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Rigorous seismic analysis of long structures requires a complete description of the free field ground 
motion. At a given site, the recorded motions at distinct points are different; this may induced by loss 
of seismic wave’s coherency, wave passage effect, site response effect and attenuation of seismic 
waves. In this paper, the effects spatial variability of ground motion (SVGM) on the stochastic response 
of structures subjected to this phenomenon (wave propagation and incoherence), using response 
spectrum method are analysed. The responses are evaluated along a two-span beam. After detecting 
the critical sections, the responses at these sections are studied in more details according to the 
fundamental period of the beam. SVGM have beneficial effects on displacement of structure founded on 
stiff soil and unbeneficial effects in presence of soft soil. The interplay between dynamic and pseudo-
static responses may either control how the spatial variability ground motion excitation effects are 
favourable or not depending on different sections along the two spans beam and the rigidity of the soil. 
 
Key words: Spatial variability, mean maximum response, two-span beam, soil, fundamental period. 

 
 
INTRODUCTION 
 
A rigorous seismic analysis of extended structures such 
as bridges, dams and large industrial buildings require a 
rational knowledge of the free surface seismic motion. 
Recent observations during earthquakes showed that at 
a given site, the recorded movements at distinct points 
are different, in amplitude, duration and frequency 
content (Loh et al., 1982; Harichandran and Vanmarke, 
1986; Abrahamson et al., 1991; Pitilakis et al., 1994). 
Important advances in computing power in the early 
1990s allowed more involved studies to be performed. 
The spatial variability models of excitation allowed pheno-
mena which are responsible for the variability of seismic 
movements to be incorporated into studies using a 
stochastic field based on random vibration theory based 
on the Luco and Wong coherency function (Luco and 
Wong, 1986). 

Several other coherence functions have been proposed  
(Oliveira et al., 1991; Kiureghian et al., 1992).  Kiureghian 
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suggests that several phenomena are responsible for the 
spatial variability of seismic movements (Kiureghian, 
1996). The first one is the difference in arrival times of 
seismic waves to different recording stations. The second 
is the loss of coherency of the seismic movement due to 
the multiple refractions and reflections of waves in the 
heterogeneous media. The third phenomenon is the 
difference in soil mechanical properties under different 
points of recording, which induce seismic movements 
characterised by different spectral amplitudes and 
frequency contents. Finally, the last phenomenon that 
causes spatial variability is attenuation of seismic waves 
due to soil damping as well as the dissipation of energy 
affecting the seismic wave amplitude.  

The effects of the spatial variability of seismic excitation 
on structure response subjected to such excitations are 
important and cannot be neglected (Abdelghaffar and 
Rubin, 1982; Zerva et al., 1988; Hao, 1989; Zerva, 1990; 
Harichandran and Wang, 1990; Berrah and Kausel, 1992; 
Kiureghian and Neuenhofer 1992; Monti et al., 1994; 
Haricahndran et al., 1996; Kiureghian et al., 1997; Kahan 
et al., 1998; Sextos, 2001; Sextos et al., 2003; Zanardo 
et al., 2002; Chouw and Hao, 2005; Lupoi et al., 2005). One  
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of the studies based on the random vibration theory 
approach done by Zerva (1990) evaluates the structural 
response of beams with varied lengths for seismic excita-
tion with cases of incoherence. The results showed that 
the effects of spatial variability of ground motion on res-
ponse are very complex. Either increasing or decreasing 
the structural response depends on many parameters. 
   Results tend to conclude that the more the ground 
excitation differs from support to another the more the 
structure is subjected to lower inertial forces and there-
fore its dynamic response is favourable. The reduction of 
inertial forces is due to pseudo-static forces increase. 
The combination of the inertial forces reduction and 
pseudo-static forces increase may be conservative or 
unconservative, depending on the structural configuration 
and properties of the structure (structural system, dyna-
mic characteristics,…) as well as on the ground motion 
characterization (apparent wave velocity, soil condi-
tions,…) (Zerva et al., 1988; Hao 1989; Kiureghian et al., 
1997; Monti et al., 1994; Zanardo et al., 2002) 

Also, multiple support excitations may trigger higher 
modes of structure vibrations and in some cases the 
dynamic response is dominated by such modes (Calvi 
and Pinto, 1996; Kahan et al., 1998; Price and 
Eberahard, 1998; Sextos, 2001). 

