Full Length Research Paper
References
Adams J, Chen ZP, Van Denderen BJ, Morton CJ, Parker MW, Witters LA, Stapleton D, Kemp BE (2004). Intrasteric control of AMPK via the γ1 subunit AMP allosteric regulatory site. J. Environ. Prot. Sci. 13:155-165. Crossref |
||||
Ausubel FM, Albright LM (1995). Molecular Techniques and Gene Cloning. In: Ausubel FM, Brent R, Kingston RE, Moore D, Seidman JG, Smith JA, Struhl K (Eds.), Current Protocols in Molecular Biology. John Wiley New York, USA. pp. 337–525. | ||||
Bergeron R, Ren JM, Cadman KS, Moore IK, Perret P, Pypaert M, Young LH, Semenkovich CF, Shulman GI (2001). Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am. J. Physiol. Endocrinol. Metab. 281: E1340–E1346. Pubmed |
||||
Black BL, Olson EN (1998). Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Ann. Rev. Cell. Dev. Biol. 14: 167–196. Crossref |
||||
Bokko BP Said F, Bandala E, Ahmed A, Annesely SJ, Huang X, Khurana T, Kimmel AR, Fisher PR (2007). Diverse cytopathologies in mitochondrial disease are caused by AMPK. J. Mol. Cell Biol. 18: 1874 –1886. Crossref |
||||
Carling D (2004). The AMP-activated protein kinase cascade--a unifying system for energy control. Trends Biochem. Sci. 29: 18–24. Crossref |
||||
Carling D, Aguan K, Woods A, Verhoeven AJM, Beri RK, Brennan CH, Sidebottom C, Davison MD, Scott J (1994). Mammalian AMP-activated protein kinase is homologous to yeast and plant protein kinases involved in the regulation of carbon metabolism. J. Biol. Chem. 269: 11442–11448. Pubmed |
||||
Carlson M (1999). Glucose repression in yeast. Curr. Opin. Microbiol. 2: 202–207. Crossref |
||||
Chan DC (2006). "Mitochondria: Dynamic Organelles in Disease, Aging, and Development". Cell 125(7):1241–1252. Crossref |
||||
Clayton DA (1992). Transcription and replication of animal mitochondrial DNAs. Int. Rev. Cytol. 141:217–232. Crossref |
||||
Corton JM, Gillepsie JG, Hawley SA, Hardie DG (1995). 5'-Aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur. J. Biochem. 229:558–565. Crossref |
||||
Crute BE, Seefeld K, Gamble J, Kemp BE, Witters LA (1998). Functional domains of the α1 catalytic subunit of the AMP-activated protein kinase. J. Biol. Chem. 273:35347–35354. Crossref |
||||
Czubryt MP, McAnally J, Fishman GI, Olson EN (2003). Regulation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1 α) and mitochondrial function by MEF2 and HDAC5. Proc. Natl. Acad. Sci. 100:1711–1716. Crossref |
||||
Fey P, Compton K, Cox E (1995). Green fluorescent protein production in the cellular slime molds Polysphondylium pallidum and Dictyostelium. Gene 165:127–130. Crossref |
||||
Goffart S, von Kleist-Retzow JC, Wiesner RJ (2004). Regulation of mitochondrial proliferation in the heart: power-plant failure contributes to cardiac failure in hypertrophy. Cardiovasc. Res. 64: 198–207. Crossref |
||||
Grozinger CM, Schreiber SL (2000). Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3- 3-dependent cellular localization. Proc. Natl. Acad. Sci. 97:7835–7840. Crossref |
||||
Gulick T, Cresci S, Caira T, Moore DD, Kelly DP (1994). The peroxisome proliferator activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc. Natl. Acad. Sci. 91:11012-11016. Crossref |
||||
Hardie DG, Hawley SA (2001). "AMP-activated protein kinase: the energy charge hypothesis revisited". Bioessays 23:1112–1119. Crossref |
||||
Hawley SA, Selbert MA, Goldstein EG, Edelman AM, Carling D, Hardie DG (1995). 5'-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J. Biol. Chem. 270:27186–27191. Crossref |
||||
Hayashi T, Hirshman MF, Fujii N, Habinowski SA, Witters LA, Goodyear LJ (2000). Metabolic stress and altered glucose transport: activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes 49:527–531. Crossref |
