequences in the 
UniProtKB/Swiss-Prot database have annotated GO terms. For 
example, the percentage of the 2423 proteins that were not 
annotated by GO terms was only 3.96% (Huang et al., 2009). 
Although, gene ontology annotation has been used for prediction of 
subnuclear localisation in many papers (Huang et al., 2009; Lei and 
Dai, 2006).  

Gene ontology, which can effectively grasp the core features of 
proteins closely related to the subcellular localisation, is an effective 
and useful descriptor of eukaryotic proteins. Therefore, in this 
paper, the classifier is applied to proteins that have corresponding 
GO terms. While a small number of proteins without annotated GO 
terms can be predicted based on the existing sequenced-based 
prediction methods (Li and Li, 2008), we used the gene ontology 
annotations to improve the prediction quality for protein subcellular 
localisation. By mapping the 5618 eukaryotic protein entries to the 
GO database at 
ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/UNIPROT/ (released on 
March 15, 2010), one can obtain a list in which each eukaryotic 
protein entry corresponds to one or more GO numbers. For 
example, the eukaryotic protein entry “Q80UF4” corresponds to four 
GO numbers, that is, GO: 0005737, GO: 0005813, GO: 0005815 
and GO: 0005856, while the eukaryotic protein entry “P40152” 
corresponds to three GO numbers, that is, GO: 0000324, GO: 
0005773 and GO: 0016787. Another eukaryotic protein entry 
“Q5VT06” corresponds to five GO numbers, that is, GO: 0005634, 
GO: 0005737, GO: 0005815, GO: 0005819 and GO: 0005856. It is 
obvious that the total number of GO terms for the three eukaryotic 
protein entries described above is nine, that is, GO: 0005737, GO: 
0005813, GO: 0005815, GO: 0005856, GO: 0000324, GO: 
0005773, GO: 0016787, GO: 0005634 and GO: 0005819. Thus, we 
obtained the GO terms that are annotated for each eukaryotic 
protein from the GO database.  

The total number of GO terms that appeared for the 5618 
eukaryotic proteins was 7166. The simplest approach was to use a 
binary feature component for a protein, in which a value of 1 is used 
if the corresponding GO number appears or 0 if it does not appear. 
For example, the eukaryotic protein entry “Q80UF4” corresponds to 
four GO numbers, that is, GO: 0005737, GO: 0005813, GO: 
0005815 and GO: 0005856, so the four corresponding components 
for the protein were assigned a value of 1 and the other 7162 with a 
value of 0. Thus, the GO terms annotated for each protein were 
transformed into a 7166-dimension input vector, in which the value 
of each element is 0 or 1. In other words, the input vectors for the 
5618 eukaryotic proteins had equal lengths, and each protein entry 
corresponded to a 7166-dimension input vector. However, most of 
the features in the 7166-dimension input vectors remained null. 
Therefore, the key was to find an effective approach to incorporate 
the GO information into the prediction algorithm. 
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Figure 1.���� Schematic illustration of a eukaryotic cell containing the 22 
subcellular locations. (1) acrosome, (2) cell wall, (3) centriole, (4) 
chloroplast, (5) cyanelle, (6) cytoplasm, (7) cytoskeleton, (8) endoplasmic 
reticulum, (9) endosome, (10) extracellular, (11) Golgi apparatus, (12) 
hydrogenosome, (13) lysosome, (14) melanosome, (15) microsome, (16) 
mitochondria, (17) nucleus, (18) peroxisome, (19) plasma membrane, (20) 
synapse, (21) spindle pole body, and (22) vacuole. Note that this model cell 
is not a specific eukaryotic cell. For example, "Chloroplast" proteins would 
not be included in the repertoire for animal proteins. 

 
 
 

This was realised using the KNN-SVM ensemble classifier, in 
which the length of final input feature vector could be optimised. In 
this work, the multi-classification problem was solved by utilising a 
series of binary classifiers from KNN or SVM. Thus, the length of 
the final input feature vectors in every binary classifier was 
determined by the total number of GO terms that appeared for all of 
the proteins in the two categories. Let us assume that the numbers 
of proteins in two subsets (subcellular locations) are two and three 
respectively, and that the initial length of each input vector is nine. 
The two input vectors in subset 1 are   and, while the three in 
subset 2 are }0,0,0,1,1,1,0,0,0{ , }0,0,0,0,1,1,0,0,0{  and 

}0,0,0,1,0,1,0,0,0{ . All five input vectors in the two subsets contain 
zero elements in the last three units, which remain null and lead to 
noise in the classifying protein entities into the two subsets. 
Therefore, the length of the final input vectors in the corresponding 
binary classifier is 6 = 9 − 3. 
 
