Full Length Research Paper
References
Adenowoa AF, Oyinloye BE, Ogunyinka BI, Kappo AP (2015). Impact of human schistosomiasis in sub-Saharan Africa. Braz. J. Infect. Dis. 19(2):196-205. |
|
Brusic V, Petrovsky N, Zhang G, Bajic VB (2002). Prediction of promiscuous peptides that bind HLA Class I molecules, Immunol. Cell Biol, 80:280-285. |
|
Brusic V, Rudy G, Harrison LC (1995). Prediction of MHC Binding Peptides Using Artificial Neural Networks. Complex. Int. 231:1-9. |
|
Buchan DWA, Minneci F, Nugent TCO, Bryson K, Jones DT (2013). Scalable web services for the PSIPRED Protein Analysis Workbench Nucleic Acids Res. 41(W1): W340-W348. |
|
Carina SP, Vicente PM, Natan RGA, Bárbara CPF, Suellen BM, Vasco A, Sergio CO. (2011). Computational Vaccinology: An Important Strategy to Discover New Potential S. mansoni Vaccine Candidates. J. Biomed. Biotechnol. 9p. |
|
Fonseca CT, Carvalho GBF, Alves CC, de Melo TT (2012). Schistosoma Tegument Proteins in Vaccine and Diagnosis Development: An Update. J. Parasitol. Res. Article ID 541268, pp. 8, |
|
Guo HC, Madden DR, Silver ML, Jardetzky TS, Gorga JC, Strominger JL, Wiley DC (1993). Comparison of the P2, Specificity Pocket in Three Human Histocompatibility Antigen HLA- A* 6801, HLA- A* 0201 and HLA-B *2705. Proc. Natl. Acad. Sci. USA 90:8053-8057. |
|
Jones DT (1999). Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292:195-202. |
|
Namrata M, Priyanka C, Ankita M, Kavita S (2010). Structural simulation of MHC-peptide interactions using T-cell Epitope in Iron-acquisition protein of N. meningitides for vaccine design. J. Protein Proteom. pp. 53-63. |
|
Nugent T, Jones DT (2009). Transmembrane protein topology prediction using support vector machines. BMC Bioinform. 10(1):159. |
|
Onile OS, Otarigho B, Anumudu CI (2014).Understanding the Phylogenetics and Evolution of Genus Schistosoma- Africa and Asia Stand Point. Ann. Res. Rev. Biol. 4(10):1703-1712. |
|
Parida R, Shaila MS, Mukherjee S, Chandra NR, Nayak R (2007). Computational analysis of proteome of H5N1 avaian influenza virus to define T cell epitopes with vaccine potential. Vaccine 25:7530-7539. |
|
Parker KC, Bednarek MA, Coligan JE (1994). Scheme for ranking potential HLA A2binding peptides based on independent binding of individual peptides side-chains. J. Immunol. 152:163 |
|
Petersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferri TE (2004). UCSF Chimera: A Visualization System. J. Comput. Chem. 25:1605-1612. |
|
Petersen TN, Søren B, Gunnar von H, Henrik N (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 8:785-786. |
|
Rammensee HG, Bachmann J, Emmerich NN, Bachor OA and Stevanovic S. SYFPEITHI: Database for MHC ligands and peptide motifs. Immunogenet. 50:213-219. |
|
Reynolds SR, Shoemaker CB, Harn DA (1992). T and B cell epitope mapping of SM23, an integral membrane protein of Schistosoma mansoni. J. Immunol. 149:3995-4001. |
|
Saffari B, Mohabatkar H, Mohsenzadeh S (2008). T and B cell epitopes prediction of Iranian Saffron (Crocus sativus) Profiling by Bioinformatics Tools. Protein Peptide Lett. 15:280-285. |
|
Shah K, Chaubey P, Mishra N (2010). Bioinformatics approach for screening and modelling putative T cell epitopes from Por B protein of Neisseria meningitides as vaccine constructs. Indian J. Biotechnol. 9:351-359. |
Copyright © 2025 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0