Although significant aspects of the effects of spatial 
variability have been already clarified, there is still a need 
for more research, which would contribute to a more 
refined and reliable seismic design of long structures. 
The present paper describes a parametric study on the 
effects of ground motion spatial variability on the 
response of long span structures (continuous two-span 
beam). 

The attention is focused on wave propagation and 
incoherence effects on stochastic response of extended 
structures. The approach takes into account the cross-
correlation terms between both the participant modes and 
the support excitations in the response calculation. A 
general formulation of maximum response including the 
dynamic and pseudo-static components as well as the 
cross-correlation between them is used. Finally, parame-
tric study is performed to show the response at the 
previously determined critical sections. 
 
 

EQUATIONS OF MOTION 
 
The following hypotheses are considered in this work: 
 
1. The seismic input is considered probabilistic, and 
propagates in homogeneous random field. The excitation 
and the response are stationary, Gaussian with zero 
mean value; 
2. The spatial variation of the seismic movement is cha-
racterised by the power cross-spectral density function of 
soil accelerations. This function is related to the power 
auto-spectral density function (PSD) by the coherency 
function; 

 
 
 
 
3. The PSD is supposed to be the same in all supports as 
soils conditions are identical. 
 

The dynamic part of the structure response subjected to 
multiple support excitations may be obtained from the 
differential equations of the motion (Clough and Penzien, 
1993): 
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Where 
tx  is the total displacement vector of the structure 

degrees of freedom (free degrees); x is the dynamic 

component of the displacement; 
sx  is the pseudo-static 

component, expressed according to the influence matrix 
R and the displacement of degrees of freedom u attached 
to the soil; M, C and K are respectively mass, damping 
and stiffness matrices associated to structure degrees of 
freedom; Mc, Cc and Kc are respectively mass, damping 
and stiffness coupling matrices associated to the 
imposed degrees of freedom. 
 

An approximation of the right-hand member of equation 

(1) is introduced: the quantity ( )uCCR
c

&+  can be 

neglected compared to inertial forces. 
The response spectrum method requires the modal 
approach. Using the transformation yφx =  in equation 

(1), where φ  is the modal matrix and y is the generalised 

displacement vector, the uncoupled equations of the 
motion are obtained: 
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The responses of the structure )(tz  (nodal displacement, 

strain component, internal efforts …) are linearly  expressed 



 
 
 
 
according to the total displacement: 
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where q is a vector dependent of the geometry and 
mechanical properties of the structure. 
Substituting the pseudo-static and dynamic component 
by their values, equation (4) becomes: 
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where ak is the effective influence coefficient, and bki is 
the effective modal participation factor, given respectively 
by: 
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Based on random vibration theory, the response spectra 
method incorporating the spatial variability of ground 
excitation developed by Der Kiureghian and Neuenhofer 
(1992), provides a combination rules include the 
contributions of cross-correlation between: (1) modes, (2) 
movements of supports and (3) the pseudo-static and 
dynamic response component. It is assumed that the 
excitations are stationary stochastic processes with zero 
mean. The peak response mean value is obtained by 
multiplying mean square response by the corresponding 
peak factor. In general, peak factors depend on the 
characteristics of each process and their ratios are 
around unity (Der Kiureghian and Neuenhofer, 1992), 
thus the mean maximal response value is given by: 
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In which: 
 

max,k
u  is the mean value of the maximum ground 

displacement at station k, ),(
iik
ςωD  is the ordinate of the 

displacement response spectrum associated to the 
support k of the mode i. 