 
The KNN-SVM ensemble classifier 
 
The key to the formulation of a powerful algorithm for predicting 
eukaryotic protein subcellular localisation is the selection of 
algorithms. A few parameters, such as the   parameter of the kernel 
function in the SVM algorithm (Hua and Sun, 2001) and the 
parameter in the KNN algorithm (Wang and Yang, 2010), should be 
further optimised. Here, five-fold cross validation has been used to 
select   algorithms   and  parameters  for  the  limited  computational  

power. In this technique, the dataset was divided randomly into five 
sets that consisted of nearly equally sized subsets. Subset 1, 2, 3, 
4, and 5 contained 1124, 1124, 1124, 1124, and 1122 different 
proteins respectively. Subset 1 was firstly selected for testing, and 
the remaining four sets were used for training; then Subset 2 for 
testing, and the remaining four sets for training; and so Subset 3, 4, 
and 5.  

This means that the data were further portioned into training and 
test datasets in five different ways. The training and testing was 
performed five times at a particular value of   in the kernel function 
in the SVM algorithm and   in the KNN algorithm. Each set was in 
turn selected for testing, and all rule parameters were calculated 
based on the remaining four sets. The overall performance was 
then obtained by averaging the performances of the five test sets. It 
is instructive to note that during the five-fold cross validation, each 
of the 5618 different proteins was selected only once for testing, 
although it may exist in or shift among two or more different sub 
cellular locations and correspond to several locative proteins. This 
means that the proteins used for training and those used for final 
evaluation could not overlap.  

The prediction of eukaryotic protein subcellular localisation is a 
multi-classification problem. This problem can be solved by utilising 
a series of binary classifiers of KNN or SVM. In this work, we 
adopted the ‘one-versus-one’ method to transform this multi-
classification problem into a two-class problem because it avoids 
the so-called ‘false positive’ problem in the ‘one-versus-rest’ method 
(Park and Kanehisa, 2003). For a k-class problem,   classifiers were 
constructed by the ‘one-versus-one’ method: 
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The nth (Equation 1) classifier was trained by considering all 
proteins in the ith class as positive samples and all proteins in the 
jth class as negative samples. Here, 

( ) kijkikkn ,...,1;1,...,1;2/1,...,2,1 +=−=−×= . For 
the 22 subcellular locations in this paper, there were 231 
(22×21/2=231) binary classifiers that needed to be constructed. To 
obtain a high overall prediction accuracy, the following scheme was 
utilised. For each binary classifier, the dataset was tested with the 

KNN and SVM methods. Different values for parameter k  in the 
KNN method and the three common kernel (linear, polynomial and 
RBF) functions of SVM were chosen to test the dataset. It is 
instructive to note that the length of the final input feature vectors in 
every binary classifier is not related to the method that was finally 
chosen for the binary classifier. As described above, the length was 
determined only by the total number of GO terms that appeared for 
all proteins in the two categories. For example, the number of GO 
terms that appeared for all proteins in the two subsets ’acrosome’ 
and ‘cell wall’ was 215, so the length of the input vectors in the 
corresponding binary classifier was 215. Then, the binary classifier 
was trained with the KNN and SVM methods. For the same binary 
classifier, we compared the results predicted from different 
methods, which were trained on the same length of input vectors. 
The best method, from which the highest prediction accuracy was 
obtained by five-fold cross validation, was chosen for each binary 
classifier.  

The accuracy of binary classifier n  can be represented by 
Equation (5). The process of the KNN-SVM ensemble classifier is 
described as follows. Suppose that the predicted classification 
results for the query protein P for the 231 binary classifiers 

are 23121 ,...,, RRR , respectively; that is:  

 

},...,,{},...,,{ 222123121 SSSRRR ∈
                                      (2) 

 

where 2221 ,...,, SSS  represent the 22 subcellular locations. The 
voting score for the protein “P” belonging to class a  is defined as  
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where the δ  function in Equation (3) is given by 
 

( )
��

�
�
�

∉

∈
=

ap

ap

ap SR

SR
SR

,0

,1
,δ

                                                      (4) 
 
Subsequently, the query protein “P” will be assigned to the class 
that gives the highest score for Equation (3) of the 231 binary 
classifiers. Let us assume that there are four subsets and 

( ) 2/1446 −×=  classifiers are constructed. The predicted 
classification results for a query protein P with the six binary 
classifiers are 
R1={1,0,0,0,},R2={0,0,1,0},R3={0,0,0,1},R4={0,0,1,0},R5={0,1,0,0},R6

={0,0,0,1}, respectively; that is, classifiers 1, 2, 3, 4, 5 and 6  assign  

 
 
 
 
protein P to subsets 1, 3, 4, 3, 2 and 4, respectively. 