||||
Hermann GJ, Thatcher JW, Mills JP, Hales KG, Fuller MT, Nunnari J, Shaw JM (1998). "Mitochondrial Fusion in Yeast Requires the Transmembrane GTPase Fzo1p". J. Cell. Biol. 143(2):359–373. Crossref |
||||
Hermann JM, Neupert W (2000). "Protein transport into mitochondria". Curr. Opin. Microbiol. 3(2):210–214. Crossref |
||||
Hinas A, Söderbom F (2007). Treasure hunt in an amoeba: non-coding RNAs in Dictyostelium discoideum. Curr. Genet. 51:141–159. Crossref |
||||
Ihlemann J, Ploug T, Hellsten Y, Galbo H (1999). Effect of tension on contraction-induced glucose transport in rat skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 277:E208–E214. | ||||
Jones AWE, Yao Z, Vicencio JM, Karkucinska-Wieckowska A, Szabadkai G (2012). PGC-1 family coactivators and cell fate: Roles in cancer, neurodegeneration, cardiovascular disease and retrograde mitochondria–nucleus signalling. Mitochondrion 12:86–99. Crossref |
||||
Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP (2000). Peroxisome proliferator–activated receptor g coactivator-1 promotes cardiac mitochondrial biogenesis. J. Clin. Investig. 106(7):847 – 856. Crossref |
||||
Lehman JJ, Kelly DP (2002). Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Clin. Exp. Pharmacol. Physiol. 29: 339-345. Crossref |
||||
Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel- Duby R, Spiegelman BM (2002). Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418:797–801. Crossref |
||||
Liu Y, Wan Q, Guan Q, Gao L, Zhao J (2006). High-fat diet feeding impairs both the expression and activity of AMPK α in rats' skeletal muscle. Biochem. Biophys. Res. Commun. 339:701-707. Crossref |
||||
McKinsey TA, Zhang CL, Olson EN (2001). Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol. Cell Biol. 21:6312–6321. Crossref |
||||
Michael LF, Wu Z, Cheatham RB, Puigserver P, Adelmant G, Lehman JJ, Kelly DP, Spiegelman BM (2001). Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc. Natl. Acad. Sci. 98:3820-3825. Crossref |
||||
Nellen W, Silan C, Firtel RA (1984). DNA-mediated transformation in Dictyostelium discoideum: Regulated expression of an actin gene fusion. Mol. Cell Biol. 4:2890–2898. Pubmed |
||||
Nisoli E, Clement E, Paolucci C, Cozzi V, Tonello C, Sciorati C, Bracale R, Valerio A, Francolini M, Moncad AS, Carruba MO (2003). Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299:896–899. Crossref |
||||
Pan DA, Hardie DG (2002). A homologue of AMP-activated protein kinase in Drosophila melanogaster is sensitive to AMP and is activated by ATP depletion. Biochem. J. 367:179–186. Crossref |
||||
Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998). A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839. Crossref |
||||
Reznick RM, Shulman GI (2006). The role of AMP-activated protein kinase in mitochondrial biogenesis. J. Physiol. 574(1):33–39. Crossref |
||||
Salt IP, Celler JW, Hawley SA, Prescott A, Woods A, Carling D, Hardie DG (1998). AMP-activated protein kinase - greater AMP dependence, and preferential nuclear localization, of complexes containing the α2 isoform. Biochem. J. 334:177–187. Pubmed |
||||
Scarpulla RC, Vega RB, Kelly DP (2012). Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol. Metab. 23(9):459–466. Crossref |
||||
Scott JW, Hawley SA, Green KA, Anis M, Stewart G, Scullion GA, Norman DG, Hardie DG (2004). CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J. Clin. Invest. 113:274–284. Crossref |
||||
Stein SC, Woods A, Jones NA, Davison MD, Carling D (2000). The regulation of AMP-activated protein kinase by phosphorylation. Biochem. J. 345:437–443. Crossref |