lkuu
ρ  is the cross-correlation 

coefficient for the ground displacements at two stations k 
and l. It depends on the cross-power spectral density of 

displacements 
k

u  and 
l

u  It is equal to unity in the case of 

uniform excitation and insignificant for stiff soil conditions 
without site effects (Der Kiureghian and Neuenhofer, 
1992), and defined by: 
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ljk su
ρ  is the cross-correlation coefficient between the 

displacement at support k and the response of oscillator     
(

jj
ςω , ) at support l. It depends on the dynamic properties 

of both the soil and the oscillator, and is given by: 
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σ is the variance of soil displacement )(tu
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given by: 
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 is the cross-power spectral density of processes x 

and y. The auto power spectral densities are the same in 
case of identical site conditions. )(ωS

xy
is related to auto 

PSD by the relation: 
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we note that: 
 

)(=)( 4 ωSωωS
lklk uuuu &&&&      (14) 

 

)(=)( 2 ωSωωS
lklk uuuu &&&&&&      (15) 

 

),( ωdγ
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 is the coherency function characterizing the 

spatial variability of the ground motion between the 
stations k and l. Generally, it is complex value, which 
modulus characterises the incoherence effect, and the 
phase angle characterises the wave passage effect. It 
depends on soil frequency and distance between stations  
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dkl. 

The first term on the right-hand side of equation 7 with 
double summations over the support degrees of freedom 
k and l is the pseudo static component of the response, 
the term with summations over the support degrees of 
freedom and modes of structure is the dynamic 
component and the second term is the dynamo-static 
component arising from the covariance between the 
pseudo static and dynamic components. This response 
spectrum method employs a simple combination rule in 
terms of mean value of peak ground displacement (

max,k
u , 

max,l
u ) and the displacement response spectra 

( ),(
iik
ςωD , ),(

iil
ςωD at supports k and l 

 
 
APPLICATION 
 

The studied structure is a continuous two-span beam, which has 
uniform mass and stiffness properties. 

The Natural frequencies of the system are (Clough and Penzien, 
1993): 
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and the modal shape functions are:  
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Where EI denotes the flexural rigidity of the beam, ml the mass per 
unit length, L is the length of the span, and  
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The pseudo-static effective influence factors are third degree 
polynomials. 

The model of the PSD function of the support acceleration is the 
Kanai-Tajimi modified model (Clough and Penzien, 1993): 
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Where S0 is the white process bedrock excitation amplitude, which 
value is taken so that the maximal acceleration does not exceed 

0,35g, ωg and ζg are the soil dynamic characteristics; ζf and ωf are 
parameters of the corrective filter, given by (Der Kiureghian et al., 
1997). 
 

For the stiff soil, ωg = 15 rad/s, ζg = 0,6, ωf  =1,5 rad/s and ζf = 0,6 

and for the soft soil, ωg = 5 rad/s, ζg = 0,2, ωf =0,5 rad/sand ζf = 0,6 
The model of coherency function is assumed to have the following 
form (Luco and Wong, 1986): 
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Where α is the incoherence factor, Vs the shear wave velocity, 

app
V  

the apparent velocity of the predominant wave, 
kl

d  the horizontal 

distance between stations k and l, and 
L

kl
d  is its projection along 

the longitudinal direction of wave propagation. 
 
In the case of analyzing the importance of wave passage effect 
(case 2), it is assumed that the wave propagates from the support k 

to the support l and that
kl

L

kl
dd = . In the case 3, it is assumed 

vertically propagating waves (
∞ = appV 

). The following values 
are used in the study: wave velocities are 100 m/s in soft soil, and 
500 m/s in stiff soil, structure fundamental period is 1s with a span 
length of 100 m and modal damping ratio equal to 5%. 