Accordingly, the voting scores for protein P are 

2,2,1,1 4321 ==== GGGG . Therefore, protein P will be 

assigned to classes 3 and 4, which both give the highest score of 

243 == GG . In other words, according to the KNN-SVM 

ensemble classifier, it is a multiple-site protein and is predicted as 
belonging to both subsets 3 and 4. The KNN-SVM ensemble 
classifier was developed by fusing 231 binary classifiers through a 
voting system as described above. The ‘engine’ of each binary 
classifier was operated by the SVM or KNN rule, depending on 
which produced a higher accuracy rate. The software used to 
implement KNN and SVM was MATLAB R2009a, which can be 
downloaded from http://www.mathworks.com/ for academic 
purposes. Figure 2 shows the flow chart for application of KNN and 
SVM algorithms in MATLAB R2009a software.  
 
 
Assessment of prediction performances 
 
To measure the quality of the eukaryotic protein subcellular 
localisation prediction, it is convenient to introduce accuracy, overall 
accuracy and Matthew’s Correlation Coefficient (MCC) (Restrepo-
Montoya et al., 2009), which can be represented as  
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where N  is the total number of locative proteins, k  is the class 

number, )(im  and )( jm  are the numbers of the locative proteins 

in class i  and class j , )(ipn  and )( jpn  are the numbers of 

the correctly predicted locative proteins of class i  and class j  by 

binary classifier n . aTP , aFP , aTN , and aFN  are the number 

of true positives, false positives, true negatives, and false negatives 
in class a  by the KNN-SVM ensemble classifier respectively.  
 
 
RESULTS 
 
Selection of kernel functions and parameters 
 
We chose the three common kernel functions (RBF, 
linear and polynomial) of SVM to test the dataset. For the 
dataset used here, SVM with the linear and polynomial 
kernels was unable to unravel the overall protein 
localisation problem because the maximum numbers of 
iterations were exceeded. Thus, the RBF kernel function 
was selected to test the dataset. Figure 3 shows the 
prediction accuracies for 5618 eukaryotic proteins with 
different values of γ  in the RBF kernel function by five-
fold cross validation. Because preliminary  tests  with  this  
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Figure 2.  Flow chart for application of KNN and SVM algorithms. 

 
 
 

 
 
Figure 3.���� Prediction accuracies for 5618 eukaryotic proteins with 

different values for γ  in the RBF kernel function and k  in the KNN 
method by five-fold cross validation. For the dataset, this method was 
unable to solve the optimisation problem with the RBF kernel 
( 50=γ ) and KNN method ( 14=k ). 

 
 
 
dataset indicated that higher accuracies were obtained 
when γ  in the SVM method (with the RBF kernel) and k  

in the KNN method were certain values, we optimised the 
sets   as   }{ 65,64,63,62,61,60,59,58,57,56,55∈γ   and  
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}{ 8,7,6,5,4,3∈k  (Figure 3). 
 
 
Selection of prediction methods 
 
Various approaches have been proposed for predicting 
protein subcellular localisation (Ma and Gu, 2010; Qiu et 
al., 2010; Shen and Chou, 2010; Wang and Yang, 2010). 
However, the existing predictors were established mostly 
based on a single theory, such as the neural network, 
KNN, SVM and Markov chain models. Obviously, the 
prediction performances of these predictors would be not 
desirable. Thus, we constructed the KNN-SVM ensemble 
classifier, which is based on two theories: the KNN and 
SVM algorithms. For the 22 subcellular locations in this 
work, the one-versus-one method was used. Thus, a total 
of 231 binary classifiers were constructed.  