||||
Sung S, Bisson S, Koehler S, Podgorski GJ (1999). The Dictyostelium Snf1/AMP- activated kinase. Unpublished. EMBL/GenBank ID AF118151. | ||||
Suzuki A, Okamot, S, Lee S, Saito K, Shiuchi T, Minokoshi Y (2007). Leptin stimulates fatty acid oxidation and peroxisome proliferator-activated receptor alpha gene expression in mouse C2C12 myoblasts by changing the subcellular localization of the α2 form of AMP-activated protein kinase. J. Mol Cell Biol. 27:4317–4327. Crossref |
||||
Thornton C, Snowden MA, Carling D (1998). Identification of a novel AMP-activated protein kinase β subunit isoform which is highly expressed in the skeletal muscle. J. Biol. Chem. 273:12443–12450. Crossref |
||||
Vega RB, Huss JM, Kelly DP (2000). The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol. Cell Biol. 20:1868–1876. Crossref |
||||
Ventura-Clapier R, Garnier A, Veksler V (2008). Transcriptional control of mitochondrial biogenesis: the central role of PGC-1α. Cardiovasc. Res. 79:208-217. Crossref |
||||
Wakerhage H, Woods NM (2002). Exercise-induced signal transduction and gene regulation in skeletal muscle. J. Sports Sci. Med. 1:103–114. | ||||
Watts DJ, Ashworth JM (1970). Growth of myxameobae of the cellular slime mould Dictyostelium discoideum in axenic culture. Biochem. J. 119:171–174. Pubmed |
||||
Weekes J, Hawley SA, Corton J, Shugar D, Hardie DG (1994). Activation of rat liver AMP-activated protein kinase by kinase kinase in a purified, reconstituted system. Effects of AMP and AMP analogues. Eur. J. Biochem. 219:751–757. Crossref |
||||
Williams RS, Salmons S, Newsholme EA, Kaufman RE, Mellor J (1986). Regulation of nuclear and mitochondrial gene expression by contractile activity in skeletal muscle. J. Biol. Chem. 261:376-380. Pubmed |
||||
Wilson WA, Hawley SA, Hardie DG (1996). The mechanism of glucose repression/derepression in yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr. Biol. 6:1426–1434. Crossref |
||||
Winder WW, Hardie DG (1999). "AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes". Am. J. Physiol. 277(1):E1–10. Pubmed |
||||
Winder WW, Holmes BF, Rubink DS, Jensen EB, Chen M, Holloszy JO (2000). "Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle". J. Appl. Physiol. 88(6):2219–2226. Pubmed |
||||
Witke W, Nellen W, Noegel A (1987). Homologous recombination in the Dictyostelium α-actin gene leads to an altered mRNA and lack of the protein. EMBO J. 6:4143–4148. Pubmed |
||||
Woods A, Azzout-Marniche D, Foretz M, Stein SC, Lemarchand P, Ferre P, Foufelle F, Carling D (2000). Characterisation of the Role of AMP-Activated Protein Kinase in the Regulation of Glucose-Activated Gene Expression Using Constitutively Active and Dominant Negative Forms of the Kinase. Mol. Cell Biol. 20(18):6704–6711. Crossref |
||||
Wu H, Kanatous SB, Thurmond FA, Gallardo T, Isotani E, Bassel-Duby R, Williams RS (2002). Regulation of Mitochondrial Biogenesis in Skeletal Muscle by CaMK. Science 296:349–352. Crossref |
||||
Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98: 115–124. Crossref |
||||
Xia Y, Buja LM, Scarpulla RC, McMillin JB (1997). Electrical stimulation of neonatal cardiomyocytes results in the sequential activation of nuclear genes governing mitochondrial proliferation and differentiation. Proc. Natl. Acad. Sci. 94:11399–11404. Crossref |
||||
Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ, Shulman GI (2002). AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc. Natl. Acad. Sci. 99:15983-15987. Crossref |
Copyright © 2023 Author(s) retain the copyright of this article.
This article is published under the terms of the Creative Commons Attribution License 4.0