Five cases are considered in the present study: 
 
Case 1: uniform (fully coherent) excitation at all the supports 

( 1=),(
kl

dωγ ); 

Case 2: only wave passage effects (α=0); 
Case 3: only incoherence effects (Vapp= ∞ ); 

Case 4: both effects wave passage and incoherence (α=0,25); 
Case 5: support motions are mutually independent               

( 0=),(
kl

dωγ ) 

 
The results are shown in term of normalised mean values of the 
maximum (peak) responses (displacement, bending moment and 
shear forces) to different excitation cases in relation to uniform 
response (case 1). From hereafter the following abbreviations are 
used: MMXR where MM is mean of maxima, X is a variable 
describing the component (D - dynamic, DS- dynamo-static, PS – 
pseudo-static, and T - total), and R is the response (D – 
displacement, M -  bending moment, and T - shear forces). 
 
 

Spatial variability effects along the beam 
 
Effects on normalised mean maximum displacement 
 
The effects of the spatial variability of ground motion tend 
to increase the dynamic component in case of soft soil 
and reduce it in the case of stiff soil (Figures 1a and b). 
The decrease of dynamic component was related by 
some authors (Hao, 1989; Monti et al., 1994; Der 
Kiureghian et al., 1997) and it is due to the presence of 
stiff soil (Der Kiureghian et al. (1997) consider a stiff soil 
“type 2” recommended by SEAOC). Due to the symmetry 
of the beam and lack of the wave passage effect, 
responses in the cases 1, 3 and 5 are symmetric. In all 
cases, the maximum values are found at mid-spans. 

The dynamo-static component (Figures 1c and 1d) is 
nil in the case of mutually independent excitation (case 5) 
while it contributes to the total displacement in all other 
cases with 6 - 7% (of dynamic component) for soft soil 
and less than 5% for stiff soil. This component is more 
sensitive to incoherence effect in case of stiff soil in term 
of loosing symmetry. 

The pseudo-static shown in Figures 1e and 1f is con-
stant in case 1 because of rigid body motion and reduced 
in the other cases (differential displacement). The 
normalisation here is done in relation to this case. The 
increase in differential displacement is maximal in case  5  
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Figure 1. Normalised mean maximum displacement along the two-span beam (a - b: dynamic component, c - d: dynamo-static 
component, e - f: pseudo-static component and g - h: total displacement). 

 
 
 

induces more sensitivity of this component to spatial 
variability of ground motion. 

The total maximum displacement on Figures 1g  and  h  

is qualitatively the same as the dynamic component. In 
the case of soft soil, the uniform excitation (case 1) 
reduces  the  total  displacement,  while  the  incoherence  



6         J. Civ. Eng. Constr. Technol. 
 
 
 
effect of excitation (cases 3 and 4) increases it. In case of 
stiff soil, the contrary is observed. Note that the total 
displacement is dominated by the pseudo static compo-
nent. Displacement induced by uniform excitation can be 
unconservative in case of continuous long beam models 
founded on soft soil. Analogous results have been 
obtained by Saxena et al. (2000). The determination of 
the pseudo static component is essential because of its 
domination in total response as recommended by Abbas 
and Manohar (2002) and it causes  differential displace-
ments along the supports which may cause failure of 
structures (Nuti and Vanzi, 2005). 
 
 
Effects on normalised mean maximum bending 
moment 
 
For the dynamic bending moment component, uniform 
excitation overestimates the response around the middle 
support whatever the soil, it undere stimates it at mid-
span for soft soil and overestimates it for stiff soil. The 
dynamo-static component (Figures 2c and 2d) 
contributes to the total response with negative peaks 
around the middle support and positive values elsewhere. 
Dynamic and pseudo-static bending moment components 
are negatively correlated. The maximum negative 
contribu-tion is due to uniform excitation, around 10% of 
dynamic component for soft soil and 7% for stiff soil. 
Totally, incoherent excitation (case 5) produces nil 
dynamo-static components and maximum pseudo static 
component; therefore, in this case the total mean 
maximum bending moment is conservative along all the 
beam for soft soil and only around the middle support for 
stiff soil (Figures 2g and h). Also, as the pseudo-static 
bending moment component is almost nil in case 1, the 
normalization is done according to the dynamic 
component. The pseudo-static response under case 5 is 
very important (around 30%) compared to other cases 
(around 5%). Generally, bending moment induced by 
uniform excitation can be unconservative along the beam 
founded on soft soil in case of mutually independent 
ground motion. In other cases (2 - 4), the increased 
contribution of pseudo static component is significant only 
around mid spans. The differences between case 1 and 
others cases are reduced around the middle support 
compared to the dynamic component because of the 
negative contribution of the dynamo static component. 
Analogous results have been obtained in many studies; 
the case of totally inde-pendent excitations increases the 
total bending moment compared to uniform excitation 
especially for beams founded on soft structures 
(Dumanoglu and Soyluk, 2003). 
 