Although 5618 eukaryotic proteins in the dataset S  
corresponded to 7166 GO terms, the length of final input 
feature vector could be optimised. Only the GO terms 
that appeared for any of the proteins in the two 
categories were selected by the corresponding binary 
classifier.  Either KNN or SVM, depending on which 
produced a higher accuracy rate, was then used to 
predict a classifier of the 231 binary classifiers. For 
example, the 82nd binary classifier was constructed 
using the SVM method with the RBF kernel ( 75=γ ) 
because the best accuracy of Equation (5) was obtained 
with the current method with the five-fold cross validation 
test, while the 99th binary classifier was constructed with 
the KNN method ( 4=k ) for the same reason.  
 
 
Comparison with other methods 
 
The prediction performance of the KNN-SVM ensemble 
classifier presented in this study was compared with that 
of other prediction methods. The dataset utilised here 
was also tested by Euk-mPloc (Chou and Shen, 2007). 
The current method was compared with the Euk-mPloc, 
KNN binary classifiers and SVM binary classifiers, and 
the results are listed in Table 1.  

In statistical prediction, there are four methods that are 
often used for validation: the independent dataset test, 
the subsampling test, the jackknife test, and the 
resubstitution test (Chou and Shen, 2006). Of these, the 
jackknife test has been deemed the most rigorous and 
objective (Kandaswamy et al., 2010) and has been used 
increasingly by investigators for assessing the prediction 
performances of various methods (Cai et al., 2010; 
Kandaswamy et al., 2010; Qiu et al., 2010). In the 
jackknife test, each protein in the dataset was omitted as 
a query protein, and all of the rule parameters were 
obtained based on the remaining proteins. In this work, 
each of the 5618 different eukaryotic proteins was 
omitted   only   once  for  jackknife  testing,  although  that  

 
 
 
 
protein may correspond to more than one locative 
protein. The resubstitution test is another important 
method which reflects the self-consistency of a 
classification method. In the resubstitution test, same 
proteins were used to construct the model and to test 
themselves. Although this test could give the higher 
accuracy, it represents the self-consistency of the 
identification method. For the ensemble classifier that we 
proposed, several results for the same dataset were 
compared, and the accuracies and the MCCs are also 
given in Table 1. 

As shown in Table 1, the overall accuracy obtained by 
the current method with the jackknife test was 70.5%, 
which was nearly 10% higher than that of SVM (RBF 
kernel with) and 3.1% higher than that of Euk-mPloc. As 
compared with the SVM method, the accuracy of each 
subcellular location was improved significantly (except 
the cytoskeleton and nucleus). For Class 5, the predictive 
accuracy was even improved to 91.8%. In addition, the 
resubstitution test was performed with the KNN-SVM 
ensemble classifier on the dataset. The overall accuracy 
was improved to 77.6%. The accuracies and the MCCs 
were also improved. We could not compare our results 
with Euk-mPloc in detail because the previous study 
(Chou and Shen, 2007) did not show the accuracy of 
each subcellular location; however, the overall accuracy 
that we obtained was still higher than that of Euk-mPloc.  

Table 2 shows a comparison of KNN-SVM ensemble 
classifier with other methods. Although the overall 
accuracies achieved by the KNN-SVM ensemble 
classifier were lower than those by OWFKNN (Nasibov 
and Kandemir-Cavas, 2008), PSP-WNN (Zou et al., 
2007), and AdaBoost (Niu et al., 2008). It should be 
pointed out that the datasets used in OWFKNN, PSP-
WNN, and AdaBoost all came from the Reinhardt and 
Hubbard database (Reinhardt and Hubbard, 1998), which 
indeed was 12 years old. Furthermore it contained 
homologous proteins with up to 90% sequence identity 
and covered only 4 subcellular location sites. The other 
dataset used in PSP-WNN was 7 years old and 
contained homologous proteins with up to 80% sequence 
identity. It covered only 12 subcellular location sites. 
These methods only covered a limited number of location 
sites and will fail to work if a query protein is outside their 
coverage. In contrast to these, none of proteins in the 
dataset    has � 25% sequence identity to any other in a 
same subcellular location. Although the dataset    is 2 
years old, it covers 22 location sites and is a classical 
dataset cited by many related articles (Blum et al., 2009; 
Briesemeister et al., 2010; He and De Buck, 2010; He et 
al., 2010; Huang et al., 2008; Sharpe et al., 2010; Zhou et 
al., 2008). We have also compared our method with Euk-
mPLoc and Euk-mPLoc 2.0 (Chou and Shen, 2010) 
recently proposed by Chou. Although the KNN-SVM 
ensemble classifier and Euk-mPLoc were tested by the 
same dataset and the dataset used in Euk-mPLoc 2.0 
contained more protein sequences, the  overall  accuracy 
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Table 1.���� Comparison of prediction performance for different methods on the dataset S . 
��

Order Subcellular location Number of 
samples 

Euk-mPloc  SVM (RBF kernel with 55=γ )  KNN-SVM ensemble classifier 

Jackknife  Jackknife  Jackknife Resubstitution 
Accuracy (%) MCC  Accuracy (%) MCC  Accuracy (%) MCC Accuracy (%) MCC 

1 Acrosome 17 - -  0 -  41.2 0.641 76.5 0.874 
2 Cell wall 53 - -  11.3 0.335  67.9 0.711 88.7 0.903 
3 Centriole 64 - -  15.6 0.393  62.5 0.690 81.3 0.786 
4 Chloroplast 501 - -  89.2 0.857  97.4 0.879 99.0 0.918 
5 Cyanelle 85 - -  0 -  91.8 0.957 91.8 0.957 
6 Cytoplasm 1060 - -  77.3 0.517  88.2 0.640 91.8 0.729 
7 Cytoskeleton 74 - -  27.0 0.517  24.3 0.491 41.9 0.645 
8 Endoplasmic reticulum 364 - -  41.8 0.564  79.7 0.776 86.8 0.839 
9 Endosome 89 - -  31.5 0.558  62.9 0.770 67.4 0.812 
10 Golgi apparatus 254 - -  32.7 0.529  74.0 0.802 79.5 0.828 
11 Hydrogenosome 13 - -  0 -  38.5 0.620 69.2 0.692 
12 Lysosome 80 - -  8.8 0.294  65.0 0.662 72.5 0.772 
13 Melanosome 13 - -  0 -  53.9 0.733 84.6 0.880 
14 Microsome 31 - -  9.7 0.310  19.4 0.380 41.9 0.647 
15 Mitochondria 535 - -  68.8 0.777  85.1 0.872 87.5 0.910 
16 Nucleus 1333 - -  93.0 0.759  84.6 0.824 85.7 0.862 
17 Peroxisome 97 - -  5.2 0.225  37.1 0.589 74.2 0.860 
18 Plasma membrane 725 - -  77.8 0.637  81.4 0.766 84.4 0.817 
19 Extracell 640 - -  80.8 0.789  83.3 0.864 85.9 0.894 
20 Spindle pole body 36 - -  44.4 0.666  50.0 0.669 75.0 0.850 
21 Synapse 15 - -  13.3 0.365  66.7 0.816 66.7 0.816 
22 Vacuole 102 - -  6.9 0.260  42.2 0.610 82.4 0.865 

Overall  accuracy - 67.4 -  61.9 -  70.5 - 77.6 - 
  
 
 
that we obtained was still higher than that of Euk-
mPloc and Euk-mPLoc 2.0.  

All of the results indicated that the KNN-SVM 
ensemble classifier might be better than SVM and 
Euk-mPloc for the prediction of eukaryotic protein 
subcellular localisation. Table 3 shows the results 
predicted by the KNN-SVM ensemble classifier for 
the   proteins   that   we   investigated  in  previous 

studies (Zhang et al., 2010; Zhang et al., 2009) 
and the annotations for the corresponding GO 
numbers in the GO database.  
 
 
Dealing with multiple locations  
 
Most of the existing methods for predicting protein 

subcellular localisation are limited to a single 
location. It is instructive to note that the KNN-SVM 
ensemble classifier proposed here can be used 
effectively to deal with multiple locations as well. 
For multiple locations, the predicted result for 
query protein P may belong to one or more 
subcellular locations. In this work, it would be 
assigned to the class set A  formed by:  
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Table 2. Comparisons with other methods. 
 

Method Input form Number of subcellular locations Test method Overall accuracy (%) 

OWFKNN amino acidcomposition 4 Jackknife 86.2 

PSP-WNN Position-specific profiles 4 Jackknife 88.4 
PSP-WNN Position-specific profiles 12 five-fold cross validation 83.3 

AdaBoost amino acid composition 4 Jackknife 80.8 

AdaBoost amino acid composition 4 resubstitution test 100 

Euk-mPLoc gene ontology information 22 Jackknife 67.4 

Euk-mPLoc 2.0 pseudo amino acid composition 22 Jackknife 64.2 

KNN-SVM ensemble classifier gene ontology information 22 Jackknife 70.5 

KNN-SVM ensemble classifier gene ontology information 22 Resubstitution 77.6 
 
 
 

Table 3.���� Examples to show the predicted results by KNN-SVM ensemble classifier. 
 