 

Effects on normalised mean maximum shear forces 
 

The dynamic component (Figures 3a and 3b) under case 
1 overestimates the other cases for both soft and stiff soil.  

 
 
 
 
The maximum values are around the middle support in all 
cases. Dynamic and pseudo-static shear forces are 
negatively correlated around the middle support (Figures 
3c and 3d); the correlation is maximal in case 1, minimal 
in case 3 and nil in case 5. Maximum pseudo-static 
component (Figures 3e and 3f) is around 8% of dynamic 
component in case 5 and nil in case 1. The total mean 
maximum shear forces (Figures 3g and 3h) is slightly 
greater under case 5 in presence of soft soil, especially 
around the middle support and stays lower than the 
response under uniform excitation in case of stiff soil. 
 
 
Spatial variability effects at critical sections 
 
After analyzing the effects of the spatial variability 
(various cases of excitation) on the mean maximal 
responses along the beam and detecting the critical 
sections, it is interesting to study in more details the 
responses at these sections when the fundamental 
period of the beam varies. 
 
 
Effects on normalised mean maximum displacement 
 
Figure 4 shows displacement components due to 
different spatial variability effects for both soft and stiff 
soils at middle of first span (X/L = 1/2). In all cases, for 
structures with fundamental period less than 1 s, the 
dynamic response is the same (Figures 4a and b). It be-
comes different only for soft soil and higher periods. The 
effect of wave passage is more important in the 1 – 2 s 
bands, where the response is overestimated. Beyond this 
period, the response under incoherence effect dominates 
especially in case 3 for which the incoherence is taken 
alone. 

The curves present slight inflexion points in the vicinity 

of the ground period (  g g T ω π / 2 = 
), around 0.42 s for 

stiff soil and 1.26 s. for soft soil). This inflexion is 
accentuated in the case of soft soil, which means that the 
response of large structures (bridges) founded on soft 
soil exhibits weak variations for fundamental periods 
higher than that of the soil, to the contrary of the stiff soil 
case where the difference between cases remains con-
stant. Dynamo-static displacements are more important 
in case 3 (Figures 4c and d). They are weak compared to 
the dynamic component. They appear more insignificant 
for rigid structures and more when the structure is 
founded on stiff soil. 

The pseudo-static components are constant in all 
cases (Figures 4e and 4f); they are overestimated 
compared to the case 1 on soft soil. 

For soft soil, the effects of spatial variability are impor-
tant, the dynamic mean maximum total displacement 
increases when those effects (cases 2, 3 and 4) are 
taken into consideration (Figures 4g and 4h) for different 
structures  fundamental  periods. For   structures  on  stiff  



Mezouer et al.         7 
 
 
 

 
 

Figure 2. Normalised mean maximum bending moment along the two-span beam (a - b: dynamic component, c - d: 
dynamo-static component, e - f: pseudo-static component and g - h: total bending moment). 

 
 
 

soil, the effects appear important for flexible structures 
and can be neglected for rigid structures. In soft condi-
tions of soil, the total displacement at mid first span is 
overestimated  independently   of   the   structure   rigidity 

under cases 2 - 4 and totally incoherent ground motion 
reduces the total displacement. In presence of stiff soil, 
the difference between different cases of excitation 
appears only for flexible structures.  
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Figure 3. Normalised mean maximum shear forces along the two-span beam (a - b: dynamic component, c 
- d: dynamo-static component, e - f: pseudo-static component and g - h: total shear forces). 