Accession number Entry name 
Swiss-Prot 
annotation 

GO number GO annotation Identified location by KNN-
SVM ensemble classifier 

P55288 Cadherin11_mouse 
Plasma 
membrane 

0016021 integral to membrane 

Plasma membrane 
0005509 calcium ion binding 
0005515 protein binding 
0007156 homophilic cell adhesion 

      

P02751 Fibronectin_human Extracell 

0005793 ER-Golgi intermediate compartment 

Extracell 

0005577 fibrinogen complex 
0031093 platelet alpha granule lumen 
0005578 proteinaceous extracellularmatrix 
0005518 collagen binding 
0005201 extracellular matrix structural constituent 
0008201 heparin binding 
0006953 acute-phase response 
0016477 cell migration 
0018149 peptide cross-linking 
0008360 regulation of cell shape 
0034446 substrate adhesion-dependent cell spreading 

 
 



 
 
 
 

}{ aSA =                                                                       (8) 
 
in which every aS  gives the highest score of Equaton (3) 
for the 231 binary classifiers. The number of elements in 
the set A  may be one or more, meaning that the query 
protein P will be assigned to one or more subcellular 
locations. For example, the real subcellular locations to 
which the protein entry “P13395” belongs are 

}{ 18107 ,, SSS , and the predicted subcellular locations for 
“P13395” by the KNN-SVM ensemble classifier are 

}{ 1076 ,, SSS , in which 1076 ,, SSS  give the highest score 

( 201076 === GGG ) for Equation (3). While the real 
subcellular location to which the protein entry “P31412” 
belongs is 22S , the predicted subcellular location is also 

22S  because only 22S  gives the highest score 

( 2122 =G ) for Equation (3).  

 
 
DISCUSSION AND CONCLUSION 
 
KNN and SVM are powerful statistical learning methods. 
Gene ontology, which effectively grasps the core features 
closely related to the subcellular localisation, is an 
effective and useful descriptor of eukaryotic proteins. In 
this work, an ensemble classifier was proposed for the 
prediction of eukaryotic protein subcellular localisation by 
coupling two powerful algorithms with the information 
derived from gene ontology. We also compared our 
method with other methods. Euk-mPloc and Euk-mPLoc 
2.0 were formed by fusing KNN classifiers only. If newly 
found proteins cannot be classified accurately using the 
KNN classifier, both Euk-mPloc and Euk-mPLoc 2.0 will 
fail and we could use the SVM classifier, which is another 
powerful one.  

In addition, the length of the final input feature vectors 
in every binary classifier was determined by the total 
number of GO terms that appeared for all of the proteins 
in the two categories. In other words, although 5618 
eukaryotic proteins in the dataset S  corresponded to 
7166 GO terms, the GO terms that did not appear for all 
of the proteins in the two categories remained null and 
were not selected by the corresponding binary classifier. 
Although the length of final input feature vector was 
optimised in the KNN-SVM ensemble classifier, filtering 
approach like information gain could be tried to select top 
features in the future. These features can be biologically 
correlated with subcellular localisation and the KNN-SVM 
ensemble classifier will become even more powerful.  

In comparison with previous predictors, significant 
improvement in prediction quality was achieved. In 
addition, according to biological experiments, more 
proteins will  be  found  in  multiple  subcellular  locations.  

Li et al. 23 
 
 
 
The prediction of eukaryotic protein subcellular 
localisation by considering multiple location sites has 
been discussed recently (Chou and Shen, 2008). In this 
work, 231 binary classifiers were constructed. However, it 
should be pointed out that the numbers of proteins in 
‘acrosome’, ‘melanosome’, and ‘synapse’ locations were 
not sufficiently large to train the classifiers in a more 
effective way. The corresponding classifiers might be 
biased. It is expected that the situation will be improved 
with more protein entries available for the three locations 
in the future. In this work, the KNN-SVM ensemble 
classifier and assessment of predictive performances for 
multiple-site proteins have been introduced, and the 
results indicated that the KNN-SVM ensemble classifier is 
a powerful tool for the prediction of eukaryotic protein 
subcellular localisation, especially for proteins with 
multiple locations.  
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