 
 
 

Effects on normalised mean maximum bending 
moment 
 
For soft soil and up to its fundamental period (1.26 s), the 
dynamic  response  at  middle  support  is  practically  the 

same under all cases of excitation (Figure 5a). However, 
a clear difference appears in case 2 starting at the soil 
fundamental period, from which the case 2 response 
becomes higher than all others. For flexible structures, 
the case 2 responses drops and is lower than  that  of  all  
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Figure 4. Normalised mean maximum displacement at first mid-span (a - b: dynamic component, c - d: 
dynamo-static component, e - f: pseudo-static component and g - h: total displacement). 

 
 
 

other cases, while the case 3 response overestimates the 
others. 

For stiff soil (Figure 5b), a slight inflection is observed 
around the fundamental soil period (0.42 s) and the 
response under uniform excitation overestimates all the 
other cases. The maximum effects of spatial variability 
are observed for structures with periods ranging from 
0.42 to 1.8 s. 

The dynamic and pseudo-static bending moment 
components are negatively correlated (Figures 5c and 
5d). Spatial variability tends to minimise the dynamo-
static components for both soft and stiff soil. 

The pseudo-static components (Figures 5e and 5f) are 
constant, nil in the case of uniform excitation and 
maximal in the case of totally independent excitation. 
Total mean maximum bending moment (Figures 5g  and   



10         J. Civ. Eng. Constr. Technol. 
 
 
 

c d 

a b 

e f 

g h 

 
 

Figure 5. Normalised mean maximum bending moment at middle support (a - b: dynamic component, c - d: dynamo-static 
component, e - f: pseudo-static component and g - h: total bending moment). 

 
 
 

5h) is maximal in the case of totally independent 
excitation because of the strong pseudo-static 
contribution. Compared to other cases, the uniform ex-
citation is conservative for structures having fundamental 
periods higher than 2 s for soft soil. For stiff soil, the 
important negative correlation between  the  dynamic and 

pseudo-static components resulting from uniform 
excitation makes total mean maximum bending moment 
underestimated for structures with fundamental periods 
higher than 1.0 s. Totally independent excitation is more 
conservative on total bending moment at the middle sup-
port. Regarding the other  cases,  the  maximum  bending  
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Figure 6. Normalised mean maximum shear forces at middle support (a - b: dynamic component, c - d: 
dynamo-static component, e - f: pseudo-static component and g - h: total shear forces). 

 
 
 

moment around the middle support of flexible structures 
on soft soil can be amplified due to incoherence effect.  In 

case of stiff soil, the effect of spatial variability of ground 
motion is more significant  even  for  rigid  structures  that  
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are underlined by Abbas and Manohar (2002). 
 
 
Effects on normalised mean maximum shear forces 
 
For fundamental periods up to 1.5 s, the differences in 
dynamic response under all cases are not significant. For 
higher periods, they appear more drastically especially 
for soft soil (Figures 6a and 6b). Generally, the incohe-
rence effects (case 3) tend to overestimate the response 
while the wave passage effects (case 2) tend to unde-
restimate the dynamic shear forces (Figures 6a and 6b). 
The dynamo-static shear forces component (Figures 6c 
and 6d) exhibits negative values due to the nature of the 
correlation between the dynamic and pseudo-static 
components. The correlation is maximal in case of uni-
form excitation and reaches 100% of dynamic component 
for very flexible structures (T > 2.7 s). This correlation 
makes the total mean maximum shear forces (Figures 6g 
and h) underestimated. The latter reaches negative 
values for periods higher than 1.6 s. The pseudo-static 
component (Figures 6e and 6f) overtakes 10% of the 
dynamic component for soft soil and 8% for stiff soil. As a 
conclusion, totally independent excitation is more conser-
vative case on total shear forces at the middle support. 
The effect of spatial variability of ground motion on shear 
forces around the middle support is more significant in 
presence of stiff soil especially for flexible structures. 
 
 

Conclusion 
 
The mean maximum responses of the structure have 
been studied using response spectrum method 
incorporating the spatial variability of ground excitation. 
Variations of ground motion due to wave passage effect 
and incoherence effect are considered for both soft and 
stiff soil. The relative influence of each effect on the three 
components of the total response (dynamic component, 
pseudo-static component and the cross-term between the 
dynamic and pseudo-static) are examined. The response 
analysis of a structure with a fundamental period of 1.0 s 
excited with five different cases has been carried out in 
the first part of this work. It found in general that maximal 
displacement induced by uniform excitation can be 
unconservative in case of continuous long two spans 
beam founded on soft soil and conservative in case of 
stiff soil. Analogous results have been obtained in some 
previous studies. The determination of the pseudo static 
component is essential because of its domination in total 
maximal displacement and due to spatial variability of 
ground motion differential displacements along the 
supports may cause failures. Asynchronous support exci-
tation overestimates the total dynamic bending moment 
component at mid-span and underestimates it around the 
middle support. It generally has beneficial effects for 
structures founded on stiff soil. The pseudo-static 
bending moment component, which does  not  participate  

 
 
 
 
to the total response in the case of uniform excitation, 
appears in other cases with important contribution, 
especially for structures founded on soft soil. 

Uniform excitation produces highest dynamic shear 
forces around the middle support for both soft and stiff 
soil. With asynchronous excitation, pseudo-static shear 
forces appear and that reduces the differences between 
total shear forces under uniform excitation and other 
cases. 

The interplay between dynamic and pseudo-static 
responses may either control how the spatial variability 
ground motion excitation effects are beneficial or not 
depending on different sections along the two spans 
beam and the rigidity of the soil. 

In the second part, the effects of non uniform excitation 
on structures with different fundamental period have been 
studied. The mean maximum displacements were ana-
lysed at first mid-span and both mean maximum bending 
moment and shear forces at middle support. 

For structures with fundamental periods less than the 
soil period (Tg), dynamic response components (displace-
ment, shear forces and bending moment) are practically 
the same for all studied cases. Using uniform excitation 
(case1) in seismic analysis of such sections will thus give 
accurate responses. The wave passage effect dominates 
for structures with fundamental periods in Tg - 1.8 s 
range. For more flexible structures, dynamic displace-
ment is dominated by the incoherence effects may be 
because of the high value of the incoherence coefficient 

( 25,0=α ). 
As for the total response, the uniform excitation (case 

1) underestimates the displacement compared to cases  
2, 3 and 4 and overestimates it compared to case 5. Total 
displacement of structures founded on stiff soil is less 
sensitive to spatial variability of ground motion effects. 

The pseudo-static displacement in case of uniform 
excitation does not produce shear forces nor bending 
moment, in all other cases, a differential displacement is 
produced, which stimulates additional shear forces and 
bending moment. In the case of totally independent 
excitation (case 5), these additional internal forces control 
both the total bending moment and shear forces. 

On soft soil, for structures with fundamental periods 
less than 2.1 s, total bending moment under case 1 over-
estimates all the other cases except case 5. Beyond this 
fundamental period, incoherence effects dominate. For 
stiff soil the effects of spatial variability of ground motion 
on total bending moment are dominating. The reduction 
of the total response under uniform excitation is related to 
the negative contribution of the dynamo-static 
component. This reduction is more important for stiff soil 
compared to soft soil. 

As for shear forces, important additional pseudo-static 
forces and negative correlation components indicate that 
the ground motion spatial variability has to be accounted 
for. Totally independent excitation is more conservative 
case on total  shear  forces  at  the  middle  support.  Non  



 
 
 
 
uniform excitation effect on shear forces around the 
middle support is more significant in presence of stiff soil 
especially for flexible structures. 

Spatial variability of ground motion affects structure 
response in a very significant way and must definitively 
be taken into account for the design of long structures. 
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